三相全桥电压型逆变电路

合集下载

电压型逆变电路

电压型逆变电路
5.2 电压型逆变电路
1)逆变电路的分类 —— 根据直流侧电源性质 的不同
直流侧是电压源
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-VSTI
负载相电压
uUN uUN' uNN'
uVN
uVN'
uNN'
uWN
uWN'
uNN
'
u UN'
a)
O
Ud
t
u VN'
2
b)
O
t
u WN'
c)
O
t
u UV
Ud
d)
O
t
e) u NNO' u UN
f)
O
2Ud 3
Ud 6
t
Ud 3
t
iU
g)
O
t
id
h)
O
t
图5-10电压型三相桥式逆
变电路的工作波形
与全桥电路的比较:
比全桥电路少用一半开关器件。 器件承受的电压为2Ud,比全桥电路高 一倍。 必须有一个变压器 。
5.2.2 三相电压型逆变电路
三个单相逆变电路可组合成一个三相逆变电 路 应用最广的是三相桥式逆变电路
图5-9 三相电压型桥式逆变电路
5.2.2 三相电压型逆变电路
基本工作方式—— 180°导电方式
5.2 电压型逆变电路
5.2.1 单相电压型逆变电路 5.2.2 三相电压型逆变电路

三相逆变器基础电路

三相逆变器基础电路

三相逆变器基础电路:
三相逆变器基础电路主要包括三相全桥逆变电路、电流采样电路、直流母线电压采样电路和霍尔编码器驱动电路。

其中,三相全桥逆变电路是核心部分,其工作方式为180°导电方式,同一相(即同一半桥)上下两臂交替导电,各相开始导电的角度差120°,任一瞬间有三个桥臂同时导通。

每次换流都在同一相上下两臂之间进行,也称为纵向换流。

此外,为了控制三相逆变器的输出电压和频率,还需要对输出电压进行采样,以及对直流母线电压进行采样。

同时,为了实现精确的角度控制,还需要使用霍尔编码器来检测转子的位置。

总之,三相逆变器基础电路是实现交流电源向交流电动机提供可变频率的电源,从而实现交流调速的重要电路之一。

三相全桥逆变电路详解

三相全桥逆变电路详解

三相全桥逆变电路详解三相全桥逆变电路,听起来挺复杂吧?别担心,咱们慢慢来,聊聊这个有趣的东西。

这玩意儿可不是用来做饭的,而是电力电子领域里的明星。

想象一下,三相电像三条欢快的小溪流淌,各自有自己的节奏。

当它们在一起的时候,就能发出美妙的和声。

而全桥逆变器就是在这个过程中起到关键作用的,仿佛是乐队里的指挥,让每个音符都完美契合。

说到逆变器,大家可能会想,为什么要逆变呢?哈哈,简单来说,逆变器就是把直流电“变身”成交流电,就像魔术一样。

你想象一下,家里的电池,给你提供的是直流电,而大多数家用电器需要的是交流电。

这时候,逆变器就像是个桥梁,把这两者连接起来,嘿,真是太神奇了!而三相全桥逆变器更是其中的佼佼者,它能把三相直流电转变为三相交流电,效率高得惊人,几乎能说是电力界的“超人”。

聊聊它的结构,三相全桥逆变器可不简单,里面可是有四个开关元件,通常用的是MOSFET或者IGBT。

它们就像一队忠诚的士兵,听从指挥,按下去就通,松开就断。

每个开关都有自己的职责,要是哪个开关没跟上节奏,整个系统就会乱套。

想想,如果你在跳舞,突然踩错了节拍,那可就尴尬了!所以,开关的控制信号得精准无误,这样才能确保输出的交流电波形美如画。

我们得说说三相全桥逆变器的优点,嘿,真的是优点多多!它的输出电流波形特别好,几乎没有谐波,像喝了灵芝一样清爽。

这种特性让电器工作得更加稳定,寿命也更长。

能量转换效率高,可以达到95%以上。

想想,这可是省电的利器,大家都爱吧?就像你喜欢吃美味的东西,又不想长肉一样,三相全桥逆变器就是这种“美味”。

再说说应用,三相全桥逆变器可用的地方可多了,风能发电、太阳能发电、还有电动汽车充电等等,真是无所不在。

想象一下,阳光照射下,太阳能电池板收集的能量,通过逆变器转变成交流电,供给你的家,嘿,生活多美好!而电动汽车的充电桩,更是离不开它,让你在路上畅行无阻,真是现代科技的奇迹。

这个系统也有点小麻烦,比如控制复杂性就高了,设计的时候可得小心翼翼,不能马虎哦。

第二讲 三相逆变电路

第二讲 三相逆变电路

+Vdc
G
+
Vdc /2
-
+
Vdc /2
-
VT1
R
VT4
iR
VT3
Y
VT6
iY
VT5
B
VT2
iR
ZY
ZR
ia
ib
ZB
N
曲阜师范大学 新能源技术研究所
4/21
4.4.2 三相电压型逆变电路
当G点和N点不连接时,180O导电型工作过程,负载为阻性。6个功率 管的驱动信号如图6-20所示,其导通顺序为5、6、1;6、1、2;1、2、 3;2、3、4;3、4、5;4、5、6;5、6、1….;每组管子导通60度。 6个状态的等效电路如图6-21所示。
t
t 2
t
表示为电角度
(5-16) (5-17)
t 2
t
2
(5-18)
ω为电路工作角频率;r、β分别是tr、tβ对应的电角度
曲阜师范大学 新能源技术研究所
22/21
4.4.1 单相电流型逆变电路
➢ 数量分析
忽略换流过程,io可近似成矩形波,展开成傅里叶级数
io
4Id
sin
t
1 sin 3t
解:U UN1
U UN1m 2
0.45Ud =0.45×200=90(V)
U UN1m
2U d
0.637Ud =0.637×200=127.4(V)
2 U UV1m
3U d
1.1Ud = 1.1×200=220(V)
U UV1
U UV1m 2
6
Ud
0.78U d
= 0.78×200=156(V)

三相全桥逆变器工作原理

三相全桥逆变器工作原理

三相全桥逆变器工作原理三相全桥逆变器(Three-Phase Full-Bridge Inverter)是一种电力电子变换器,能将直流电能转换为交流电能。

它的主要工作原理是通过周期性地开关控制电压和电流的方向来实现电能的转换。

1.控制器:控制器是整个逆变器的大脑,它根据输入的信号来控制逆变器的开关动作。

控制器对于逆变器的正常工作至关重要。

2.电源和滤波器:逆变器的输入是直流电能,需要通过整流电路将交流电转换为直流电。

通常使用整流桥进行整流。

在这个过程中,还需要配备滤波电容和电阻等元件来平滑直流电压波形。

3.桥路电路:三相全桥逆变器采用了桥形电路,由六个开关管构成。

通过不同的开关组合,可以实现不同的电压和电流输出。

每个开关管都有一个对应的二极管,用于消除电感器件中的反电动势。

4.逆变器输出过滤电容:在逆变器输出端需要一个过滤电容,用于平滑输出交流电压的波形。

逆变器的工作原理可以分为以下几个步骤:1.正半周工作原理:在整个逆变器工作周期的正半周中,控制器使得三相全桥逆变器的S1和S4开,S2和S3关。

这样,从直流电源通过S1和S3流入负载,同时电荷通过负载回流到S4和S2,在负载上产生了一个正电流。

2.负半周工作原理:在逆变器的负半周期中,控制器使得S1和S4关,S2和S3开。

此时,电荷从直流电源通过S2和S4流入负载,在负载上产生了一个负电流。

3.控制策略:逆变器的控制器根据负载的要求,通过改变开关管的开关状态和频率来控制输出的电压和电流。

目前常用的控制策略有矢量控制、PWM调制和脉宽调制等。

总之,三相全桥逆变器通过将直流电能转换为交流电能,为现代工业和民用电网提供了可靠的电力供应。

它的工作原理基于桥形电路和开关控制,通过不同的控制策略调整输出电压和电流,以满足不同负载的要求。

三相电压逆变器原理图

三相电压逆变器原理图

三相电压逆变器原理图
三相电压逆变器原理图如下:
[原理图]
根据原理图中的电路连接,三相电压逆变器主要由三个部分组成:输入滤波电路、逆变桥电路和输出滤波电路。

输入滤波电路主要由电容器和电感器组成,用于滤除输入电压中的高频噪声和干扰信号,保证逆变器工作的稳定性和可靠性。

逆变桥电路是三相逆变器的核心部分,由六个可控开关管(如IGBT)组成,分别为上下桥臂。

通过控制开关管的导通和关断,可以实现三相电压的逆变。

输出滤波电路主要由电感器和电容器组成,用于滤除逆变后输出电压中的高频谐波,提高逆变器输出电压的纯度和稳定性。

逆变器工作过程中,输入三相电压经过输入滤波电路进入逆变桥电路,在逆变桥电路的控制下,经过逆变和开关操作,将输入的直流电压逆变为输出的交流电压。

最后,输出电压经过输出滤波电路进行滤波处理,得到稳定的三相交流电压输出。

通过以上电路连接和工作过程,三相电压逆变器能够将直流电压转换为交流电压,实现在三相系统中的能量传送和使用。

三相桥式全控整流及有源逆变电路实验

三相桥式全控整流及有源逆变电路实验

三相桥式全控整流及有源逆变电路实验一.实验目的1.熟悉MCL-31A,MCL-33组件。

2.熟悉三相桥式全控整流及有源逆变电路的接线及工作原理。

3.了解集成触发器的调整方法及各点波形。

二.实验内容1.三相桥式全控整流电路2.三相桥式有源逆变电路3.观察整流或逆变状态下,模拟电路故障现象时的波形。

三.实验线路及原理实验线路如图4-9所示。

主电路由三相全控变流电路及作为逆变直流电源的三相不控整流桥组成。

触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。

三相桥式整流及有源逆变电路的工作原理可参见“电力电子技术”的有关教材。

四.实验所需挂件及附件序号1型号MCL—32A电源控制屏备注该控制屏包含“三相电源输出”,“励磁电源”等几个模块。

2MCL-31A低压电源和仪表该挂件包含“给定电源和±15V低压电源”等模块。

3MCL-33晶闸管主电路和触发电路等该挂件包含“晶闸管”、“二极管”“电感”、“触发电路”等几个模块。

4MEL—03三相可调电阻56MEL-02芯式变压器双踪示波器和万用表自备五.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

(1)打开MCL-31A电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。

(3)检查相序,用示波器观察“1”,“2”脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。

(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。

注:将面板上的Ublf(当三相桥式全控变流电路使用I组桥晶闸管VT1~VT6时)接地,将I组桥式触发脉冲的六个开关均拨到“接通”。

(5)将给定器输出Ug接至MCL-33面板的Uct端,调节偏移电压Ub,在Uct=0时,使=150o。

2.三相桥式全控整流电路按图4-9接线,S拨向左边短接线端,将Rd调至最大(450)。

电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告

一、实验背景整流是指将交流电变换为直流电的变换,而将交流电变换为直流电的电路称为整流电路。

整流电路是四种变换电路中最基本的变换电路,应用非常广泛。

对于整流电路,当其带不同负载情况下,电路的工作情况不同。

此外,可控整流电路不仅可以工作在整流状态,即将交流电能变换为直流电能,还可以工作在逆变状态,即将直流电能变换为交流电能,称为有源逆变。

在工业中,应用最为广泛的是三相桥式全控整流电路(Three Phase Full Bridge Converter),它是由两个三相半波可控整流电路发展而来。

该次试验即是针对三相桥式全控整流电路而展开的一些较为简单的学习与研究。

二、实验原理三相桥式全控整流及有源逆变该次实验连接电路图如下图所示整流有源逆变控制信号初始化约定:,,整流,,逆变,,临界注意事项:在接主电路过程中,晶闸管接入双刀双闸开关时一定要注意正负极必须正确匹配。

电容器用于吸收感性电流引起的干扰,使得示波器显示的波形更加标准、清晰。

双刀双掷开关在切换时主回路必须断电,否则很可能因切换时拉出电弧而损坏设备。

(一)整流电路1、整流的概念把交流电变换为直流电的变换称为整流(Rectifier),又叫AC-DC变换(AC-DC Converter)。

整流电路是一种把交流电源电压转换成所需的直流电压的电路。

AC-DC变换的功率流向是双向的,功率流向由交流电源流向负载的变换称之为“整流”,功率流向由负载流向交流电源的变换称之为“有源逆变”。

采用晶闸管作为整流电路的主控器件,通过对晶闸管触发相位的控制从而达到控制输出直流电压的目的,这样的电路称之为相控整流电路。

2、整流电路的分类(1)按电路结构分类①半波整流电路:半波整流电路中每根电源进线流过单方向电流,又称为零式整流电路或单拍整流电路。

②全波整流电路:全波整流电路中每根电源进线流过双方向电流,又称为桥式整流电路或双拍整流电路。

(2)按电源相数分类①单相整流电路:又分为单脉波整流电路和双脉波整流电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3三相全桥电压型逆变电路
此为阻感负载 导通顺序:上桥臂VT1->VT3->VT5
下桥臂VT2->VT4->VT6
5.3三相全桥电压型逆变电路
uN 为正时为桥臂1 导通期间, iU >0,V1 导通, iU <0,VD1导通; uN 为负时为桥臂4 导通期间, iU <0,V4 导通, iU >0,VD4导通;
5.3三相全桥电压型逆变电 路
纵向 换流
蓝色为iU ,红色为iV ,绿色为iW ,黑色为id 。
id为三个上桥臂电流之和。 是 V1,VD1;V3,VD3;V5,VD5电流之和。 即uUN’, u VN’, uWN’为正时的电流。 而不是iU ,iV ,iW之和。 iU ,iV ,iW之和为0。
5.4单相电流型逆变电路
5.作业
1。为什么电流型逆变电路中没有反馈二极管? 2。P149 第6题 3。 P149 第7题
L 等效为钢料及线 圈构成的电感
R 等效为钢料中产 生涡流损耗的电阻
1000~2500Hz中 频
5.5三相电流型逆变电路
采用全控型器件 任何时刻上下桥臂各仅有一个通 导通时间120度。横向换流
导通顺序:上桥臂VT1->VT3->VT5 下桥臂VT2->VT4->VT6
5.5串联二极管式电流型逆变电路(1)
5.5 无换向器电动机电流型逆变电路
利用反电势 换流属负载
vT3
换流
时U
相电
压比
V相

vT3
正偏
5.5电压型-电流型逆变电路对比
电压型
直流侧电压源-电容滤波 同一相内上下桥臂间纵向换流 上下桥臂采取先通后断 -留“死区” 防电压源短路
单相每个臂导通时间稍小于180度
三相每个臂导通时间稍小于180度
输出电压为方波,电流近似正弦波
主要使用全控器件-器件换流 要短路保护-否则烧管子-是难 点
电流型
直流侧电流源-电感滤波 同一组内不同相间横向换流 组内换相桥臂采取先通后断 -留“接续区” 防电流源开路
单相每个臂导通时间稍大于180度
三相每个臂导通时间稍大于120度
输出电流为方波,电压近似正弦波
主要使用半控器件-负载换流 根据负载情况决定“自励”, “他 励-否则逆变失败-是难点
5.5串联二极管式电流型逆变电 路(2)
由于C3与C5串联,后与 C1并联。 C3与C5电流为 C1一半,其电压变化(Uco) 也为C1一半(2Uco)。
5.5串联二极管式电 流型逆变电路(3)
5.5串联二极管式电流型逆变电路(4)
下次强迫换流: 由C3充电电压为正的一端晶闸管VT3向为负的一端VT5换流。 当然也由C1充电电压为正的一端晶闸管VT3向为负的一端VT1换流。 这给那个晶闸管触发脉冲而定,本次给VT5 触发脉冲。
强迫换流: 由C1充电电压为正的一端晶闸管VT1向为负的一端VT3换流。 当然也可由C5为正的一端晶闸管VT1向为负的一端VT5换流。 这由给那个晶闸管触发脉冲而定,本次给VT3 触发脉冲。
t1~t2 恒流 放电
Hale Waihona Puke 强 迫 换 流t2~t3 二 极管换流
稳定导通 阶段
二极管VD3(VD1)在iU( iV )导通期间 象一个“水坝”防止C13电荷泄掉。
相关文档
最新文档