深圳华侨城中学数学 二次函数检测题(Word版 含答案)
二次函数 单元检测试卷(含答案)

二次函数单元检测试卷(含答案)二次函数复套卷时间:120分钟满分:150分班级:__________ 姓名:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.下列各式中,y是x的二次函数的是()A。
y = 1/2xB。
y = 2x + 1C。
y = x^2 + x - 2D。
y^2 = x^2 + 3x / x2.抛物线y = 2x^2 + 1的顶点坐标是()A。
(2.1)B。
(0.1)C。
(1.0)D。
(1.2)3.二次函数y = ax^2 + bx - 1 (a ≠ 0)的图像经过点(1.1),则a +b + 1的值是()A。
-3B。
-1C。
2D。
34.抛物线y = x^2 - 2x - 3与x轴的交点个数是()A。
0个B。
1个C。
2个D。
3个5.下列函数中,当x。
0时,y随x值的增大而先增大后减小的是()A。
y = x^2 + 1B。
y = x^2 - 1C。
y = (x + 1)^2D。
y = -(x - 1)^26.二次函数y = ax^2 + bx + c的部分对应值如下表:x。
y2.51.-31.-42.-33.…二次函数图像的对称轴是()A。
直线x = 1B。
y轴C。
直线x = -1D。
直线x = -27.如图,二次函数y = ax^2 + bx + c的图像与x轴相交于(-2.0)和(4.0)两点,当函数值y。
0时,自变量x的取值范围是()A。
x < -2B。
-2 < x < 4C。
x。
0D。
x。
48.二次函数y = ax^2 + bx + c的图像如图所示,那么一次函数y = ax + b的图像大致是()9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件。
在确保盈利的前提下,若设每件服装降价x元,每天售出服装的利润为y元,则y与x的函数关系式为()A。
深圳大鹏街道华侨中学中考数学期末二次函数和几何综合汇编

深圳大鹏街道华侨中学中考数学期末二次函数和几何综合汇编一、二次函数压轴题1.定义:若抛物线的顶点和与x 轴的两个交点所组成的三角形为等边三角形时.则称此抛物线为正抛物线.概念理解:(1)如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点.试证明:以点A 为顶点,且与x 轴交于D 、C 两点的抛物线是正抛物线;问题探究:(2)已知一条抛物线经过x 轴的两点E 、F (E 在F 的左边),E (1,0)且EF =2若此条抛物线为正抛物线,求这条抛物线的解析式;应用拓展:(3)将抛物线y 1=﹣x 2+23x +9向下平移9个单位后得新的抛物线y 2.抛物线y 2的顶点为P ,与x 轴的两个交点分别为M 、N (M 在N 左侧),把△PMN 沿x 轴正半轴无滑动翻滚,当边PN 与x 轴重合时记为第1次翻滚,当边PM 与x 轴重合时记为第2次翻滚,依此类推…,请求出当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标.2.探究:已知二次函数y =ax 2﹣2x+3经过点A(﹣3,0).(1)求该函数的表达式;(2)如图所示,点P 是抛物线上在第二象限内的一个动点,且点P 的横坐标为t ,连接AC ,PA ,PC .①求△ACP 的面积S 关于t 的函数关系式;②求△ACP 的面积的最大值,并求出此时点P 的坐标.拓展:在平面直角坐标系中,点M 的坐标为(﹣1,3),N 的坐标为(3,1),若抛物线y =ax 2﹣2x+3(a <0)与线段MN 有两个不同的交点,请直接写出a 的取值范围.3.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.4.如图,在平面直角坐标系中,抛物线y =﹣ax 2+bx +3与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求直线AC 及抛物线的解析式,并求出D 点的坐标;(2)若P 为线段BD 上的一个动点,过点P 作PM ⊥x 轴于点M ,求四边形PMAC 的面积的最大值和此时点P 的坐标;(3)若点P 是x 轴上一个动点,过P 作直线1∥AC 交抛物线于点Q ,试探究:随着P 点的运动,在抛物线上是否存在点Q ,使以点A 、P 、Q 、C 为顶点的四边形是平行四边形?若存在,请求出符合条件的点Q 的坐标;若不存在,请说明理由.5.小明对函数2(0)y a x bx c a =++≠的图象和性质进行了探究.已知当自变量x 的值为0或4时,函数值都为3-;当自变量x 的值为1或3时,函数值都为0.探究过程如下,请补充完整.(1)这个函数的表达式为 ;(2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的--条性质: ; (3)进一步探究函数图象并解决问题:①直线y k =与函数2y a x bx c =++有三个交点,则k = ;②已知函数3y x =-的图象如图所示,结合你所画的函数图象,写出不等式2a x bx c ++3x ≤-的解集: .6.某数学兴趣小组在探究函数y =x 2﹣2|x |+3的图象和性质时,经历了以下探究过程: (1)列表(完成下列表格). x… ﹣3 ﹣2 ﹣1 ﹣12 0 12 1 2 3 … y … 6 3 2 23 6 … (2)描点并在图中画出函数的大致图象;(3)根据函数图象,完成以下问题:①观察函数y=x2﹣2|x|+3的图象,以下说法正确的有(填写正确的序号)A.对称轴是直线x=1;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2);C.当﹣1<x<1时,y随x的增大而增大;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到.②结合图象探究发现,当m满足时,方程x2﹣2|x|+3=m有四个解.③设函数y=x2﹣2|x|+3的图象与其对称轴相交于P点,当直线y=n和函数y=x2﹣2|x|+3图象只有两个交点时,且这两个交点与点P所构成的三角形是等腰直角三角形,求n的值.7.基本模型如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF.(1)模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF;(2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB 上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;(3)拓展提升:如图4,在平面直角坐标系柳中,抛物线y=﹣(x+4)(x﹣6)与x轴交于点A,C,与y轴交于点B,抛物线的对称轴交线段BC于点E,探求线段AB上是否存在点F,使得∠EFO=∠BAO?若存在,求出BF的长;若不存在,请说明理由.8.综合与探究如图,在平面直角坐标系中,抛物线234y x x =--+与x 轴分别交于点A 和点B (点A 在点B 的左侧),交y 轴于点C .点P 是线段OA 上的一个动点,沿OA 以每秒1个单位长度的速度由点O 向点A 运动,过点P 作DP x ⊥轴,交抛物线于点D ,交直线AC 于点E ,连接BE .(1)求直线AC 的表达式;(2)在点P 运动过程中,运动时间t 为何值时,EC ED =?(3)在点P 运动过程中,EBP △的周长是否存在最小值?若存在,求出此时点P 的坐标;若不存在,请说明理由.9.已知抛物线y =x 2+bx +c 的顶点为P ,与y 轴交于点A ,与直线OP 交于点B .(1)如图1,若点P 的横坐标为1,点B 的坐标为(3,6),①试确定抛物线的解析式;②若当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6,求m 的取值范围; (2)在(1)的条件下,若M 点是直线AB 下方抛物线上的一点,且S △ABM ≥3,求M 点横坐标的取值范围;(3)如图2,若点P 在第一象限,且PA =PO ,过点P 作PD ⊥x 轴于点D ,将抛物线y =x 2+bx +c 平移,平移后的抛物线经过点 A 、D ,与x 轴的另一个交点为C ,试探究四边形OABC 的形状,并说明理由.10.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)直接写出抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,连接PA、PD,①当△PAD的面积最大时,P点的坐标是;②当AB平分∠DAP时,求线段PA的长.(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.二、中考几何压轴题11.如图,在△ABC中,∠ACB=90°,AC=BC,点D是AB边上的动点,DE⊥BC于点E,连接AE,CD,点F,G,H分别是AE,CD,AC的中点.(1)观察猜想:△FGH的形状是(2)探究论证:把△BDE绕点B按逆时针方向旋转到如图所示的位置,(1)中的结论是否仍然成立?请说明理由.(3)拓展延伸:把△BDE 绕点B 在平面内自由旋转,若BC=6,BE=2,请直接写出△FGH 周长的取值范围.12.如图1,在等腰三角形ABC 中,120,,A AB AC ∠==点D E 、分别在边AB AC 、上,,AD AE =连接,BE 点M N P 、、分别为DE BE BC 、、的中点.(1)观察猜想图1中,线段NM NP 、的数量关系是____,MNP ∠的大小为_____;(2)探究证明把ADE 绕点A 顺时针方向旋转到如图2所示的位置,连接,MP BD CE 、、判断MNP △的形状,并说明理由;(3)拓展延伸把ADE 绕点A 在平面内自由旋转,若1,3AD AB ==,请求出MNP △面积的最大值. 13.问题发现:(1)如图1,ABC 与DCE 同为等边三角形,连接,BD AE 则BD 与AE 的数量关系为________;直线BD 与AE 所夹的锐角为_________;类比探究:(2)BC A △与DCE 同为等腰直角三角形,其他条件同(1),请问(1)中的结论还成立吗?请说明理由;拓展延伸:(3)ABC 中90,30BAC C ∠=︒∠=︒,DE 为ABC ∆的中位线,将CDE △绕点C 逆时针自由旋转,已知2AB =,在自由旋转过程中,当A D E 、、在一条直线上时,请直接写出AD 的值.14.折纸是一种许多人熟悉的活动.近些年,经过许多人的努力,已经找到了多种将正方形折纸的一边三等分的精确折法,下面探讨其中的一种折法:(综合与实践)操作一:如图1,将正方形纸片ABCD对折,使点A与点D重合,点B与点C重合,再将正方形纸片ABCD展开,得到折痕MN;操作二:如图2,将正方形纸片ABCD的右上角沿MC折叠,得到点D的对应的点为D′;操作三:如图3,将正方形纸片ABCD的左上角沿MD′折叠再展开,折痕MD′与边AB交于点P;(问题解决)请在图3中解决下列问题:(1)求证:BP=D′P;(2)AP:BP=;(拓展探究)(3)在图3的基础上,将正方形纸片ABCD的左下角沿CD′折叠再展开,折痕CD′与边AB 交于点Q.再将正方形纸片ABCD过点D′折叠,使点A落在AD边上,点B落在BC边上,然后再将正方形纸片ABCD展开,折痕EF与边AD交于点E,与边BC交于点F,如图4.试探究:点Q与点E分别是边AB,AD的几等分点?请说明理由.15.爱好思考的小明在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线相互垂直的三角形“中垂三角形”,如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)如图1,当tan ∠PAB=1,c=42时,a=b= ;(归纳证明)(2)请你观察(1)中的计算结果,猜想a 2、b 2、c 2三者之间的关系,用等式表示出来,并利用图2证明你的结论;(拓展证明)(3)如图4,▱ABCD 中,E 、F 分别是AD 、BC 的三等分点,且AD=3AE ,BC=3BF ,连接AF 、BE 、CE ,且BE ⊥CE 于E ,AF 交BE 相较于点G ,AD=35,AB=3,求AF 的长. 16.探究:如图1和图2,四边形ABCD 中,已知AB =AD ,∠BAD =90°,点E 、F 分别在BC 、CD 上,∠EAF =45°.(1)①如图1,若∠B 、∠ADC 都是直角,把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,直接写出线段BE 、DF 和EF 之间的数量关系 ;②如图2,若∠B 、∠D 都不是直角,但满足∠B +∠D =180°,线段BE 、DF 和EF 之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC 中,∠BAC =90°,AB =AC =22.点D 、E 均在边BC 边上,且∠DAE =45°,若BD =1,求DE 的长.17.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.18.如图(1),在矩形ABCD 中,AD =nAB ,点M ,P 分别在边AB ,AD 上(均不与端点重合),且AP =nAM ,以AP 和AM 为邻边作矩形AMNP ,连接AN ,CN.(问题发现)(1)如图(2),当n =1时,BM 与PD 的数量关系为 ,CN 与PD 的数量关系为 .(2)如图(3),当n =2时,矩形AMNP 绕点A 顺时针旋转,连接PD ,则CN 与PD 之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.(拓展延伸)(3)在(2)的条件下,已知AD =4,AP =2,当矩形AMVP 旋转至C ,N ,M 三点共线时,请直接写出线段CN 的长19.已知:60AOC BOC ∠=∠=︒,过平面内一点P 分别向OA 、OB 、OC 画垂线,垂足分别为D 、E 、F .(问题引入)如图①,当点P 在射线OC 上时,求证:OD OE =.(类比探究)(1)如图②,当点P 在AOC ∠内部,点E 在射线OB 上时,求证:OD OE OF +=.(2)当点P 在AOC ∠内部,点E 在射线OB 的反向延长线上时,在图③中画出示意图,并直接写出线段OD 、OE 、OF 之间的数量关系.(知识拓展)如图④,AB 、CD 、EF 是O 的三条弦,都经过圆内一点P ,且60FPD BPD ∠=∠=︒.判断PA PD PE ++与PB PC PF ++的数量关系,并证明你的结论.20.综合与实践背景阅读:“旋转”即物体绕一个点或一个轴做圆周运动.在中国古典专著《百喻经·口诵乘船法而不解用喻》中记载:“船盘回旋转,不能前进.”而图形旋转即:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,这个定点叫做旋转中心,转动的角叫做旋转角.综合实践课上,“睿智”小组专门探究了正方形的旋转,情况如下:在正方形ABCD 中,点O 是线段BC 上的一个动点,将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).设旋转角为α(0180α<<︒).操作猜想:(1)如图1,若点O 是BC 中点,在正方形ABCD 绕点旋转过程中,连接AA ',BB ',DD ',则线段AA '与DD '的数量关系是_______;线段AA '与BB '的数量关系是________. 探究验证:(2)如图2,在(1)的条件下,在正方形ABCD 绕点O 旋转过程中,顺次连接点B ,B ',C ,C ',B .判断四边形''BB CC 的形状,并说明理由.拓展延伸:(3)如图3,若2BO CO =,在正方形ABCD 绕点O 顺时针旋转的过程中,设直线BB '交线段AA '于点P .连接OP ,并过点O 作OQ BB '⊥于点Q .请你补全图形,并直接写出OP OQ的值.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.A解析:(1)详见解析;(2)y =22)x -y 22)x -3)当第2019次翻滚后抛物线y 2的顶点P 的对应点坐标为(3).【分析】(1)由Rt △ABC 中AD 是斜边BC 的中线可得AD =CD ,由抛物线对称性可得AD =AC ,即证得△ACD 是等边三角形.(2)设抛物线顶点为G ,根据正抛物线定义得△EFG 是等边三角形,又易求E 、F 坐标,即能求G 点坐标.由于不确定点G 纵坐标的正负号,故需分类讨论,再利用顶点式求抛物线解析式.(3)根据题意求出抛物线y 2的解析式,并按题意求出P 、M 、N 的坐标,得到等边△PMN ,所以当△PMN 翻滚时,每3次为一个周期,点P 回到x 轴上方,且横坐标每多一个周期即加n 能被3n(2n +12019能被3整除,代入即能求此时点P 坐标.【详解】解:(1)证明:∠BAC =90°,点D 是BC 的中点∴AD =BD =CD =12BC∵抛物线以A 为顶点与x 轴交于D 、C 两点∴AD =AC∴AD =AC =CD∴△ACD 是等边三角形∴以A 为顶点与x 轴交于D 、C 两点的抛物线是正抛物线.(2)∵E (1,0)且EF =2,点F 在x 轴上且E 在F 的左边∴F (3,0)∵一条经过x 轴的两点E 、F 的抛物线为正抛物线,设顶点为G∴△EFG 是等边三角形∴x G =E F G x x 2,2y +==①当G (2y =a (x ﹣2)2把点E (1,0)代入得:a 0∴a∴y x ﹣2)2②当G (2y =a (x ﹣2)2把点E (1,0)代入得:a 0∴a∴y x ﹣2)2综上所述,这条抛物线的解析式为y x ﹣2)2y x ﹣2)2(3)∵抛物线y 1=﹣x 2+9=﹣(x 2+12∴y1向下平移9个单位后得抛物线y 2=﹣(x 2+3∴P 3),M (0,0),N (0)∴PM =MN =PN =∴△PMN 是等边三角形∴第一次翻滚顶点P 的坐标变为P1(0),第二次翻滚得P 2与P 1相同,第三次翻滚得P 3(3)即每翻滚3次为一个周期,当翻滚次数n 能被3整除时,点P 纵坐标为3+n 2n +1∵2019÷3=673∴(2×2019+1)∴当第2019次翻滚后抛物线y2的顶点P 的对应点坐标为(3).【点睛】本题考查了新定义的理解、性质运用,二次函数的图象与性质,直角三角形和等边三角形的性质.第(3)题的解题关键是发现等边△PMN 每3次翻滚看作一个周期,点P 对应点坐标的特征,是规律探索的典型题.2.探究:(1)223y x x =--+;(2)①S =23922t t =--,②ACP ∆的面积的最大值是278,此时点P 的坐标为315(,)24-,拓展:2a ≤-. 【分析】(1)由待定系数法易求解析式;(2)过点P 作PN AO ⊥于点N ,交AC 于点Q .设点P 的坐标为()2,23t t t --+,由PQC PQA S S S ∆∆=+可得关于t 的二次函数,进而可求最大值.(3)根据抛物线与MN 的位置关系可知当抛物线经过M 点时,a 取最大值.【详解】探究:(1)∵抛物线223y ax x =-+经过点()3,0A -,∴()()203233a =--⨯-+,解得1a =-. ∴抛物线的表达式为223y x x =--+.(2)①过点P 作PN AO ⊥于点N ,交AC 于点Q .设直线AC 的解析式为()0y kx b k =+≠,将()3,0A -、()0,3C 代入y kx b =+,303k b b -+=⎧⎨=⎩,解得:13k b =⎧⎨=⎩, ∴直线AC 的解析式为3y x =+.∵点P 在抛物线223y x x =--+上,点Q 在直线AC 上,∴点P 的坐标为()2,23t t t --+,点Q 的坐标为(),3t t +, ∴()2233P Q PQ y y t t t =-=--+-+ 23t t =--, ∴()21332PQC PQA S S S t t ∆∆=+=--⋅ 23922t t =--. ②∵23922S t t =--, ∴当9323222t =-=-⎛⎫⨯- ⎪⎝⎭时,2max 33932722228S ⎛⎫⎛⎫=-⨯--⨯-= ⎪ ⎪⎝⎭⎝⎭, 当32t =-时,2331523224p y ⎛⎫⎛⎫=---⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴ACP ∆的面积的最大值是278,此时点P 的坐标为315,24⎛⎫- ⎪⎝⎭. [拓展]:抛物线y=ax 2−2x+3(a<0),当x=1时,y=a-2+3=a+1<3,故抛物线右边一定与MN 有交点,当x=-1,y=a+2+3=a+5,在M 点或下方时,抛物线左边边一定与MN 有交点, 即a+5≤3;∴2a ≤-;【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算,极值的确定,关键是确定出抛物线解析式,难点是数形结合确定a 点的求值范围.3.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】 (1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩ 解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆, MO BO CD MD ∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=, ∴2430m am ,216120,0a a ∆-≥>32a ∴≥ 所以32a ≥时,存在点M ,使得四边形''BCB C 为菱形. 【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.4.D解析:(1)y =3x +3,y =﹣x 2+2x +3,顶点D 的坐标为(1,4);(2)四边形PMAC 的面积的最大值为10516,此时点P 的坐标为(94,32);(3)点Q 的坐标为(2,3)或(173)或(17-3).【分析】(1)先求出点C 坐标,然后利用待定系数法即可求出直线AC 及抛物线的解析式,把抛物线的一般式转化为顶点式即可求出D 点的坐标;(2)先根据待定系数法求出直线BD 的解析式,设点P 的横坐标为p ,然后根据S 四边形PMAC =S △OAC +S 梯形OMPC 即可得出S 四边形PMAC 与p 的关系式,再根据二次函数的性质解答即可; (3)由题意得PQ ∥AC 且PQ =AC ,设点P 的坐标为(x ,0),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),把点Q 的坐标代入抛物线的解析式即可求出x ,进而可得点Q 坐标;当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),同样的方法求解即可.【详解】(1)∵抛物线y =﹣ax 2+bx +3与y 轴交于点C ,∴点C (0,3),设直线AC 的解析式为y =k 1x +b 1(k 1≠0).∵点A (﹣1,0),点C (0,3),∴11103k b b -+=⎧⎨=⎩,解得:1133k b =⎧⎨=⎩, ∴直线AC 的解析式为y =3x +3.∵抛物线y =﹣ax 2+bx +3与x 轴交于A (﹣1,0),B (3,0)两点,∴309330a b a b --+=⎧⎨-++=⎩,解得:12a b =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x +3.∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D 的坐标为(1,4);(2)设直线BD 的解析式为y =kx +b .∵点B (3,0),点D (1,4),∴304k b k b +=⎧⎨+=⎩,得26k b =-⎧⎨=⎩, ∴直线BD 的解析式为y =﹣2x +6.∵P 为线段BD 上的一个动点,∴设点P 的坐标为(p ,﹣2p +6).∵OA =1,OC =3,OM =p ,PM =﹣2p +6,∴S 四边形PMAC =S △OAC +S 梯形OMPC 111326322p p =⨯⨯+-++⨯()=﹣p 292+p 32+=﹣(p 94-)210516+, ∵1<p <3,∴当p 94=时,四边形PMAC 的面积取得最大值为10516,此时点P 的坐标为(94,32); (3)∵直线l ∥AC ,以点A 、P 、Q 、C 为顶点的四边形是平行四边形,∴PQ ∥AC 且PQ =AC .设点P 的坐标为(x ,0),由A (﹣1,0),C (0,3),当点Q 在x 轴上方时,则点Q 的坐标为(x +1,3),此时,﹣(x +1)2+2(x +1)+3=3,解得:x 1=﹣1(舍去),x 2=1,∴点Q 的坐标为(2,3);当点Q 在x 轴下方时,则点Q 的坐标为(x ﹣1,﹣3),此时,﹣(x ﹣1)2+2(x ﹣1)+3=﹣3,整理得:x 2﹣4x ﹣3=0,解得:x 1=27+,x 2=27-,∴点Q 的坐标为(17+,﹣3)或(17-,﹣3),综上所述:点Q 的坐标为(2,3)或(17+,﹣3)或(17-,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求函数的解析式、二次函数的性质、平行四边形的性质和一元二次方程的解法等知识,综合性强、具有一定的难度,属于中考压轴题,熟练掌握二次函数的图象与性质、灵活应用相关知识是解题的关键.5.(1)243y x x --=;(2)如图所示,见解析;性质:函数的图象关于直线=2x 对称;或:当0x =或4时,函数有最小值3-;(3)①1;②0x =或35x ≤≤.【分析】(1)将0x =,3y =-;4x =,3y =-;1x =,0y =代入2||(0)y a x bx c a =++≠,得到:3c =-,4b =-,1a =,即可求解析式为2|4|3y x x =--;(2)描点法画出函数图象,函数关于2x =对称;(3)①从图象可知:当2x =时,1y =,1k =时直线y k =与函数2|4|3y x x =--有三个交点;②3y x =-与243y x x =--的交点为0x =或5x =,结合图象,2|4|33y x x x =---≤的解集为35x ≤≤.【详解】解:(1)将0x =,3y =-;4x =,3y =-;1x =,0y =代入2||(0)y a x bx c a =++≠,得到:3164310c a b c a b c ⎧=-⎪++=-⎨⎪++=⎩,解得143a b c =⎧⎪=-⎨⎪=-⎩ 2|4|3y x x ∴=--,故答案为2|4|3y x x =--.(2)如图:函数关于直线2x =对称,(3)①当2x =时,1y =,1k ∴=时直线y k =与函数2|4|3y x x =--有三个交点,故答案为1;②3y x =-与243y x x =--的交点为0x =或5x =或x=3,结合图象,2|4|33y x x x =---≤的解集为0x =或35x ≤≤,故答案为0x =或35x ≤≤.【点睛】本题类比函数探究过程探究绝对值函数与不等式组关系;能够准确的画出函数图象,从函数图象中获取信息,数形结合解题是关键.6.B解析:(1)详见解析;(2)详见解析;(3)①B 、D 、E ;②2<m <3;③n =2或6.【分析】(1)把x =﹣12,0,12分别代入函数表达式即可求解;(2)描点确定函数图象;(3)①结合图象,根据二次函数的性质依次判断各项即可求解;②根据二次函数的图象即可解答;③如图,当直线y =n 处于直线m 或m ′的位置时,由此即可求解.【详解】(1)把x =﹣12,0,12分别代入函数表达式得:y =94,3,94; 故答案为94,3,94; (2)描点确定函数图象如下:(3)①A.对称轴是直线x=0,故错误;B.函数y=x2﹣2|x|+3的图象有两个最低点,其坐标分别是(﹣1,2)、(1,2),故正确;C.当﹣1<x<1时,函数在y轴右侧,y随x的增大而增大,故错误;D.当函数y=x2﹣2|x|+3的图象向下平移3个单位时,图象与x轴有三个公共点,正确;E.函数y=(x﹣2)2﹣2|x﹣2|+3的图象,可以看作是函数y=x2﹣2|x|+3的图象向右平移2个单位得到,正确;故答案为:B、D、E;②从图象看,2<m<3时,方程x2﹣2|x|+3=m有四个解;③如图,当直线y=n处于直线m或m′的位置时,点P和图象上的点构成等腰直角三角形,即n=2或6.【点睛】本题考查了二次函数的图象和性质,正确的识别图象,利用数形结合思想是解决问题的关键.7.F解析:(1)证明详见解析;(2)y=﹣x2+x(0≤x≤8),当x=4时,y最大=2;(3)存在一点F,使得∠EFO=∠BAO;或.【解析】试题分析:(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,则,进而求出y与x的函数关系式及y的最大值;(3)首选求出A,C点坐标,再得到△CEH∽△CBO,求出BE的长,再利用△AFO∽△BEF,求出BF的长.试题解析:(1)证明:如图2,∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:如图3,∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),当x=4时,y最大=2;(3)解:如图4,存在一点F,使得∠EFO=∠BAO,理由:连接EF,FO,抛物线y=﹣(x+4)(x﹣6),对称轴为x==1,把x=0代入y=﹣(x+4)(x﹣6),得y=8,∴B(0,8),即OB=8把y=0代入y=﹣(x+4)(x﹣6)得x1=﹣4,x2=6,∴A(﹣4,0),C(6,0),∴OC=6,OA=4,AC=10,∴BC===10,∴AB===4,∵EH∥BO,∴△CEH∽△CBO,∴,即,解得:BE=,∵BC=AC=10,∴∠CAB=∠CBA∴∠CAB=∠CBA=∠EFO,由(1)可得△AFO∽△BEF,∴,设BF=x,则,化简得:x2﹣4x+=0,解得:x1=,x2=,∴当BF=或时,∠EFO=∠BAO.考点:二次函数综合题.8.A解析:(1)4y x =+;(2)0t =或4t =3)存在,3,02P ⎛⎫- ⎪⎝⎭【分析】(1)根据二次函数的解析式可以求出点A 和点C 坐标,把点A 和点C 的坐标代入联立方程组,即可确定一次函数的解析式;(2)由题意可得点P 的坐标,从而可得点D 的坐标,故可求得ED 的长,再由A 、C 的坐标可知:OA =OC ,即△AOC 是等腰直角三角形,因DP ⊥x 轴,故△AEP 也是等腰直角三角形,可分别得到AC 、AE 的长,故可得EC 的长,由题意EC =ED ,即可得关于t 的方程,解方程即可;(3)由EP =AP ,得EBP C EP BP BE AP BP BE AB BE =++=++=+△,AB 是定值,周长最小,就转化为BE 最小,根据垂线段最短就可确定点P 的特殊位置,从而求出点P 的坐标. 【详解】解:(1)∵抛物线234y x x =--+与x 轴分别交于点A 和点B ,交y 轴于点C , ∴当0x =时,4y =,即()0,4C ,当0y =时,2340x x --+=,14x =-,21x =,即()4,0A -,()10B ,, 设直线AC 的解析式为:y kx b =+则044k bb=-+⎧⎨=⎩, ∴14k b =⎧⎨=⎩, ∴直线AC 的表达式:4y x =+.(2)∵点P 沿OA 以每秒1个单位长度的速度由点O 向点A 运动, ∴OP t =,(),0P t -, ∵DP x ⊥轴, ∴(),4E t t --+,()2,34D t t t --++,∴24DE t t =-+ ∵()4,0A -,()0,4C , ∴4OA =,4OC =, ∴△AOC 是等腰直角三角形,∴45CAO ∠=︒,由勾股定理得:AC =∵DP x ⊥轴,在Rt APE 中,45CAP ∠=︒, ∴△AEP 也是等腰直角三角形,∴4AP PE t ==-,)4AE t =-, ∴EC AC AE =-,∴当24t t -+=时,即0t =或4t =EC ED =. (3)在Rt AEP △中,45OAC ∠=︒,∴AP EP =,∴EBP △的周长:EP BP BE AP BP BE AB BE ++=++=+. ∴当BE 最小时EPB △的周长最小. 当BE AC ⊥时,BE 最小,∵()10B ,, ∴5AB =,在Rt AEB 中,90AEB =︒∠,45BAC ∠=︒,5AB =,BE AC ⊥, ∴1522PB AB ==, ∴32OP PB OB =-=, ∴3,02P ⎛⎫- ⎪⎝⎭.【点睛】本题是综合与探究题,此类问题的考查特点是综合性和探究性强,考查内容是一次函数解析式的确定、特殊点坐标的确定、三角形周长最小值等,渗透了分类讨论、数形结合、转化等数学思想,难度较大.9.A解析:(1)①223y x x =-+,②11m -≤≤;(2)12x ≤≤;(3)四边形OABC 是矩形,证明见详解. 【分析】(1)利用顶点P 的横坐标求出b =-2,然后把b =-2和B 点的坐标代入求出抛物线的解析式; (2)先求出A 点坐标,然后得出直线AB 的解析式,设M 点坐标为(x ,x 2-2x +3),根据S △ABM =3列出方程,并解方程,从而得出M 点坐标,再根据S △ABM ≥3求出M 横坐标的范围即可;(3)根据抛物线的图象可求出A 、P 、D 的坐标,利用抛物线与直线相交求出B 点坐标,然后求出平移后抛物线的解析式,然后求出C 点坐标,然后求出BC 的长度,从而得出四边形OABC 是平行四边形,再根据∠AOC =90︒得出四边形OABC 是矩形. 【详解】解:(1)①依题意, 121b-=⨯, 解得b =-2, 将b =-2及点B (3, 6)的坐标代入抛物线解析式2y x bx c =++, 得 26323c =-⨯+, 解c =3,所以抛物线的解析式为223y x x =-+, ②当2236y x x =-+=, 解得1,3x x =-=,当m ≤x ≤3时,y =x 2+bx +c 的最小值为2,最大值为6, ∴11m -≤≤;(2)∵抛物线 223y x x =-+与y 轴交于点A , ∴ A (0, 3), ∵ B (3, 6),可得直线AB 的解析式为3yx ,设直线AB 下方抛物线上的点M 坐标为(x ,223x x -+),过M 点作y 轴的平行线交直线AB 于点N , 则N (x , x +3). (如图),∴ 132ABM AMN BMN B A S S S MN x x ∆∆∆=+=⋅-=, ∴()21323332x x x ⎡⎤+--+⨯=⎣⎦, 解得 121,2x x ==,∴点M 的坐标为(1, 2) 或 (2, 3), ∵S △ABM ≥3,12x ≤≤;(3)结论是:四边形OABC 是矩形,理由如下: 如图,由 PA =PO , OA =c , 可得2cPD =,∵抛物线2y x bx c =++的顶点坐标为 24,24b c b P ⎛⎫-- ⎪⎝⎭, ∴ 2442c b c-=,∴22b c =,∴ 抛物线2212y x bx b =++,A (0,212b ),P (12b -,214b ), D (12b -,0),∴直线OP 的解析式为12y bx =-,∵ 点B 是抛物线2212y x bx b =++与直线12y bx =-的图象的交点,令 221122bx x bx b -=++,解得12,2b x b x =-=-,可得点B 的坐标为(-b ,212b ),由平移后的抛物线经过点A , 可设平移后的抛物线解析式为2212y x mx b =++,将点D (12b -,0)的坐标代2212y x mx b =++入,得32m b =,∴ 平移后的抛物线解析式为223122y x bx b =++,令y =0, 即2231022x bx b ++=,解得121,2x b x b =-=-,依题意, 点C 的坐标为(-b ,0), ∴ BC =212b ,∴ BC = OA , 又BC ∥OA ,∴ 四边形OABC 是平行四边形, ∵ ∠AOC =90︒, ∴ 四边形OABC 是矩形. 【点睛】本题主要考查二次函数的图象和性质,并与几何图形相结合的综合题,难度较高,解题的关键在于灵活运用二次函数的性质及待定系数法,并注重点的坐标与线段长的互相转化.10.A解析:(1)y =﹣x ﹣1,y =﹣x 2+3x +4;(2)①(2,6);②PA ;(3)点M 的坐标为:3或(2或(4,﹣5)或(﹣4,3. 【分析】(1)将点A 、D 的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大.即当直线y=-x+m 与抛物线只有一个交点时满足条件,△=42+4(m-4)=0,解得m=8,解方程可求出答案; ②过点P 作PE ⊥x 轴于点E ,证明△PEA 是等腰直角三角形,得出PE=EA ,设P 点坐标为(m ,n ),由题意得,m+1=-m 2+3m+4,求出m=3,由直角三角形的性质可得出答案; (3)分NC 是平行四边形的一条边、NC 是平行四边形的对角线,两种情况分别求解即可. 【详解】(1)将点A 、D 的坐标代入直线表达式得:056k n k n -+=⎧⎨+=-⎩,解得:11k n =-⎧⎨=-⎩,故直线l 的表达式为:y =﹣x ﹣1, 将点A 、D 的坐标代入抛物线表达式, 同理可得抛物线的表达式为:y =﹣x 2+3x +4;(2)①当△PAD 的面积最大时,P 点到直线AD 的距离就最大,所以P 点在与直线AD 平行并且与抛物线相切的直线上,即P 点是这两个图像的唯一交点.设P 点坐标为(x ,y ),依题意有:234y x my x x =-+⎧⎨=-++⎩, ∴x 2-4x +m -4=0∵直线y =-x +m 与抛物线相切,即只有一个交点, ∴42+4(m -4)=0 ∴m =8, ∴x 2-4x +4=0, ∴x 1=x 2=2 ∴y =6由此得P 点坐标为(2,6) ②过P 作PE ⊥x 轴于E 点,。
二次函数测试题及答案

二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
二次函数单元综合测试(Word版 含答案)

二次函数单元综合测试(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3).∵y =x 2﹣4x+3与y 轴相交于点C ,∴点C 的坐标为(0,3).又∵点B 的坐标为B (3,0),∴OB =OC∴△COB 为等腰直角三角形.又∵PF//y 轴,PE//x 轴,∴△PEF 为等腰直角三角形.∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b ,又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣x+3.∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p .∴EF 2p 22.∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E ,BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3),∵C 、D 两点的坐标为(0,3)和(4,3),∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°,∴△CNE ∽△NBF .∴CE NE =NF BF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m m m-+=2343m m m --+-, 化简得:m 2﹣5m+5=0.解得:m 1=552+,m 2=552-. ∴M 点坐标为(55+,3)或(55-,3) ②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD ,∵∠NBF =∠CBG ,∠NFB =∠BGC =90°,∴△BFN ∽△CGB .∵△BFN 为等腰直角三角形,∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m .∴化简得,m 2﹣5m+6=0.解得,m =2或m =3(舍去)∴M 点坐标为,(2,3). 综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3). 【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)5或 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++),过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时,同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形, ∴CM=FM=AE=12AC=221442+22 ∵M (s ,3s+2), ()()2223222s s -++=解得:s=45-或0(舍),∴M (45-,25-), ∴AM=22422455⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=6105,当点F 在直线AC 下方时,如图,同理可得:四边形AFEM 为平行四边形,∴AM=EF ,由于折叠可得:CE=EF ,∴AM=EF=CE=22,综上:AM 的长度为105或22 【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--.设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.6.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0ky x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】 【分析】(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,kx),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52ba -≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,kx),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<,∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n ny x --=+, 设点P 为(x ,kx),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--;∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩,∴不等式组的解集为:2n >; 当204n -<时,有∴2410524nnn-⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n≤<,∴综合上述,n的取值范围为:109n≥.【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.7.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,312t<≤,352t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x=-时,3y=-,当1x=-时,32y=,当1x=时,32y=-,当2x=时,1y=,∴图象F上的点的纵坐标的最大值为32y=,最小值为3y=-.(3)当1a=时,图象F的解析式为2223()23()y x x x ty x x x t⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a:当14t-=-时,3t=-,∴当3t=-时直线1y t=-与图象F有两个公共点;b:当点(),1t t-落在223()y x x x t=--≥上时,2123t t t-=--,解得1t=232t=c:当点(),1t t-落在()223y x x x t=--+<上时,2123t t t-=--+,解得34t=-(舍),41t=14t-=,∴55t=∴当31712t -<≤或31752t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,3175t +<<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解.【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN ==, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.9.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=32×22=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO =12×3×(﹣23m 2﹣43m+2)+12×2×(﹣m )﹣12×3×2 =﹣m 2﹣3m∵a =﹣1<0∴函数S △PAC =﹣m 2﹣3m 有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52, ∴存在点P (﹣32,52),使△PAC 的面积最大.(3)如图2所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E , ∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q 1CD 与△CBO 中,∵11324Q C BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q 1CD ≌△CBO ,∴Q 1D =OC =2,CD =OB =1,∴OD =OC+CD =3,∴Q 1(2,3);同理可得Q 4(﹣2,1);同理可证△CBO ≌△BQ 2E ,∴BE =OC =2,Q 2E =OB =1,∴OE =OB+BE =1+2=3,∴Q 2(3,1),同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。
二次函数测试题及答案

二次函数测试题及答案一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = x + 2B. y = x^2 + 3x + 1C. y = 2x^3D. y = 1/x答案:B2. 二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b, a)B. (-b/a, c)C. (-b/2a, 4ac - b^2/4a)D. (-b/2a, 4ac + b^2/4a)答案:C3. 如果二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么a、b、c之间的关系是:A. b^2 - 4ac > 0B. b^2 - 4ac < 0C. b^2 - 4ac = 0D. b^2 - 4ac ≠ 0答案:A二、填空题4. 二次函数y = -3x^2 + 6x - 5的顶点坐标是______。
答案:(1, -2)5. 如果二次函数y = ax^2 + bx + c的图像开口向上,那么a的值是______。
答案:> 0三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点。
解:令y = 0,得到方程2x^2 - 4x + 3 = 0。
通过求解这个方程,我们可以得到x的值。
首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4 * 2 * 3 = 16 - 24 = -8。
因为Δ < 0,所以这个二次方程没有实数解,即二次函数的图像与x轴没有交点。
7. 已知二次函数y = 3x^2 + 6x - 5,求其图像的对称轴。
解:二次函数y = ax^2 + bx + c的对称轴是x = -b/(2a)。
将a= 3, b = 6代入公式,得到对称轴为x = -6 / (2 * 3) = -1。
四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 1000,其中x表示产品的数量。
二次函数单元测试题及答案

二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
《二次函数》单元测试卷 (含答案)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
深圳中学二次函数测试题(有解析答案)
2010-2011学年广东省深圳中学初中部初三数学二次函数测试题参考答案与试题解析一、选择题:(把正确答案的序号填在下表中,每题3分,共24分)1.(3分)与抛物线y=﹣x2+3x﹣5的形状大小开口方向相同,只有位置不同的抛物线是.Cx的二次项系数是﹣的二次项系数是﹣2.(3分)二次函数y=x2+bx+c的图象上有两点(3,﹣8)和(﹣5,﹣8),则此拋物线的x=2225.(3分)直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向27.(3分)二次函数y=ax2+bx+c的图象如图所示,则abc,b2﹣4ac,2a+b,a+b+c这四个式子中,值为正数的有()轴的正半轴,<﹣<8.(3分)(2008•长春)已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()B的图象经过二、四象限,∴=<二、填空题:(每空2分,共50分)9.(10分)已知抛物线y=x2+4x+3,请回答以下问题:(1)它的开口向上,对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣1);(2)图象与x轴的交点为(﹣1,0)(﹣3,0),与y轴的交点为(0,3).﹣,顶点坐标(﹣,=10.(6分)抛物线y=ax2+bx+c(a≠0)过第二、三、四象限,则a<0,b<0,c≤0.﹣>11.(4分)抛物线y=6(x+1)2﹣2可由抛物线y=6x2﹣2向左平移1个单位得到.12.(2分)顶点为(﹣2,﹣5)且过点(1,﹣14)的抛物线的解析式为y=﹣x2﹣4x﹣9.13.(2分)对称轴是y轴且过点A(1,3)、点B(﹣2,﹣6)的抛物线的解析式为y=﹣3x2+6.﹣=014.(2分)抛物线y=﹣2x2+4x+1在x轴上截得的线段长度是.﹣=故答案为15.(2分)抛物线y=x2+(m﹣2)x+(m2﹣4)的顶点在原点,则m=2.16.(2分)已知抛物线y=﹣x2﹣2x+m的顶点在x轴上方,则m>﹣1.=,且>17.(2分)已知二次函数y=(m﹣1)x2+2mx+3m﹣2,则当m=时,其最大值为0.时,有最大值,且=0,且,故答案为:.时,有最小值时,有最大值;也考查了一元二18.(4分)二次函数y=ax2+bx+c的值永远为负值的条件是a<0,b2﹣4ac<0.19.(8分)如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(﹣1,0)、点B(3,0)和点C(0,﹣3),一次函数的图象与抛物线交于B、C两点.(1)二次函数的解析式为y=x2﹣2x﹣3;(2)当自变量x≥1时,两函数的函数值都随x增大而增大;(3)当自变量0<x<3时,一次函数值大于二次函数值;(4)当自变量x<﹣1时,两函数的函数值的积小于0.=120.(2分)已知抛物线y=ax2+2x+c与x轴的交点都在原点的右侧,则点M(a,c)在第三象限.,,即可确定﹣﹣,21.(4分)已知抛物线y=x2+bx+c与y轴交于点A,与x轴的正半轴交于B、C两点,且BC=2,S△ABC=3,那么b=﹣4.=三、解答题:(每题13分,共26分)22.(13分)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.23.(13分)如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC 内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.(1)求△ABC中AB边上的高h;(2)设DG=x,当x取何值时,水池DEFG的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.AB ××==,><)x ﹣BE==。
二次函数测试题及答案(完整资料).doc
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】二次函数一、 选择题:1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(ac b M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c 5. 已知反比例函数xk y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )x6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )B D7.抛物线322+-=xxy的对称轴是直线()A. 2-=xB. 2=xC. 1-=xD. 1=x8.二次函数2)1(2+-=xy的最小值是()A. 2-B. 2C.1- D. 19.二次函数cbxaxy++=2的图象如图所示,若cbaM++=24cbaN+-=,baP-=4,则()A. 0>M,0>N,0>PB. 0<M,0>N,0>PC. 0>M,0<N,0>PD. 0<M,0>N,0<P二、填空题:10.将二次函数322+-=xxy配方成khxy+-=2)(的形式,则y=______________________.11.已知抛物线cbxaxy++=2与x轴有两个交点,那么一元二次方程02=++cbxax的根的情况是______________________.12.已知抛物线cxaxy++=2与x轴交点的横坐标为1-,则ca+ =_________.13.请你写出函数2)1(+=xy与12+=xy具有的一个共同性质:_______________.14.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三、解答题:1. 已知函数12-+=bx x y 的图象经过点(3,2). (1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .【最新整理,下载后即可编辑】(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系). (1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?提高题 1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m. (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由; (4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:1. 2)1(2+-=x y2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6. 122++-=x x y 等(只须0<a ,0>c ) 7. )0,32(-8.3=x ,51<<x ,1,4三、解答题:1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解【最新整理,下载后即可编辑】得2-=b .∴函数解析式为122--=x x y .(2)当3=x 时,2=y .根据图象知当x ≥3时,y ≥2.∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4. 在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =PA 时,17=PB . ∴417-=-=OB PB OP .此时点P 的坐标为)417,0(-.②当PA =AB 时,OP =OB =4 此时点P 的坐标为【最新整理,下载后即可编辑】(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a∴t t s 2212-=. (2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去)答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.10727212=⨯-⨯=s把8=t 代入,得.16828212=⨯-⨯=s5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y .【最新整理,下载后即可编辑】因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a .因此所求函数解析式为109125182+-=x y (25-≤x ≤25).(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x .所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(. 所以225)245(245=--=DE .因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x . ∴11-=x ,22=x .∴OA =1,OB =2,2·21-==amx x .∵1tan tan =∠=∠ABC BAC ,∴1==OBOC OAOC .∴OC =2. ∴2-=m ,1=a .【最新整理,下载后即可编辑】∴此二次函数的解析式为22--=x x y .(2)在第一象限,抛物线上存在一点P ,使S △PAC =6. 解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6.由(1)有OA =1,OC =2.∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12.∴M (5,0),N (0,10). ∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0)∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y ∴02)1(2=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P .又S △PAC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21P x AO CD +.∴6)21)(2(21=+++m m ,0652=-+m m∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 提高题1. 解:(1)∵抛物线c bx x y ++=2与x 轴只有一个交点,∴方程02=++c bx x 有两个相等的实数根,即042=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4).在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB . ∴△OAB 的周长为5265241+=++.2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S .当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元); 另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B . ∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元.(2)54065101)5402()1027040(2++-=----=x x x x x y .∴540651012++-=x x y .(说明:此处不要写出x 的取值范围)(3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套. 因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套. (4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.二次函数测试题(B)一、选择题(每小题4分,共24分)1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点.(B)只有一个交点.(C)有且只有两个交点.(D)有且只有三个交点.2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( )(A)2.(B)1.(C)3.(D)4.3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )(A)6.(B)4.(C)3.(D)1.4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )(A)没有交点.(B)有两个交点,都在x轴的正半轴.(C)有两个交点,都在x轴的负半轴.(D)一个在x轴的正半轴,另一个在x轴的负半轴.5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )(A)x=a.(B)x=2.(C)x=4.(D)x=3.b6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )二、填空题(每小题4分,共24分)7.二次函数y =2x 2-4x +5的最小值是______.8.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与y =-x 2形状相同.则这个二次函数的解析式为______.9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是______.10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 为获得最大利润,销售商应将该品牌电饭锅定价为 元.11.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.三、解答题(本大题共52分) 13.(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.14.(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8分)如图4,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q 两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标.16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元),g 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;(2)求纯收益g 关于x 的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱A 3B 3=50m ,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m ,B 1B 5∥A 1A 5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B 1、B 3、B 5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A 2B 2、A 4B 4的长度.图4-①B A 5A 4A 31A 2四、附加题(本题为探究题20分,不计入总分)19、 (湘西自治州附加题,有改动)如图5,已知A (2,2),B (3,0).动点P (m ,0)在线段OB 上移动,过点P 作直线l 与x 轴垂直.(1)设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;(2)试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明理由.参考答案一、1.B 2.D 3.C 4.D 5.D 6.B二、7.3 8.y =-x 2+3x +4 9.-2<x <2 10.130 11.a =0,(13-,0);a =1,(-1,0);a =9,(13,0)12.2154y x =-三、13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -214.依题意可知抛物线经过点(1,0).于是a +2a +a 2+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)15.(1)依题意可知b =0,c =1,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1,x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2+80x +4500,即y =-4(x -10)2+4900.故当x =10时,y 最大=4900(元)17.(1)将(1,2)和(2,6)代入y =ax 2+bx ,求得a =b =1.故y =x 2+x ;(2)g =33x -150-y ,即g =-x 2+32x -150;(3)因y =-(x -16)2+106,所以设施开放后第16个月,纯收益最大.令g =0,得-x 2+32x -150=0.解得x =16x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资18.(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,【最新整理,下载后即可编辑】 ∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==. 四、19.(1)当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。
深圳华侨城中学九年级上册期末精选试卷检测题
深圳华侨城中学九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.已知x 1、x 2是关于x 的﹣元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根.(1)求a 的取值范围;(2)若(x 1+1)(x 2+1)是负整数,求实数a 的整数值.【答案】(1)a≥0且a≠6;(2)a 的值为7、8、9或12.【解析】【分析】(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)根据根与系数的关系可得x 1+x 2=﹣2-6a a ,x 1x 2=-6a a ,由(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=﹣66a - 是是负整数,即可得66a -是正整数.根据a 是整数,即可求得a 的值2.【详解】(1)∵原方程有两实数根,∴260(2)4(6)*0a a a a -≠⎧⎨∆=-->⎩, ∴a≥0且a≠6.(2)∵x 1、x 2是关于x 的一元二次方程(a ﹣6)x 2+2ax+a=0的两个实数根,∴x 1+x 2=﹣26a a -,x 1x 2=6a a -, ∴(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=-6a a ﹣26a a -+1=﹣66a -. ∵(x 1+1)(x 2+1)是负整数,∴﹣66a -是负整数,即66a -是正整数. ∵a 是整数,∴a ﹣6的值为1、2、3或6,∴a 的值为7、8、9或12.【点睛】 本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a 的不等式是解此题的关键.2.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息见下表:(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.3.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程()2x 31x 30-++=的两个根,点C 在x 轴负半轴上, 且AB :AC=1:2(1)求A 、C 两点的坐标;(2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设△ABM 的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围;(3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由.【答案】解:(1)解()2x 31x 30-++=得(x ﹣3)(x ﹣1)=0, 解得x 1=3,x 2=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳华侨城中学数学二次函数检测题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,3 2);(3410【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330 nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.2.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b ≤4,∴﹣4≤b <0,即b b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当32MNAN=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x =32,故点P (32,﹣258); ③当∠PAB =∠OBA 时, 当点P 在AB 上方时,则AH =BH ,设OH =a ,则AH =BH =4﹣a ,AO =2, 故(4﹣a )2=a 2+4,解得:a =32, 故点H (32,0), 则直线AH 的表达式为:y =43x ﹣2④, 联立①④并解得:x =0或173(舍去0), 故点P (173,509); 当点P 在AB 下方时, 同理可得:点P (3,﹣2); 综上,点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--.设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.5.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)(1)证明:OBC ≌OED ;(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16 【解析】 【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.6.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M'.①写出点M'的坐标;②将直线l绕点A按顺时针方向旋转得到直线l',当直线l′与直线AM'重合时停止旋转,在旋转过程中,直线l'与线段BM'交于点C,设点B,M'到直线l'的距离分别为d1,d2,当d1+d2最大时,求直线l'旋转的角度(即∠BAC的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为-1和3, ∵M 在抛物线上,且在第一象限内, ∴0<m <3,令y =0代入y =﹣3x+3, ∴x =1,∴A 的坐标为(1,0),由题意知:M 的坐标为(m ,﹣m 2+2m+3), ∴S =S 四边形OAMB ﹣S △AOB =S △OBM +S △OAM ﹣S △AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB10,M′B55M′A 85,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴851610﹣x)2=12516﹣x2,∴x =5108, cos ∠M′BG ='BG BM =2,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.7.如图,在平面直角坐标系x O y 中,抛物线y = ax 2+ bx + c 经过A 、B 、C 三点,已知点A (-3,0),B (0,3),C (1,0).(1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;(3)在直线x = -2上是否存在点M ,使得∠MAC = 2∠MCA ,若存在,求出M 点坐标.若不存在,说明理由.【答案】(1)y=-x 2-2x+3;(2)点(-32,154),△PDE 的周长最大;(3)点M (-2,3)或(-2,-3).【解析】 【分析】(1)将A 、B 、C 三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB 是等腰直角三角形,故只需使得PD 越大,则△PDE 的周长越大.联立直线AB 与抛物线的解析式可得交点P 坐标;(3)作点A 关于直线x=-2的对称点D ,利用∠MAC = 2∠MCA 可推导得MD=CD ,进而求得ME 的长度,从而得出M 坐标 【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3; (2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°, ∵PF ⊥x 轴,∴∠AEF=90°-45°=45°, 又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3, 设与AB 平行的直线解析式为y=x+m ,联立223y x my x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长, 此时x=-32,y=154,∴点(-32,154),△PDE 的周长最大;(3)设直线x=-2与x 轴交于点E ,作点A 关于直线x=-2的对称点D ,则D (-1,0),连接MA ,MD ,MC .∴MA=MD ,∠MAC=∠MDA=2∠MCA , ∴∠CMD=∠DCM∴MD=CD=2 ,∴ME=3∴点M(-2,3)或(-2,-3).【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析8.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3),①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2;PC 2=x 2+(x 2﹣2x ﹣3+3)2;MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2,解得:x =0或2(舍去0),故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或3±2(舍去0和3+2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42,故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.9.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.10.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。