中考数学 二次函数综合试题含答案

中考数学 二次函数综合试题含答案
中考数学 二次函数综合试题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m : (1)①直接写出a 的值;

②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;

(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①

PD

DD

'

的值; ②直接写出L 与m 之间的函数关系式;

(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.

【答案】(1)①12;②y =2

12

x ﹣2x ; (2)①1;

②L =2

(22)(02)

21(221)4(24)2m m m m π?+

; (3)h =±3 【解析】 【分析】

(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =2

12

x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =

12,y =1

2

x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;

(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值.

【详解】

解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12

; ②y =

2

12

x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12

; ∴y =

12

x 2, ∴A (4,0),B (2,﹣2),

易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,

222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '??????

--- ? ? ??????

?,

①221122,222PD m m m m DD m '??

=

--== ???

PD 2m 1DD 2m

'∴

== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,

当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,

则222111,

2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '?????

?--- ? ? ??????

?,

2211(4)23422PF m m m m m ??

=---=

-+- ???

22

22322m m 22,PG m 22m FH PH PF ==

=-+-=-+ ∵DD ′∥EG

EG PE DD PD '

=,即:EG ?PD =PE ?DD ′,得:EG ?(2m )=(2m ﹣12

m 2

)?2m ∴EG =2m ﹣

12

m 2

,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG

22

1224222m m m m m ??=-+-+-+ ? ??? 2

21m (221)m 42

+=-

+++ 2

(22)m(0m 2)21m (221)m 4(2m 4)2L ?+

∴=?+-+++<

; (3)如图3,

∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,

23PA =23h ∴=±【点睛】

本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.

2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、

()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .

(1)求二次函数的表达式;

(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ?面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ?为等腰三角形,若存在,请直接写出所有

P 点的坐标,若不存在请说明理由.

【答案】(1)二次函数的解析式为233642y x x =--+;(2)当2

3

x =-时,ADE ?的面积取得最大值50

3

;(3)P 点的坐标为()1,1-,(

1,11-,(1,219--. 【解析】

分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;

(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;

(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可. 详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),

∴16404206a b c a b c c -+=??

++=??=?

, 解得:34326a b c ?

=-??

?

=-??

=???

所以二次函数的解析式为:y =233

642

x x -

-+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =1

22

x -

-,

过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,

设D (m ,233642m m --+),则点F (m ,1

22

m --), ∴DF =233642m m -

-+﹣(122m --)=23

84

m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +1

2

DF ×EH =

12×DF ×AG +1

2×DF ×EH =1

2

×4×DF =2×(2

384m m -

-+) =2

325023

3

m -++(), ∴当m =23-

时,△ADE 的面积取得最大值为503

. (3)y =233

642

x x -

-+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()

n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,

11);

当PE =AE 212n ++()

16425+=n =﹣219P 坐标为:(﹣1,﹣219).

综上所述:P 点的坐标为:(﹣1,1),(﹣1,111,﹣219). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角

形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.

3.(10分)(2015?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.

(1)请用配方法求二次函数图象的最高点P的坐标;

(2)小球的落点是A,求点A的坐标;

(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;

(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.

【答案】(1)(2,4);(2)(,);(3);(4)(,).

【解析】

试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;

(2)联立两解析式,可求出交点A的坐标;

(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直

线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛

物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.

试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,

故二次函数图象的最高点P的坐标为(2,4);

(2)联立两解析式可得:,解得:,或.

故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.

S△POA=S△POQ+S△梯形PQBA﹣S△BOA

=×2×4+×(+4)×(﹣2)﹣××

=4+﹣

=;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.

设直线PM的解析式为y=x+b,

∵P的坐标为(2,4),

∴4=×2+b,解得b=3,

∴直线PM的解析式为y=x+3.

由,解得,,

∴点M的坐标为(,).

考点:二次函数的综合题

4.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数

2

15

y x =

+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .

(1)点D 的坐标是 ______;

(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ?与DAB ?相似.

①当27

5

n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ?与DAB ?相似,请直接写出n 的取

值范围 ______.

【答案】(1)()2,9;(2)①95DP =②92155

n <<. 【解析】 【分析】

(1)直接用顶点坐标公式求即可; (2)由对称轴可知点C (2,

9

5),A (-52,0),点A 关于对称轴对称的点(132

,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,27

5

),可求95

,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,5;当PQ 与AB 不

平行时,5②当PQ ∥AB ,DB=DP 时,5DN=245,所以N (2,21

5

),则有且只有一个△DPQ 与△DAB 相似时,95<n <

21

5

. 【详解】

(1)顶点为()2,9D ; 故答案为()2,9; (2)对称轴2x =,

9(2,)5

C ∴,

由已知可求5(,0)2

A -,

点A 关于2x =对称点为13

(

,0)2

, 则AD 关于2x =对称的直线为213y x =-+,

(5,3)B ∴,

①当275n =

时,27(2,)5

N ,

DA ∴=

,182DN =,365CD = 当PQ AB ∥时,PDQ

DAB ??,

DAC DPN ??,

DP DN DA DC

∴=,

DP ∴=

当PQ 与AB 不平行时,DPQ

DBA ??,

DNQ

DCA ∴??,

DP DN

DB DC

=,

DP ∴=

综上所述DP = ②当PQ AB ∥,DB DP =时,

DB =

DP DN

DA DC

=, 245

DN ∴=

, 21(2,

)5

N ∴, ∴有且只有一个DPQ ?与DAB ?相似时,

92155

n <<; 故答案为

921

55

n <<; 【点睛】

本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.

5.在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” ①试求抛物线y =x 2-2x 的“不动点”的坐标;

②平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

【答案】(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ②新抛物线的表达式是y =(x +1)2-1. 【解析】 【分析】 (1)

10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;

(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;②新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y 轴左侧,而点()1,1A -,点(),B m m ,则

1m =-,即可求解. 【详解】

(l)10a =>,

抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),

抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的. (2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t). 则t =t 2-2t ,解得t 1=0,t 2=3.

所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3). ②∵新抛物线的顶点B 是其“不动点”,∴设点B 的坐标为(m ,m) ∴新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0) ∵四边形OABC 是梯形, ∴直线x =m 在y 轴左侧.

∵BC 与OA 不平行 ∴OC ∥AB.

又∵点A 的坐标为(1,一1),点B 的坐标为(m ,m),

∴m =-1.

∴新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的, ∴新抛物线的表达式是y =(x +1)2-1. 【点睛】

本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.

6.如图,在平面直角坐标系中,已知点B 的坐标为()1,0-,且4OA OC OB ==,抛物

线()2

0y ax bx c a =++≠图象经过,,A B C 三点.

(1)求,A C 两点的坐标; (2)求抛物线的解析式;

(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.

【答案】解:(1)点A 、C 的坐标分别为(4,0)、(0,﹣4);;

(2)抛物线的表达式为:2

34y x x =﹣

﹣ ; (3)PD 有最大值,当x =2时,其最大值为2,此时点P (2,﹣6). 【解析】 【分析】

(1)OA =OC =4OB =4,即可求解;

(2)抛物线的表达式为:2

34y x x =a (x+1)(x-4)=a(﹣

﹣) ,即可求解; (3)22

4342

--++=()

PD x x x ,即可求解. 【详解】

解:(1)OA =OC =4OB =4,

故点A 、C 的坐标分别为(4,0)、(0,﹣4);

(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣), 即﹣4a =﹣4,解得:a =1,

故抛物线的表达式为:2

34y x x --= ;

(3)直线CA 过点C ,设其函数表达式为:4y kx -=, 将点A 坐标代入上式并解得:k =1, 故直线CA 的表达式为:y =x ﹣4, 过点P 作y 轴的平行线交AC 于点H ,

∵OA =OC =4,

45OAC OCA ∴∠∠?== ,

∵//PH y 轴,

45PHD OCA ∴∠∠?==,

设点234P x x x --(,)

,则点H (x ,x ﹣4), 22

2

4342

2222

--+++=()

=-PD x x x x x

∵2

2

-

<0,∴PD 有最大值,当x =2时,其最大值为22 此时点P (2,﹣6). 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键

7.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;

(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;

(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).

【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.

【解析】

试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;

(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.

试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,

∴B(3,0),C(0,3),

把B、C坐标代入抛物线解析式可得,解得,

∴抛物线解析式为y=x2﹣4x+3;

(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,

∴抛物线对称轴为x=2,P(2,﹣1),

设M(2,t),且C(0,3),

∴MC=,MP=|t+1|,PC=,

∵△CPM为等腰三角形,

∴有MC=MP、MC=PC和MP=PC三种情况,

①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);

②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);

③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣

1+2)或(2,﹣1﹣2);

综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);

(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

设E(x,x2﹣4x+3),则F(x,﹣x+3),

∵0<x<3,

∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,

∴S△CBE=S△EFC+S△EFB=EF?OD+EF?BD=EF?OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),

即当E点坐标为(,)时,△CBE的面积最大.

考点:二次函数综合题.

8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线

BD交抛物线于点D,并且D(2,3),tan∠DBA=1

2

(1)求抛物线的解析式;

(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.

【答案】(1)y=1

2

x2+

3

2

x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣

1).

【解析】

(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.

(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.

(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.

考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.

9.如图,在平面直角坐标系中,已知抛物线y=1

2

x2+

3

2

x﹣2与x轴交于A,B两点(点A

在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.

(1)求直线l的解析式;

(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;

(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使

∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)y=

1

2

2

x

--;(2)

DE=

32

25

;(3)存在点P(

13

9

98

81

),使

∠BAP=∠BCO﹣∠BAG,理由见解析.

【解析】

【分析】

(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;

(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;

(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.

【详解】

(1)∵抛物线y=

1

2

x2+

3

2

x-2,

∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,

∵抛物线y=1

2

x2+

3

2

x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),

∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,

40

2

k b

b

-+

?

?

-

?

,得

1

2

2

k

b

?

-

?

?

?-

?

即直线l的函数解析式为y=?

1

2

x?2;

(2)直线ED与x轴交于点F,如图1所示,

由(1)可得,

AO=4,OC=2,∠AOC=90°,

∴5

∴45

5

25

=,

∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,

∴△AOD ∽△ACO , ∴AD AO AO AC

=, 即

425AD =,得AD=85, ∵EF ⊥x 轴,∠ADC=90°, ∴EF ∥OC , ∴△ADF ∽△ACO , ∴

AF DF AD AO OC AC

==, 解得,AF=16

5,DF=85

, ∴OF=4-165=45

, ∴m=-45

, 当m=-45时,y=12×(?45)2+32×(-45)-2=-7225

∴EF=

7225

, ∴DE=EF-FD=

7225?85=3225

; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,

理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,

∵点A (-4,0),点B (1,0),点C (0,-2), ∴OA=4,OB=1,OC=2,

∴tan ∠OAC=

2142OC OA ==,tan ∠OCB=1

2

OB OC =,5, ∴∠OAC=∠OCB ,

∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG , ∴∠BAP=∠GAM ,

∵点G(0,-1),

OA=4,∴OG=1,GC=1,

??

22

AC GM CG OA

14

2

?

解得,

5 =,

∴tan∠

GAM=

2

9

GM

AM

=,

∴tan∠PAN=2

9

设点P的坐标为(n,1

2

n2+

3

2

n-2),

∴AN=4+n,PN=1

2n2+

3

2

n-2,

2

13

22 22

49

n n

n

+-

+

=,

解得,n1=13

9

,n2=-4(舍去),

当n=13

9

时,

1

2

n2+

3

2

n-2=

98

81

∴点P的坐标为(13

9,

98

81

),

即存在点P(13

9

98

81

),使∠BAP=∠BCO-∠BAG.

【点睛】

本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.

10.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1

),点B(3

,﹣),O为坐标原点.

(1)求这条抛物线所对应的函数表达式;

(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;

(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.

【答案】(1)22353

33

y x x =-+;(2)t

>4;(3)∠BOC =60°,C (32,

3) 【解析】

分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可; (2)利用抛物线增减性可解问题;

(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (1,3),点B (3,﹣3)求出相关角度.

详解:(1)把点A (1,3),点B (3,﹣3)分别代入y=ax 2+bx 得

3=393a b a b ?+??-=+??

,解得23

53a b ?=-???

?=??

∴y=﹣

22353

x x + (2)由(1)抛物线开口向下,对称轴为直线x=

5

4

, 当x >

5

4

时,y 随x 的增大而减小, ∴当t >4时,n <m .

(3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E

∵AC≥AD ,BC≥BE , ∴AD+BE≤AC+BE=AB ,

∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大. ∵A

(1B (3 ∴∠AOF=60°,∠BOF=30°, ∴∠AOB=90°, ∴∠ABO=30°.

当OC ⊥AB 时,∠BOC=60°,点C 坐标为(

32 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.

圆与二次函数难度题(含答案)

水尾中学中考专项训练(压轴题)答案 1.(四川模拟)如图,Rt △ABC 内接于⊙O ,∠ACB =90°,AC =23,BC =1.以AC 为一边,在AC 的右侧作等边△ACD ,连接BD ,交⊙O 于点E ,连接AE ,求BD 和AE 的长. 解:过D 作DF ⊥BC ,交BC 的延长线于F ∵△ACD 是等边三角形 ∴AD =CD =AC =23,∠ACD =60° ∵∠ACB =90°,∴∠ACF =90° ∴∠DCF =30°,∴DF = 1 2 CD =3,CF =3DF =3 ∴BF =BC +CF =1+3=4 ∴BD = BF 2 +DF 2 = 16+3 =19 ∵AC =23,BC =1,∴AB = AC 2 +BC 2 = 13 ∵BE +DE =BD ,∴AB 2 -AE 2 + AD 2 -AE 2 =BD 即 13-AE 2 + 12-AE 2 =19 ∴13-AE 2 =19- 12-AE 2 两边平方得:13-AE 2=19+12-AE 2-2 19(12-AE 2 ) 整理得:19(12-AE 2 ) =9,解得AE = 7 19 57 2.(四川模拟)已知Rt △ABC 中,∠ACB =90°,∠B =60°,D 为△ABC 外接圆⊙O 上 AC ︵ 的中点. (1)如图1,P 为 ABC ︵ 的中点,求证:PA +PC =3PD ; (2)如图2,P 为 ABC ︵ 上任意一点,(1)中的结论还成立吗?请说明理由. (1)证明:连接AD ∵D 为AC ︵ 的中点,P 为 ABC ︵ 的中点 ∴PD 为⊙O 的直径,∴∠PAD =90° D D P 图1 图2

高考资料 二次函数基础练习题大全(含答案)

二次函数基础练习题 练习一 二次函数 1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到 小球滚动的距离s (米)与时间t (秒)的数据如下表: 写出用t 表示s 的函数关系式: 2、 下列函数:① 23 y x ;② 21y x x x ;③ 224y x x x ;④ 2 1 y x x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c 3、当m 时,函数2235y m x x (m 为常数)是关于x 的二次函数 4、当____m 时,函数2221m m y m m x 是关于x 的二次函数 5、当____m 时,函数2564m m y m x +3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.

7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( ) A 、一次函数关系 B 、正比例函数关系 C 、反比例函数关系 D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2. 10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1; 当x=2时,y=2,求该函数解析式. 11、富根老伯想利用一边长为a 米的旧墙及可以围 成24米长的旧木料,建造猪舍三间,如图,它们的平 面图是一排大小相等的长方形. (1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎 样的函数关系? (2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如 何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

中考数学专题题库∶二次函数的综合题及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b. (1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示); (2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式; (3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围. 【答案】(1)b=﹣2a,顶点D的坐标为(﹣1 2 ,﹣ 9 4 a);(2) 27327 48 a a --;(3) 2≤t<9 4 . 【解析】 【分析】 (1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标; (2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可; (3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围. 【详解】 解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0), ∴a+a+b=0,即b=-2a, ∴y=ax2+ax+b=ax2+ax-2a=a(x+1 2 )2- 9 4 a ,

∴抛物线顶点D 的坐标为(- 1 2 ,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2, 则2 222y x y ax ax a -??+-? ==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x= 2 a -2, ∴N 点坐标为( 2a -2,4 a -6), ∵a <b ,即a <-2a , ∴a <0, 如图1,设抛物线对称轴交直线于点E , ∵抛物线对称轴为122 a x a =-=-, ∴E (- 1 2 ,-3), ∵M (1,0),N ( 2a -2,4 a -6), 设△DMN 的面积为S , ∴S=S △DEN +S △DEM = 12 |( 2a -2)-1|?|-94a -(-3)|=274?3a ?278a , (3)当a=-1时, 抛物线的解析式为:y=-x 2-x+2=-(x+ 12 )2+94,

二次函数与圆结合的压轴题Word版

图6 x y F E H N M P D C B A O 二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线3 2 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、

2021届新高考数学(文)复习小题必刷第05练 二次函数与幂函数(解析版)

第05练 二次函数与幂函数 刷基础 1.(2020·贵溪市实验中学高二期末)已知函数( ) 2 53 ()1m f x m m x --=--是幂函数且是(0,)+∞上的增函数, 则m 的值为( ) A .2 B .-1 C .-1或2 D .0 【答案】B 【解析】 由题意得2 11,530,1m m m m --=-->∴=-, 故选:B. 2.(2020·浙江高一课时练习)如图,函数1y x = 、y x =、1y =的图象和直线1x =将平面直角坐标系的第一象限分成八个部分:①②③④⑤⑥⑦⑧.若幂函数 的图象经过的部分是④⑧,则 可能是( ) A .y =x 2 B .y x = C .12 y x = D .y=x -2 【答案】B 【解析】 由图象知,幂函数()f x 的性质为: (1)函数()f x 的定义域为()0+∞, ; (2)当01x <<时,()1f x >,且()1f x x <;当1x >时,01x <<,且()1 f x x >; 所以()f x 可能是y x = .故选B.

3.(2019·河南高三月考)若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a << 【答案】A 【解析】 因为3x y =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()x f x x = , 2 1ln ()x f x x -'= ,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数. 则()(3)f f π<,即 ln ln 3 3 π π < ,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 4.(2020·全国高一专题练习)下列关系中正确的是( ) A .2213 3 3 111252??????<< ? ? ? ?????? B .122333 111225??????<< ? ? ? ?????? C .212333 111522??????<< ? ? ? ?????? D .221333 111522??????<< ? ? ? ?????? 【答案】D 【解析】 因为12x y ??= ???是单调递减函数,1233<,所以12 331122????> ? ????? , 因为幂函数23y x =在()0,∞+上递增,11 52 <; 所以223 3 1152????< ? ? ???? ,

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数的实际应用题-中考数学题型专项练习

题型04 二次函数的实际应用题 一、单选题 1.如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =﹣ 16 x 2 +bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( ) A .2m B .4m C . D .【答案】D 【分析】根据长方形的长OA 是12m ,宽OC 是4m ,可得顶点的横坐标和点C 的坐标,即可求出抛物线解析式,再把y =8代入解析式即可得结论. 【详解】根据题意,得 OA =12,OC =4. 所以抛物线的顶点横坐标为6, 即﹣2b a =13 b =6,∴b =2. ∵C (0,4),∴c =4, 所以抛物线解析式为: y =﹣ 16 x 2 +2x +4 =﹣ 16 (x ﹣6)2 +10 当y =8时, 8=﹣ 1 6 (x ﹣6)2+10, 解得:x 1 x 2=6﹣ 则x 1﹣x 2 . 所以两排灯的水平距离最小是 43.

故选:D. 【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决. 2.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x 与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为() A.33°B.36°C.42°D.49° 【答案】C 【分析】据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题. 【详解】解:由图象可知,物线开口向上, 该函数的对称轴x>1854 2 且x<54, ∴36<x<54, 即对称轴位于直线x=36与直线x=54之间且靠近直线x=36, 故选:C. 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

高中数学专题-二次函数综合问题例谈

二次函数综合问题例谈 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知f x ax bx ()=+2 ,满足1≤-≤f ()12且214≤≤f (),求f ()-2的取值范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1≤-≤f ()12和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入f x ax bx ()=+2 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵214≤≤f (),2)1(1≤-≤f , ∴ ()1025≤≤f .

初中数学二次函数综合题及答案(经典题型)

二次函数试题 论:①抛物线y lx21 是由抛物线y-x2怎样移动得到的22 ②抛物线y2(x 2 1)是由抛物线y 1 x2 2 :怎样移动得到的 ③抛物线y[(x1)21是由抛物线y 1 2 x21怎样移动得到的 22 ④抛物线 y ](x1)21是由抛物线 y 1 2 (x 1)2怎样移动得到22 ⑤抛物线y2(x1)21是由抛物线y 1 2 -x2怎样移动得到的 22 选择题:1、y=(m-2)x m2- m是关于x的二次函数,贝U m=() A -1 B 2 C -1 或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax2+bx+c(a丰0)模型的是() 在一定距离内,汽车行驶的速度与行驶的时间的关系 我国人中自然增长率为1%这样我国总人口数随年份变化的关系 矩形周长一定时,矩形面积和矩形边长之间的关系 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x2,则抛物线的解析式是( A y= —( x-2 ) 2+2 B y= —(x+2 )2+2 C y= (x+2 ) 2+2 D y= —( x-2 1 2 5、抛物线y= x -6x+24 2 的顶点坐标是( A (—6,—6) B(—6, 6) C(6,6) D (6,—6) 6、已知函数y=ax2+bx+c,图象如图所示,则下列结论中正确的有 ①abc〈0 ②a+ c〈 b ③ a+b+c > 7、函数y=ax2-bx+c (a丰 0) 的图象过点( A -1 B 1 C - 的值是 b 1 )个 -1 ,

填空题: 13、无论m为任何实数,总在抛物线y=x2+ 2mx+ m上的点的坐标是------------ 。 16、若抛物线y=ax2+bx+c(0)的对称轴为直线x =2,最小值为—2,则关于方程ax2+bx+c =-2的根为一 17、抛物线y= (k+1)x2+k2-9开口向下,且经过原点,则k= ---------------- 解答题:(二次函数与三角形) 1、已知:二次函数y==x2+bx+c,其图象对称轴为直线x=1,且经过点 4 (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点并求出最大面积. 2、如图,在平面直角坐标系中,抛物线与x轴交于A B两点(A在B的左侧),与y轴 9 交于点C (0,4),顶点为(1,2)? (1)求抛物线的函数表达式; (2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点卩,使厶CDP为等腰三角形,请直接写岀满足条件的所有点P的坐标. (3)若点E是线段AB上的一个动点(与A B不重合),分另U连接AC BC过点E作EF // AC交线段BC于点F,连接CE记厶CEF的面积为S S是否存在最大值若存在,求出 存在,请说明理由. 4 2 3、如图,一次函数y=—4x—4的图象与x轴、y轴分别交于A、C两点,抛物线y= + bx+ c的图象经过A C两点,且与x轴交于点B (1)求抛物线的函数表达式;己,使厶EBC的面积最大, (第2题图) S的最大值及此时E点的坐标;若不

二次函数与圆综合训练(含解析)

二次函数与圆综合提高(压轴题) 1、如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点, 且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图 形L. (1)求△ABC的面积; (2)设AD=x,图形L的面积为y,求y关于x的函数解析式; (3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.解 解:(1)如图3,作AH⊥BC于H, 答: ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,

∴x=1.5时,y 最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3﹣x, ∴DG=(3﹣x),MF=MN=2x﹣3, ∴MG=(3﹣x), ∴y=, =﹣; (3),如图4,∵y=﹣; ∴y=﹣(x2﹣4x)﹣, y=﹣(x﹣2)2+, ∵a=﹣<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°,

∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π. 2、(2013?压轴题)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4), 点B的坐标为(4, 0),点C的坐标为 (﹣4,0),点P在 射线AB上运动,连 结CP与y轴交于点 D,连结BD.过P, D,B三点作⊙Q与 y轴的另一个交点 为E,延长DQ交⊙Q于点F,连结EF,BF. (1)求直线AB的函数解析式; (2)当点P在线段AB(不包括A,B两点)上时. ①求证:∠BDE=∠ADP; ②设DE=x,DF=y.请求出y关于x的函数解析式; (3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由. 解:(1)设直线AB的函数解析式为y=kx+4, 代入(4,0)得:4k+4=0, 解得:k=﹣1, 则直线AB的函数解析式为y=﹣x+4; (2)①由已知得: OB=OC,∠BOD=∠COD=90°, 又∵OD=OD, ∴△BOD≌△COD,

完整word版,高考数学复习二次函数测试题

高考数学复习二次函数测试题 1.解析式、待定系数法 若()2 f x x bx c =++,且()10f =,()30f =,求()1f -的值. 变式1:若二次函数()2 f x ax bx c =++的图像的顶点坐标为()2,1-,与y 轴的交点坐标为 (0,11),则 A .1,4,11a b c ==-=- B .3,12,11a b c === C .3,6,11a b c ==-= D .3,12,11a b c ==-= 变式2:若()()2 23,[,]f x x b x x b c =-+++∈的图像x =1对称,则c =_______. 变式3:若二次函数()2 f x ax bx c =++的图像与x 轴有两个不同的交点()1,0A x 、 ()2,0B x ,且2212269 x x += ,试问该二次函数的图像由()()2 31f x x =--的图像向上平移几个单位得到? 2.图像特征 将函数()2 361f x x x =--+配方,确定其对称轴,顶点坐标,求出它的单调区间及最大值 或最小值,并画出它的图像. 变式1:已知二次函数()2 f x ax bx c =++,如果()()12f x f x =(其中12x x ≠),则 122x x f +??= ??? A .2b a - B .b a - C . c D .244ac b a - 变式2:函数()2 f x x px q =++对任意的x 均有()()11f x f x +=-,那么()0f 、()1f -、 ()1f 的大小关系是 A .()()()110f f f <-< B .()()()011f f f <-< C .()()()101f f f <<- D .()()()101f f f -<< 变式3:已知函数()2 f x ax bx c =++的图像如右图所示, 请至少写出三个与系数a 、b 、c 有关的正确命题_________. 3.单调性 x y O

二次函数综合题训练(含答案)

二次函数综合题训练 一、综合题(共24题;共305分) 1.如图,在平面直角坐标系中,二次函数图象的顶点坐标为,该图象与轴相交于点、,与轴相交于点,其中点的横坐标为1. (1)求该二次函数的表达式; (2)求. 2.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧). (1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围; (2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值. 3.已知抛物线y=2x2-4x+c与x轴有两个不同的交点. (1)求c的取值范围; (2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由. 4.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3). (1)求a的值和图象的顶点坐标。 (2)点Q(m,n)在该二次函数图象上. ①当m=2时,求n的值;

②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围. 5.若二次函数图象的顶点在一次函数的图象上,则称 为的伴随函数,如:是的伴随函数. (1)若是的伴随函数,求直线与两坐标轴围成的三角形的面积;(2)若函数的伴随函数与轴两个交点间的距离为4,求,的值. 6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点. (1)求k的值: (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标. 7.如图,在平面直角坐标系中,抛物线与轴交于点、点,与轴交于点. (1)求拋物线的解析式; (2)过点作直线轴,点在直线上且,直接写出点的坐标.8.在平面直角坐标系中,抛物线与轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上. (1)求点B的坐标(用含的式子表示); (2)求抛物线的对称轴; (3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围. 9.如图,直线与轴、轴分别交于两点,抛物线经过点 ,与轴另一交点为,顶点为. (1)求抛物线的解析式; (2)在轴上找一点,使的值最小,求的最小值;

秒杀二次函数综合问题(高考专题)

秒杀二次函数综合问题(高考专题) 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知,满足1 且 ,求 的取值 范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1 和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵ ,2)1(1≤-≤f , ∴ ()1025≤≤f . 例2 设 ,若 ,,, 试证

二次函数综合题经典习题(含答案)

二次函数综合题训练题 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线y x m与该二次函数的图象交 于A、B两点,其中A点的坐标为(3,4) ,B点在轴y上. (1 )求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次 函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关 系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由? 2、如图3,已知抛物线y ax2 bx c经过0(0,0) , A(4,0),B(3, 3)三点,连结AB,过 点B作BC// x轴交该抛物线于点 C. (1) 求这条抛物线的函数关系式? (2) 两个动点P、Q分别从O A两点同时出发,以每秒1个单位长度的速度运动.其中,点P沿着线段0A向A点运动,点Q沿着折线A T B T C的路线向C点运动.设这两个动点运动的时间为t (秒)(0 V t V 4) , △ PQA的面积记为S. ①求S与t的函数关系式; ②当t为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状; ③是否存在这样的t值,使得△ PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由

图3

4 3、如图7,直线y —x 4与x轴交于点A,与y轴交于点C,已知二次函数的图象经过 3 点A、C和点B 1,0 .(1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M,求四边形AOCM的面积; 3 (3)有两动点D、E同时从点O出发,其中点D以每秒3个单位长度的速度沿折线OAC 2 按O T A T C的路线运动,点E以每秒4个单位长度的速度沿折线OCA按O T C A的路线运动,当D、E两点相遇时,它们都停止运动?设D、E同时从点O出发t秒时,ODE的面积为S . ①请问D、E两点在运动过程中,是否存在DE // OC,若存在,请求出此时t的值;若不存在, 请说明理由; ②请求出S关于t的函数关系式,并写出自变量t的取值范围; 4、如图5,已知抛物线y a x2 b x c的顶点坐标为E( 1,0 ),与y轴的交点坐标为(0,1 ). (1)求该抛物线的函数关系式? (2)A、B是x轴上两个动点,且A、B间的距离为AB=4, A在B的左边,过A作ADL x轴交抛物线于D,过B作BC L x轴交抛物线于 C.设A点的坐标为(t,0 ),四边形ABCD 的面积为S. ①求S与t之间的函数关系式■ ②求四边形ABCD勺最小面积,此时四边形ABCD是什么四边形? ③当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△ PAE的周 长最小,若存在,请求出点P的坐标及这时△ PAE的周长;若不存在,说明理由. A O E B x 图5

相关文档
最新文档