中考数学 二次函数综合试题含答案
2023安徽中考数学专题《二次函数综合》含答案解析

热点05 二次函数综合安徽中考数学中二次函数部分主要考向分为三类:一、二次函数的图象与性质;二、二次函数中求动点坐标(与图形面积相关);三、二次函数的实际运用(近几年主要考察利润相关为题);需要注意的是综合运用的题型,难度系数较大,考察的内容较多,特别是动点,还是计算利润时由于数值比较大需细心。
考点一:利用对称轴解决问题抛物线的开口向下,对称轴x = −b2a =−2A,当x1 +x2 >2时,x1< x2,点A离对称轴的距离比点B,当x1+x2< 2时,x1< x2,点A离对称轴的距离比点确,考点二:最值问题【答案】 8 43a2),则点B坐标为【分析】设点A(a,18由AC2=(xc﹣xA)2+(yC﹣yA)2可得求解.a2),则点B 【详解】解:设点A(a,18∴OB=|a|,AB=1a2,想解答即可.【详解】解:二次函数y=2(x−1)2+1的图像如图:所以函数有最小值1,当x=0时,y=3,当x=3时,y=9,当0≤x≤3时,x=1在范围内,故函数值能取到最小值,故1≤y≤9.故选:B.【点睛】本题考查了抛物线的顶点坐标,最值,增减性,数形结合思想,熟练掌握抛物线的性质和数形结合思想是解题的关键.考点三:二次函数与不等式【例6】.(2022秋·安徽淮南)二次函数y=x2,当1 ≤y ≤ 9时,自变量x的取值范围是()A.1≤x≤3B.-3≤x≤3C.-3≤x≤-1或1≤x≤3D.-3≤x≤1或1≤x≤3【答案】C【分析】根据题目中的函数解析式和二次函数的性质,可以计算出当1≤y ≤9时,自变量x 的取值范围.【详解】解:∵y=x2,∴该函数图像开口向上,对称轴为直线x=0,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小,∵当y=1时,x=±1;当y=9时,x=±3,∴ 当1≤y ≤9时,自变量x 的取值范围是-3≤x ≤-1或1≤x ≤3,故选:C .【点睛】本题考查二次函数的性质及二次函数图像上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.【例7】. (2022秋·安徽合肥)在平面直角坐标系中,已知点A (4,2),B (4,4),抛物线L :()()20y x t t t =--+≥,当L 与线段AB 有公共点时,t 的取值范围是( )A .3≤t ≤4B .5≤t ≤6C .3≤t ≤4,t =6D .3≤t ≤4或5≤t ≤6【答案】D【分析】根据题意知线段AB 平行于y 轴,故根据二次函数与线段交点的情况列式()2244t t --+≤≤求解即可.【详解】根据题意知:∵点A (4,2),B (4,4),故对于二次函数()()20y x t t t =--+≥与线段AB 有公共点时,即当x=4时,2≤y ≤4,即()2244t t --+≤≤,解得:3≤t ≤4或5≤t ≤6;故选:D .【点睛】此题考查二次函数与线段交点问题,主要理解函数图像与线段有交点的真实含义,难度一般,主要是计算.【例8】. (2022秋·安徽合肥)如图是二次函数y 1=ax 2+bx +c (a ≠0)和一次函数y 2=mx +n (m ≠0)的图象,当y 2>y 1,x 的取值范围是________.【答案】−2<x <1【分析】关键是从图像上找出两函数图像交点坐标,再根据两函数图像的上下位置关系,判断y 2>y 1时,x 的取值范围.【详解】从图像上看出,两个交点坐标分别为(−2,0),(1,3)【例10】. (2022秋·安徽芜湖·)如图,抛物线23y ax bx =++与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x =−1.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG ⊥AC 于点G .。
中考数学 二次函数综合试题附详细答案

中考数学 二次函数综合试题附详细答案一、二次函数1.如图,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D .(1)求抛物线的函数表达式;(2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限.①当线段PQ =34AB 时,求tan ∠CED 的值; ②当以点C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(16,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x1=-1,x2=3.∵A点在B点左侧,∴A(-1,0),B(3,0)设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m,则033k mm==+⎧⎨-⎩,∴13 km⎧⎨-⎩==∴直线BC的函数表达式为y=x-3;(3)①∵AB=4,PQ=34 AB,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-621+62∵点P在第三象限.∴P2(6-52).综上所述:满足条件为P1(2-2),P2(6-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y=kx+b,把A(﹣1,0)、B(2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2)∴P 点纵坐标为﹣2,∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2.∴P (1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.【解析】【详解】试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C⎛⎫⎪⎝⎭在抛物线上所以41719326cb c=⎧⎪⎨=-⨯++⎪⎩,解得24bc=⎧⎨=⎩,所以21246y x x=-++所以,当62bxa=-=时,10ty=≦答:21246y x x=-++,拱顶D到地面OA的距离为10米(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))当x=2或x=10时,2263y=>,所以可以通过(3)令8y=,即212486x x-++=,可得212240x x-+=,解得12623,623x x=+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.5.如图,抛物线212222y x x=-++与x轴相交于A B,两点,(点A在B点左侧)与y轴交于点C.(Ⅰ)求A B,两点坐标.(Ⅱ)连结AC,若点P在第一象限的抛物线上,P的横坐标为t,四边形ABPC的面积为S.试用含t的式子表示S,并求t为何值时,S最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(A B ;(Ⅱ)2(2S t t =--+<<,当t =时,S =最大;(Ⅲ)满足条件的点m n 、的值为:34m n ==,或154m n ==-,或14m n == 【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论.【详解】解:(Ⅰ)抛物线21222y x x =-++,令0y =,则212022x x -++=,解得:x =x =∴((,A B(Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q ,∵P 的横坐标为t ,∴设(),P t p ,∴212,,22p t PQ p BQ t OQ t =-++===,∴()()11122222AOC PQB OCPQ S S S S p t t p =++=++⨯+⨯⨯V V 梯形 1122t pt pt t =++-=++21222t t ⎫=-+++⎪⎪⎭2t t =+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =, ∴)2,2P ,∵抛物线212222y x x =-++的对称轴为22x =, ∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A ,①当AP 和HG 为对角线时, ∴()2112111222,20222222m m n ⎛⎛⎫=++=-+++ ⎪ ⎪⎝⎭⎝⎭, ∴234m n ==, ②当AG 和PH 是对角线时, ∴(()2112112122,20222222m m n ⎛⎫=-++=+ ⎪ ⎪⎭⎝⎭, ∴215,24m n ==-, ③AH 和PG 为对角线时, ∴(()2121112122,22022222m m n ⎛⎛⎫-=+-+++=+ ⎪ ⎪⎝⎭⎝⎭, ∴3214m n ==, 即:满足条件的点m n 、的值为: 2324m n =-=,或5215,24m n ==-,或32124m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.6.如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B ,C 的坐标;(2)判断△CDB 的形状并说明理由;(3)将△COB 沿x 轴向右平移t 个单位长度(0<t <3)得到△QPE .△QPE 与△CDB 重叠部分(如图中阴影部分)面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】【分析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c = ∴抛物线解析式为:()214y x =--+, 令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B . (Ⅱ)CDB ∆为直角三角形.理由如下: 由抛物线解析式,得顶点D 的坐标为()1,4. 如答图1所示,过点D 作DM x ⊥轴于点M , 则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=. 在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=; 在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=; 在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=, ∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+, ∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩,解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++; 设直线BD 的解析式为y mx n =+, ∵()()3,0,1,4B D , ∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=,∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中: (1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t =-⎧⎨=⎩,∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J . ∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-, ∴(),62J t t -.1122PBJ PBK S S S PBPJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩.7.如图,直线l :y =﹣3x +3与x 轴、y 轴分别相交于A 、B 两点,抛物线y =ax 2﹣2ax +a +4(a <0)经过点B ,交x 轴正半轴于点C . (1)求该抛物线的函数表达式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值及此时动点M 的坐标;(3)将点A 绕原点旋转得点A ′,连接CA ′、BA ′,在旋转过程中,一动点M 从点B 出发,沿线段BA ′以每秒3个单位的速度运动到A ′,再沿线段A ′C 以每秒1个单位长度的速度运动到C 后停止,求点M 在整个运动过程中用时最少是多少?【答案】(1)y =﹣x 2+2x +3;(2)S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74);(3)点M 82秒. 【解析】 【分析】(1)首先求出B 点的坐标,根据B 点的坐标即可计算出二次函数的a 值,进而即可计算出二次函数的解析式;(2)计算出C 点的坐标,设出M 点的坐标,再根据△ABM 的面积为S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB ,化简成二次函数,再根据二次函数求解最大值即可. (3)首先证明△OHA ′∽△OA ′B ,再结合A ′H +A ′C ≥HC 即可计算出t 的最小值. 【详解】(1)将x =0代入y =﹣3x +3,得y =3, ∴点B 的坐标为(0,3),∵抛物线y =ax 2﹣2ax +a +4(a <0)经过点B , ∴3=a +4,得a =﹣1,∴抛物线的解析式为:y =﹣x 2+2x +3;(2)将y =0代入y =﹣x 2+2x +3,得x 1=﹣1,x 2=3, ∴点C 的坐标为(3,0),∵点M 是抛物线上的一个动点,并且点M 在第一象限内,点M 的横坐标为m , ∴0<m <3,点M 的坐标为(m ,﹣m 2+2m +3), 将y =0代入y =﹣3x +3,得x =1, ∴点A 的坐标(1,0), ∵△ABM 的面积为S ,∴S =S 四边形OAMB ﹣S △AOB =S △BOM +S △OAM ﹣S △AOB =()2123313222m m m ⨯-++⨯⨯+-, 化简,得S =252m m --=21525228m ⎛⎫--+ ⎪⎝⎭,∴当m =52时,S 取得最大值,此时S =258,此时点M 的坐标为(52,74), 即S 与m 的函数表达式是S =252m m--,S 的最大值是258,此时动点M 的坐标是(52,74); (3)如右图所示,取点H 的坐标为(0,13),连接HA ′、OA ′, ∵∠HOA ′=∠A ′OB ,13OH OA '=,13OA OB '=, ∴△OHA ′∽△OA ′B ,∴3BA A H''=, 即3BA A H ''=,∵A′H+A′C≥HC=2218233⎛⎫+=⎪⎝⎭,∴t≥82,即点M在整个运动过程中用时最少是82秒.【点睛】本题主要考查抛物线的性质,关键在于设元,还有就是(3)中利用代替法计算t的取值范围,难度系数较大,是中考的压轴题.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(新)中考数学二次函数与几何综合典型试题(附答案解析)

解:(1)当x=0时,y=3,即A(0,3),
设抛物线的解析式为:y=a(x+3)(x-1),
把A(0,3)入得:3=-3a,
a=-1,
∴y=-(x+3)(x-1)=-x2-2x+3,
1.(1)m2;(2)m1=-3,m2=1;(3) 或 ;(4)-3<m≤-1或m>1
【分析】
(1)根据平行线的性质知,点B与点A的横坐标相同,所以把x=m代入抛物线解析式,即可求得点B的纵坐标;
(2)把点A代入二次函数解析式,列出方程,然后解方程即可;
(3)根据等量关系AB=2和两点间的距离公式列出方程,解方程即可求得m的值;
∴线段AB的长度随m的增大而增大时,-3<m≤-1.
当m>1时,根据题意知,线段AB的长度随m的增大而增大时,m>1.
综上所述,m的取值范围是-3<m≤-1或m>1.
【点睛】
本题主要考查了二次函数综合题,注重培养二次函数的解析式的求法和与几何图形结合的综合能力.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
所以方程组的解为: 或 ,
∴
【点睛】
本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.
4.(1) (2)P(4,5)(3)(-2,5)或(4,5).
【详解】
解:(1)将A(-1,0),B(3,0)代入抛物线解析式得
解得
∴抛物线的解析式为
(2)∵抛物线的解析式为 ,A(-1,0),B(3,0)
2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案

20.如图,抛物线y= x2﹣ x﹣ 与x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴交于点D.
13.如图,抛物线 经过点A(0,3),B(-1,0).
(1)求抛物线的解析式;
(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.
(3)在抛物线上是否存在点P,使△PBD是以BD为直角边的直角三角形,若存在请直接写出点P的坐标,若不存在,请说明理由.
14.如图,抛物线 过点 , , .
(3)如图2,在(2)的条件下,点D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
7.如图,抛物线y= x2+bx+c与x轴交于A(3,0)、B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.
(1)求a、b满足的关系式及c的值;
(2)如果 ,点P是直线AB下方抛物线上的一点,过点P作PD垂直于x轴,垂足为点D,交直线AB于点E,使 .
①求点P的坐标;
②若直线PD上是否存在点Q,使 为直角三角形?若存在,求出符合条件的所有点Q的坐标;若不存在,请说明理由.
16.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,P为第一象限抛物线上的动点,连接AB,BC,PA,PC,PC与AB相交于点Q.
(1)点E的坐标为;
2023年九年级数学中考专题:二次函数综合压轴题(角度问题)(含简单答案)

2023年九年级数学中考专题:二次函数综合压轴题(角度问题)1.如图,抛物线2y ax2x c=++(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当:COD COBS S=1:3时,求点F的坐标;(3)如图2,点E的坐标为(0,﹣32),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请求出点P的坐标;若不存在,请说明理由.2.如图,在二次函数2221y x mx m=-+++(m是常数,且0m>)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC,BD.(1)求A,B,C三点的坐标(用数字或含m的式子表示),并求OBC∠的度数;(2)若ACO CBD∠=∠,求m的值;(3)若在第四象限内二次函数2221y x mx m=-+++(m是常数,且0m>)的图像上,始终存在一点P ,使得75ACP ∠=︒,请结合函数的图像,直接写出m 的取值范围. 3.如图1,直线y =2x +2交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线232y ax x c =++与x 轴的另一交点为B .(1)求该抛物线的函数表达式;(2)如图2,点D 是抛物线在第一象限内的一点,连接OD ,将线段OD 绕O 逆时针旋转90°得到线段OM ,过点M 作MN ∠x 轴交直线AC 于点N .求线段MN 的最大值及此时点D 的坐标;(3)在(2)的条件下,若点E 是点A 关于y 轴的对称点,连接DE ,试探究在抛物线上是否存在点P ,使得∠PED =45°?若存在,求出点P 的坐标;若不存在,请说明理由. 4.如图,抛物线22y ax bx =++与x 轴相交于A 、B 两点,与y 轴相交于点C ,已知B 点的坐标为()4,0,抛物线的对称轴为直线32x =,点D 是BC 上方抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当BCD △的面积为74时,求点D 的坐标; (3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE 中的某个角等于ABC ∠的2倍?若存在,请直接写出点D 的横坐标...;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线211322y x x =-++与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,D 为线段AB 上一点.(1)求A ,B ,C 三点的坐标;(2)过点D 作x 轴的垂线与抛物线交于点E ,与直线BC 相交于点F ,求出点E 到直线BC 距离d 的最大值;(3)连接CD ,作点B 关于CD 的对称点B ',连接AB ',B D '.在点D 的运动过程中,ADB ∠'能否等于45°?若能,请直接写出此时点B '的坐标,若不存在请说明理由.6.如图1,二次函数2y x bx c =++的图像与x 轴交于点A (﹣2,0),B (4,0),抛物线的顶点为C ,作射线AC ,BC .动点P 从点A 出发,以每秒1个单位长度的速度沿射线AC 做匀速运动,动点Q 从B 出发,以每秒2个单位长度的速度沿射线BC 运动.(1)填空:b =_____,c =_____,C 的坐标为_____.(2)点P ,Q 运动过程中,∠CPQ 可能为等腰三角形吗?说明理由.(3)如图2,连接PO ,QO ,当∠POQ =30°时,直接写出t 的值.7.如图,抛物线2y ax bx c =++经过()1,0A -,()3,0B 且与y 轴交于点()0,3C -.(1)求抛物线的函数表达式;(2)若点P 是x 轴的正半轴上一点,1tan 3APC ∠=,求点P 的坐标; (3)当点P 是抛物线上第一象限上的点,1tan 3APC ∠=,直接写出点P 的坐标为______. 8.如图,抛物线24y ax bx =+-与x 轴交于点A (-2,0)、B (4,0),与y 轴交于点C ,过点C 作x 轴的平行线交抛物线于点D ,连接AC ,作直线BC .(1)求抛物线24y ax bx =+-的表达式; (2)如图2,点E (x ,0)是线段OB 上的点,过点E 作与x 轴垂直的直线与直线BC 交于点F ,与抛物线交于点G .∠线段FG 的长是否存在最大值?若存在,求出这个最大值:若不存在,说明理由; ∠连接CG ,当∠DCG =∠ACO 时,求点G 的坐标;(3)若点P 是直线BC 下方的抛物线上的一点,点Q 在y 轴上,点M 在线段BC 上,当以C ,P ,Q ,M 为顶点的四边形是菱形时,直接写出菱形的边长.9.如图1,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴交于A (1,0),与y 轴交于C (0,-3).(1)求抛物线的解析式;(2)在抛物线上是否存在这样的点P ,使得∠ACP=∠ABC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图2,点D 为线段BC 上一点,过点D 作y 轴的平行线交抛物线于点E ,连结BE .当∠DBE =90°时,求BEC S ∆.10.如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2x +c 与x 轴交于点A 和点B (1,0),与y 轴相交于点C (0,3).(1)求抛物线的解析式和顶点D 的坐标;(2)找出图中与∠DAB 相等的一个角,并证明;(3)若点P 是第二象限内抛物线上的一点,当点P 到直线AC 的距离最大时,求点P 的坐标.11.如图所示:二次函数26y ax bx =+-的图象与x 轴交于()2,0A -,()3,0B 两点,与y 轴交于点C ,连接AC ,BC .(1)求二次函数表达式及直线BC 的函数表达式;(2)如图1,若点M 为抛物线上线段BC 右侧的一动点,连接CM ,BM .求四边形ACMB 面积最大时点M 的坐标;(3)如图2,该抛物线上是否存在点P ,使得ACO BCP ∠=∠?若存在,请求出所有点P 的坐标;若不存在,请说明理由.12.已知如图,二次函数23y x bx =++的图像与x 轴相交于点A 、B 两点,与y 轴相交于点C ,连接AC 、BC ,tan 1ABC ∠=,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点E ,当AE CE +取得最小值时,E 点坐标为________;此时AE 与BC 的位置关系是________,tan ACE ∠=________;(3)抛物线对称轴右侧的函数图像上是否存在点M ,满足ACB BAM ∠=∠,若存在求M 点的横坐标;若不存在,请说明理由;(4)若抛物线上一动点Q ,当BAQ ACO ∠=∠时,直接写出Q 点坐标________. 13.如图,在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于B ,C 两点(C 在B的左侧),与y 轴交于点A ,已知()0,4A -,2OA OB =.(1)求抛物线的表达式;(2)若点Q 是线段AC 下方抛物线上一点,过点Q 作QD 垂直AC 交AC 于点D ,求DQ 的最大值及此时点Q 的坐标;(3)点E 是线段AB 上一点,且14AOE AOC S S =△△;将抛物线212y x bx c =++沿射线AB 的方向平移,当抛物线恰好经过点E 时,停止运动,已知点M 是平移后抛物线对称轴上的动点,N 是平面直角坐标系中一点,直接写出所有使得以点A ,B ,M ,N 为顶点的四边形是菱形的点N 的坐标,并把求其中一个点N 的坐标的过程写出来.14.如图,抛物线()()22369=++-+y mx m x m 与x 轴交于点A 、B ,与y 轴交于点C ,已知()3,0B .(1)m 的值是________;(2)P (异于点A )为抛物线上一点,若PBC ABC S S =△△,求点P 的坐标:(3)Q 为抛物线上一点,若45ACQ ∠=︒,请直接写出点Q 的坐标.15.如图,在平面直角坐标系中,抛物线22y ax bx =++与x 轴交于1,0A ,()4,0B 两点,与y 轴交于点C .直线l :2y kx =+过点C .(1)求抛物线的解析式;(2)当直线l 经过点B 时,取线段BC 的中点M ,作直线l 的平行线,恰好与抛物线有一个交点P 时,判断以点P ,O ,M ,B 为顶点的四边形是什么特殊的平行四边形,并说明理由;(3)在直线l 上是否存在唯一一点Q ,使得90AQB ∠=︒?若存在,请求出此时l 的解析式;若不存在,请说明理由.16.我们不妨约定,过坐标平面内任意两点(例如A ,B 两点)作x 轴的垂线,两个垂足之间的距离叫做这两点在x 轴上的“足距”,记作AB .根据该约定,完成下列各题:(1)若点1(,6)A x ,2(,4)B x -.当点A 、B 在函数2y x =的图象上时,AB =______;当点A ,B 在函数24y x=-的图像上时,AB =______; (2)若反比例函数()11k y k x -=≠的图象上有两点()1,A x k ,()22,B x k k -,当AB k =时,求正整数k 的值. (3)在(2)条件下抛物线223y kx x =+-与x 轴交于1A ,1B 两点,与y 轴交于点C .如图,点D 是该抛物线的顶点,点(,)P m n 是第一象限内该抛物线上的一个点,分别连接1A D 、1A C 、1A P ,当1112PA B CA D ∠=∠时,求m 的值.17.在平面直角坐标系xOy 中,二次函数y =ax 2+bx 的图象与x 轴交于O 、A 两点,其顶点B 的坐标为(2,﹣6).(1)求a 、b 的值;(2)如图1,点C 是该二次函数图象的对称轴上的一个动点,连接BO 、CO ,当∠OBC 是以BC 为腰的等腰三角形时,求点C 的坐标;(3)如图2,P 是该二次函数图象上的位于第一象限内的一个动点,连接OP ,与对称轴交于点M ,点Q 在OP 上,满足OQ PQ =21,设点P 的横坐标为n ; ∠请用含n 的代数式表示点Q 的坐标(,);∠连接BQ ,OB ,当∠OBQ 的面积为15时,求点P 的坐标;∠当∠POA =2∠OBM 时,直接写出点P 的横坐标.18.如图1,直线4y x =-+与x 轴、y 轴分别交于点A 与点B ,抛物线212y x bx c =-++经过点A 、B ,在线段OA 上有一动点(),0D m ,点D 不与O 、A 重合,过点D 作x 轴的垂线交直线AB 于点C ,交抛物线于点E .(1)求抛物线的函数表达式;(2)当点C 是DE 的中点时,求m 的值;(3)在(2)的条件下,将线段OD 绕点O 逆时针旋转得到OD ',旋转角为()090αα︒<<︒,连接'D A 、'D B ,直接写出''12D A D B +的最小值.参考答案:1.(1)223y x x =-++;(2)F (35,125); (3)存在,P (13,329)或(﹣73,﹣649).2.(1)A (-1,0);B (2m +1,0);C (0,2m +1);45OBC ∠=︒(2)1m =(3)0m <<3.(1)213222y x x =-++ (2)最大值为3;()2,3D(3)存在,11P ⎛ ⎝⎭,()20,2P4.(1)213 2.22y x x (2)79,28D 或121,.28(3)点D 的横坐标为2或2911.5.(1)A (-2,0),B (3,0),C (0,3);(2)点E 到直线BC 的距离d ;(3)在点D 的运动过程中,∠ADB '能等于45°,此时点B ′的坐标为(0,-或(-,3).6.;(1, (2)不可能,理由见解析(3)t 的值为:17.(1)2=23y x x --(2)点P 的坐标为()9,0(3)点P 的坐标为()4,58.(1)2142y x x =-- (2)∠当2x =时,FG 有最大值,FG 的最大值=2;∠G (3,-52)或(1,-4.5). (3)2或49.(1)2=+43y x x --(2)存在点P ,使得∠ACP=∠ABC ,点P 的坐标为7524,⎛⎫- ⎪⎝⎭(3)3△BEC S =10.(1)y =﹣x 2﹣2x +3,顶点D 的坐标为(﹣1,4)(2)∠ACB ,证明见解析(3)点P 坐标为(32-,154)11.(1)26y x x =--,26y x =-(2)点M 的坐标为321,24⎛⎫- ⎪⎝⎭ (3)存在,(2,-4)或(8,50)12.(1)y =x 2-4x +3;(2)(2,1);AE ∠BC ,12; (3)存在,M 点的横坐标为52或72; (4)Q 点的坐标为(103,79)或(83,59-) .13.(1)2142y x x =+-(2)DQ ()2,4Q -(3)N 点坐标为(2,或(2,-或()2,0-或52,2⎛⎫- ⎪⎝⎭,见解析14.(1)1-(2)()2,1P ,⎝⎭P ,⎝⎭P (3)75,24⎛⎫- ⎪⎝⎭Q15.(1)215222y x x =-+;(2)菱形;(3)存在,122y x =-+或2y x =+或2y x =+. 16.(1)5;10;(2)1;(3)74m =17.(1)a =32,b =﹣6;(2)点C 的坐标为(2,6--2,6-+2,83-);(3)∠23n ,n 2﹣4n ;∠P (5,152);∠点P 的横坐标为92.18.(1)2142y x x =-++;(2)2;(3。
中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④2.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值() A.-3B.3C.-6D.93.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√24.如图,一条抛物线(形状一定)与x轴相交于E、F两点(点E在点F左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,−3)、(4,−3),点E的横坐标的最小值为-5,则点F的横坐标的最大值为()A.6B.7C.8D.95.如图1,在矩形ABCD中,动点E从A出发,沿A−B−C方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.254C.6D.56.已知0≤x≤32,则函数y=x2+x+1()A.有最小值34,但无最大值B.有最小值34,有最大值1C.有最小值1,有最大值194D.无最小值,也无最大值7.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:x﹣5﹣4﹣202y60﹣6﹣46;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的是()A.①②③B.①③④C.①②④D.②③④8.已知二次函数y=ax2−2ax+a+2(a≠0),若−1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.1B.-1C.±1D.无法确定9.如图,已知二次函数的图象(0≤x≤1+2 √2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值210.如图,Rt△ABC中,∠ACB=90°,AC=12BC=2点D是AB上一动点,连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE,当△BED面积最大时,AD的长为()A.2B.√5C.25√5D.4√5511.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是()A.﹣4或72B.﹣2 √3或72C.﹣4 或2 √3D.﹣2 √3或2 √3 12.若二次函数y=ax2+4x+a-1的最小值是2,则a的值为()A.4B.-1C.3D.4或-1二、填空题13.二次函数y=x2−2x+3的最小值是.14.当实数a满足2≤a≤5时,且代数式−a2+2ab−b2取最大值-1时,则b的值为.15.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是.)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线x=12;④在对称轴左侧,y随x增大而增大.16.二次函数y=﹣x2﹣4x+k的最大值是9,则k=.17.已知关于x的函数y=−x2−ax+1,当0≤x≤3时函数有最大值5,则a=.18.已知关于x的二次函数y=x2-2ax+3,当1≤x≤3时,函数有最小值2a,则a的值为.三、综合题19.已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.(1)试用含a的代数式表示b、c.(2)当抛物线过点(2,3)时,求此抛物线的解析式.(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.20.如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=,∠AGH=°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若∠ABG∠∠FDH,求y与x之间的函数关系式,并求出y的取值范围.21.如图,抛物线y=12x2−32x−2与x轴交于A,B两点,与y轴交于点C,连接AC,BC,点M是线段BC下方抛物线上的任意一点,点M的横坐标为m,过点M画MN∠x轴于点N,交BC于点P.(1)填空:A(,),C(,);(2)探究∠ABC的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m取何值时线段PM的长度取得最大值,最大值为多少?22.某商品现在的售价为每件50元,每天可卖出200件.市场调查反映:如调整价格,每涨价1元,每天要少卖出10件,已知商品的进价为每件40元,请你帮助分析,当每件商品涨价多少元时,可使每天的销售利润最大,最大利润是多少?设每件商品涨价x元,每天售出商品的利润为y元.(1)根据题意,填写下表:每件售价(元)505152……50+x每天售出商品的数量(件)200190……每天售出商品的利润(元)20002090……23.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.24.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】A13.【答案】214.【答案】1或615.【答案】①③④16.【答案】517.【答案】-418.【答案】119.【答案】(1)解:∵抛物线与y轴交于点(0,3a)∴c=3a∵对称轴为x=1∴x=−b2a=1∴b=−2a(2)解:∵抛物线过点(2,3)∴3=a×22+2(−2a)+3a∴a=1∴b=−2a=−2,c=3a=3∴抛物线为y=x2−2x+3(3)解:∵b(c+6)=−2a(3a+6)=−6a2−12a=−6(a+1)2+6∴当a=−1时,b(c+6)的最大值为6;∴抛物线y=−x2+2x−3=−(x−1)2−2故抛物线的顶点坐标为(1,−2)20.【答案】(1)1:3;90(2)解:∵正方形ABCD的边长为4,BG=3,DH=1∴CG=1,CH=3∵CG∠DF,CH∠BE∴∠CGH∠∠BGE∠∠DFH∴GCHC=BGBE=DFDH,即13=3BE=DF1解得BE=9,DF= 1 3∴Rt∠BEG中,EG= √BG2+BE2= √32+92=3 √10(3)解:∵正方形ABCD的边长为4,BG=x,DH=y ∴CG=4﹣x,CH=4﹣y由(1)可得,∠FDH∠∠GCH,而∠ABG∠∠FDH∴∠ABG∠∠GCH∴ABGC=BGCH,即44−x=x4−y∴y与x之间的函数关系式为:y= 14x2﹣x+4∵44−x=x4−y∴4﹣y= x(4−x)4=﹣14x2+x∴当x=﹣12×(−14)=2时,4﹣y有最大值,且最大值为﹣14×4+2=1∴0<4﹣y≤1解得3≤y<4.21.【答案】(1)-1;0;0;-2(2)解:|OA|=1,|OC|=2,|OB|=4∠AOC=∠COB=90°∴OAOC=OCOB=12∴∠AOC∠∠COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt∠ACB的外接圆圆心为AB的中点∵A(-1,0)B(4,0)∴圆心的坐标( 32,0 ).(3)解:C (0,-2),B (4,0) 又∵直线BC 解析式y =12x −2 p(m ,12m −2) ,M (m , 12m 2−32m −2 )PM=( 12m −2 )-( 12m 2−32m −2 )PM =−12m 2+2m =−12(m −2)2+2 当m=2时,PM 最大值=2.22.【答案】(1)180;200﹣10x ;2160;(200﹣10x )(10+x )(2)解:y =(200﹣10x )(10+x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250 ∴当x =5时,y 取得最大值,此时y =2250即y =﹣10x 2+100x+2000,当每件商品涨价5元时,可使每天的销售利润最大,最大利润是2250元23.【答案】(1)解:∵AB=xm ,铝合金材料长为18m∴AD=BC=18−3x 2∴S =x·18−3x2=−32x 2+9x即S 与x 的函数表达式为:S =−32x 2+9x.(2)解:由题意得:2≤x <18−3x 2解得:2≤x <3.6∵S =−32x 2+9x =−32(x -3)2+272∵−32<0,对称轴是直线x =3,且2≤x <3.6∴当x =3时,S 取得最大值,此时S =272当x =2时,S 取得最小值,此时S =−32(2-3)2+272=12答:窗户总面积S 的最大值272m 2,最小值是12m 2.24.【答案】(1)解:对于一元二次方程x 2﹣(m+1)x+ 12(m 2+1)=0∠=(m+1)2﹣2(m 2+1)=﹣m 2+2m ﹣1=﹣(m ﹣1)2 ∵方程有实数根∴﹣(m﹣1)2≥0∴m=1.(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)解:由{y=2x+ny=−x2−4x−2消去y得到x2+6x+n+2=0由题意∠≥0∴36﹣4n﹣8≥0∴n≤7∵n≤m,m=1∴1≤n≤7令y′=n2﹣4n=(n﹣2)2﹣4∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21∴n2﹣4n的最大值为21,最小值为﹣4.。
2023年九年级中考数学:二次函数综合题压轴题(特殊四边形问题)(含答案)

(1)求该抛物线的解析式和顶点 的坐标;
(2)设点 的横坐标是 ,问当 取何值时,四边形 的面积最大;
(3)如图,若直线 的解析式是 ,点 和点 分别在抛物线上和直线 上,问:是否存在以点 为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点 的坐标
3.综合与探究
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,点 为抛物线顶点.
(1)求抛物线解析式;
(2)点 在此抛物线的对称轴上,当 最大时,点 的坐标为_____,此时 的面积为_____;
(3)点 在抛物线上,平面内存在点 使四边形 为菱形时,请直接写出点 的坐标.
4.如图,在平面直角坐标系中,抛物线 和直线 交于 、 两点,直线 交 轴于点 .
20.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上, , ,抛物线 经过点B,且与x轴交于点 和点E.
(1)求抛物线的表达式:
(2)若P是第一象限抛物线上的一个动点,连接CP,PE,当四边形OCPE的面积最大时,求点P的坐标,此时四边形OCPE的最大面积是多少;
(3)若N是抛物线对称轴上一点,在平面内是否存在一点M,使以点C,D,M,N为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,说明理由.
(1)求点 的坐标与 的值;
(2)当点 恰好是 的中点时,求点 的坐标;
(3)连结 ,作点 关于直线 的对称点 ,当点 落在线段 上时,则点 的坐标为______ 直接写出答案
6.已知抛物线 与x轴有公共点.
中考数学 二次函数综合试题及详细答案

中考数学 二次函数综合试题及详细答案一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE=. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.3.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系中有抛物线y =a (x ﹣2)2﹣2和y =a (x ﹣h )2,抛物线y =a (x ﹣2)2﹣2经过原点,与x 轴正半轴交于点A ,与其对称轴交于点B ;点P 是抛物线y =a (x ﹣2)2﹣2上一动点,且点P 在x 轴下方,过点P 作x 轴的垂线交抛物线y =a (x ﹣h )2于点D ,过点D 作PD 的垂线交抛物线y =a (x ﹣h )2于点D ′(不与点D 重合),连接PD ′,设点P 的横坐标为m :(1)①直接写出a 的值;②直接写出抛物线y =a (x ﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y =a (x ﹣h )2经过原点时,设△PDD ′与△OAB 重叠部分图形周长为L : ①求PD DD'的值; ②直接写出L 与m 之间的函数关系式;(3)当h 为何值时,存在点P ,使以点O 、A 、D 、D ′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1; ②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩; (3)h =±3 【解析】【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值.【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中,得:0=a (0﹣2)2﹣2,解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭, 2222322m m 22,PG m 22m FH PH PF ===-+-=-+ ∵DD ′∥EG EG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG221224222m m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)2L ⎧+<⎪∴=⎨+-+++<<⎪⎩; (3)如图3,∵OADD ′为菱形∴AD =AO =DD ′=4,∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.2.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --,过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,11);当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219).综上所述:P 点的坐标为:(﹣1,1),(﹣1,111,﹣219). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.3.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题4.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求95,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,5;当PQ 与AB 不平行时,5②当PQ ∥AB ,DB=DP 时,5DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =,9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆,DAC DPN ∆∆,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆,DNQ DCA ∴∆∆,DP DN DB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时,DB =DP DN DA DC∴=, 245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.5.在平面直角坐标系xOy 中(如图),已知抛物线y =x 2-2x ,其顶点为A .(1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” ①试求抛物线y =x 2-2x 的“不动点”的坐标;②平移抛物线y =x 2-2x ,使所得新抛物线的顶点B 是该抛物线的“不动点”,其对称轴与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.【答案】(l)抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ②新抛物线的表达式是y =(x +1)2-1.【解析】【分析】(1)10a =>,故该抛物线开口向上,顶点A 的坐标为()1,1-;(2)①设抛物线“不动点”坐标为(),t t ,则22t t t =-,即可求解;②新抛物线顶点B 为“不动点”,则设点(),B m m ,则新抛物线的对称轴为:x m =,与x 轴的交点(),0C m ,四边形OABC 是梯形,则直线x m =在y 轴左侧,而点()1,1A -,点(),B m m ,则1m =-,即可求解.【详解】 (l)10a =>,抛物线y =x 2-2x 的开口向上,顶点A 的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的.(2)①设抛物线y =x 2-2x 的“不动点”坐标为(t ,t).则t =t 2-2t ,解得t 1=0,t 2=3.所以,抛物线y =x 2-2x 的“不动点”的坐标是(0,0)、(3,3).②∵新抛物线的顶点B 是其“不动点”,∴设点B 的坐标为(m ,m)∴新抛物线的对称轴为直线x =m ,与x 轴的交点为C(m ,0)∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧.∵BC 与OA 不平行∴OC ∥AB.又∵点A 的坐标为(1,一1),点B 的坐标为(m ,m),∴m =-1.∴新抛物线是由抛物线y =x 2-2x 向左平移2个单位得到的,∴新抛物线的表达式是y =(x +1)2-1.【点睛】本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.6.如图,在平面直角坐标系中,已知点B 的坐标为()1,0-,且4OA OC OB ==,抛物线()20y ax bx c a =++≠图象经过,,A B C 三点.(1)求,A C 两点的坐标;(2)求抛物线的解析式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD AC ⊥于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【答案】解:(1)点A 、C 的坐标分别为(4,0)、(0,﹣4);;(2)抛物线的表达式为:234y x x =﹣﹣ ; (3)PD 有最大值,当x =2时,其最大值为2,此时点P (2,﹣6).【解析】【分析】(1)OA =OC =4OB =4,即可求解;(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣) ,即可求解; (3)224342--++=()PD x x x ,即可求解. 【详解】 解:(1)OA =OC =4OB =4,故点A 、C 的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:234y x x =a (x+1)(x-4)=a(﹣﹣),即﹣4a =﹣4,解得:a =1,故抛物线的表达式为:234y x x --= ;(3)直线CA 过点C ,设其函数表达式为:4y kx -=,将点A 坐标代入上式并解得:k =1,故直线CA 的表达式为:y =x ﹣4,过点P 作y 轴的平行线交AC 于点H ,∵OA =OC =4,45OAC OCA ∴∠∠︒== ,∵//PH y 轴,45PHD OCA ∴∠∠︒==,设点234P x x x --(,),则点H (x ,x ﹣4), 22243422222--+++=()=-PD x x x x x ∵22- <0,∴PD 有最大值,当x =2时,其最大值为22 此时点P (2,﹣6).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、图象的面积计算等,其中(3),用函数关系表示PD ,是本题解题的关键7.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+32x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.9.如图,在平面直角坐标系中,已知抛物线y=12x2+32x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过A,C两点,连接BC.(1)求直线l的解析式;(2)若直线x=m(m<0)与该抛物线在第三象限内交于点E,与直线l交于点D,连接OD.当OD⊥AC时,求线段DE的长;(3)取点G(0,﹣1),连接AG,在第一象限内的抛物线上,是否存在点P,使∠BAP=∠BCO﹣∠BAG?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)y=122x--;(2)DE=3225;(3)存在点P(139,9881),使∠BAP=∠BCO﹣∠BAG,理由见解析.【解析】【分析】(1)根据题目中的函数解析式可以求得点A和点C的坐标,从而可以求得直线l的函数解析式;(2)根据题意作出合适的辅助线,利用三角形相似和勾股定理可以解答本题;(3)根据题意画出相应的图形,然后根据锐角三角函数可以求得∠OAC=∠OCB,然后根据题目中的条件和图形,利用锐角三角函数和勾股定理即可解答本题.【详解】(1)∵抛物线y=12x2+32x-2,∴当y=0时,得x1=1,x2=-4,当x=0时,y=-2,∵抛物线y=12x2+32x-2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,∴点A的坐标为(-4,0),点B(1,0),点C(0,-2),∵直线l经过A,C两点,设直线l的函数解析式为y=kx+b,402k bb-+⎧⎨-⎩==,得122kb⎧-⎪⎨⎪-⎩==,即直线l的函数解析式为y=−12x−2;(2)直线ED与x轴交于点F,如图1所示,由(1)可得,AO=4,OC=2,∠AOC=90°,∴5∴45525=,∵OD⊥AC,OA⊥OC,∠OAD=∠CAO,∴△AOD ∽△ACO , ∴AD AO AO AC =, 即425AD =,得AD=85, ∵EF ⊥x 轴,∠ADC=90°,∴EF ∥OC ,∴△ADF ∽△ACO , ∴AF DF AD AO OC AC==, 解得,AF=165,DF=85, ∴OF=4-165=45, ∴m=-45, 当m=-45时,y=12×(−45)2+32×(-45)-2=-7225, ∴EF=7225, ∴DE=EF-FD=7225−85=3225; (3)存在点P ,使∠BAP=∠BCO-∠BAG ,理由:作GM ⊥AC 于点M ,作PN ⊥x 轴于点N ,如图2所示,∵点A (-4,0),点B (1,0),点C (0,-2),∴OA=4,OB=1,OC=2,∴tan ∠OAC=2142OC OA ==,tan ∠OCB=12OB OC =,5, ∴∠OAC=∠OCB ,∵∠BAP=∠BCO-∠BAG ,∠GAM=∠OAC-∠BAG ,∴∠BAP=∠GAM ,∵点G(0,-1),OA=4,∴OG=1,GC=1,∴,••22AC GM CG OA=142⨯,解得,,∴5 =,∴tan∠GAM=29GMAM=,∴tan∠PAN=29,设点P的坐标为(n,12n2+32n-2),∴AN=4+n,PN=12n2+32n-2,∴21322 2249n nn+-+=,解得,n1=139,n2=-4(舍去),当n=139时,12n2+32n-2=9881,∴点P的坐标为(139,9881),即存在点P(139,9881),使∠BAP=∠BCO-∠BAG.【点睛】本题是一道二次函数综合题,解答本题的关键是明确题意,作出合适的辅助线,找出所求问题需要的条件,利用三角形相似、锐角三角函数和二次函数的性质解答.10.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【答案】(1)2235333y x x =-+;(2)t>4;(3)∠BOC =60°,C (32,3) 【解析】 分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (1,3),点B (3,﹣3)求出相关角度.详解:(1)把点A (1,3),点B (3,﹣3)分别代入y=ax 2+bx 得3=393a b a b ⎧+⎪⎨-=+⎪⎩ ,解得2353a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=﹣22353x x + (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m . (3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE ,∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大.∵A(1B (3∴∠AOF=60°,∠BOF=30°,∴∠AOB=90°,∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(32 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.。