2014--2015年新华师大九年级数学上期末考试试卷
最新2014年九年级上学期(华东师大版)期末数学试卷及答案

2014年九年级数学上册期末考试卷 一.选择题(共8小题,每小题3分,共24分)) 1. 与3是同类二次根式的是( ). A .2 B .9 C .18 D .31 2.方程22x x =的解是( ) A 、x=0. B 、x=2 C 、x=0或x= 2 D 、x=3、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( ) A .13 B .14 C .16 D .112 4、在△ABC 中,∠C=90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则下列各式成立的是( ) A. b=a ·sinB B. a=b ·cosB C. a=b ·tanB D. b=a ·tanB 5、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(3,2)B .(-2,-3) C .(2,3)或(-2,-3) D .(3,2)或(-3,-2) 6.已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( ) A.当0k =时,方程无解 B.当1k =时,方程有一个实数解 C.当1k =-时,方程有两个相等的实数解 D.当0k ≠时,方程总有两个不相等的实数解 7.如图,菱形ABCD 错误!未找到引用源。
的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有( ) ①6cm DE =;②2cm BE =;③菱形面积为260cm ;④cm BD =. A.1个 B.2个 C.3个 D.48. 直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于( )A . 2:5B .14:25C .16:25D . 4:25…………………密……………封……………线……………内……………不……………准……………答……………题…………………… 班级____________姓名____________考 号_____(第23题图)二.填空题(共7小题,每小题3分,共21分)9.当x 时,322-x 在实数范围内有意义。
华师大版九年级上册数学期末考试试卷含答案详解

华师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=2.方程x2-3x=0的解是()A.0 B.3 C.0或3 D.1或33.如图,在△ABC中,AB=BC,∠B=120°,AB的垂直平分线交AC于点D.若AC=6cm,则AD=( )cm.A.3 B.4 C.5 D.24.如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于()A.512B.125C.513D.10135.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得三角形的周长可能是()A.5.5 B.5 C.4.5 D.46.如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,S△CDE=3cm2,则△BCF的面积为()A.6cm2B.9cm2C.18cm2D.27cm27.两个相似三角形,他们的周长分别是36和12.周长较大的三角形的最大边为15,周长较小的三角形的最小边为3,则周长较大的三角形的面积是()A.52 B.54 C.56 D.58.8.如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,则AB长为()A.2B.7C.5D.25二、填空题9x的取值范围是___.10.如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.11.一元二次方程2x+px-2=0的一个根为2,则p的值________.12.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是_____________.13.式子________ .14.各边长度都是整数、最大边长为11的三角形共有_____个.15.在Rt△ABC中,∠C=90°,cosA=13,则tanA=________16.将直线y=3x向上平移1个单位,可以得到直线________.17.(2016湖北省孝感市)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为_________.18.如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P 与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是_____.(1);(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=34;(4)OG•BD=AE2+CF2.三、解答题19.计算:()012tan60π-⨯--︒20.张老师担任初一(2)班班主任,她决定利用假期做一些家访,第一批选中8位同学,如果他们的住处在如图所示的直角坐标系中,A(-1,-2),B(0,5),C(-4,3),D(-2,5),E(-4,0),F(1,5),G(1,0),H(0,-1),请你在图中的直角坐标系中标出这些点,设张老师家在原点O,再请你为张老师设计一条家访路线.21.关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1、x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.22.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,月份的营业额达到633.6万元.求3月份到5月份营业额的平均月增长率.23.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.24.如图,矩形ABCD∽矩形ECDF,且AB=BE,求BC与AB的比值.25.在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同.甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号.将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数.若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由.26.如图,明亮同学在点A处测得大树顶端C的仰角为36°,斜坡AB的坡角为30°,沿在同一剖面的斜坡AB行走16米至坡顶B处,然后再沿水平方向行走6.4米至大树脚底点D 处,那么大树CD的高度约为多少米?)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,).27.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.参考答案1.D【详解】试题分析:A.当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B.当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C.当AP ABAB AC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D.无法得到△ABP∽△ACB,故此选项正确.故选D.考点:相似三角形的判定.2.C【分析】利用因式分解法解方程.【详解】x(x-3)=0,x=0或x-3=0,所以x1=0,x2=3.故选C.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.D【解析】【分析】连接BD,根据三角形的内角和定理和等腰三角形性质求出DC=2BD,根据线段垂直平分线的性质求出AD=BD,即可求出答案.【详解】连接BD.∵AB=BC,∠ABC=120°,∴∠A=∠C=12(180°-∠ABC)=30°,∴DC=2BD,∵AB的垂直平分线是DE,∴AD=BD,∴DC=2AD,∵AC=6,∴AD=13×6=2,故选D.【点睛】本题主要考查对等腰三角形的性质,含30度角的直角三角形,线段的垂直平分线,三角形的内角和定理等知识点的理解和掌握,能求出AD=BD和DC=2BD是解此题的关键.4.A【详解】试题解析:∵△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,∴AD⊥BC,CD=12BC=5,∴,∴tan∠CAD=CDAD=512.∵AD⊥BC,DE⊥AC,∴∠CDE+∠ADE=90°,∠CAD+∠ADE=90°,∴∠CDE=∠CAD,∴tan∠CDE=tan∠CAD=5 12.故选A.考点:解直角三角形.5.A【详解】试题分析:本题依据三角形三边关系,可求第三边大于2小于8,原三角形的周长大于10小于16,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于5而小于8,看哪个符合就可以了.解:设三角形的三边分别是a、b、c,令a=3,b=5,∴2<c<8,∴10<三角形的周长<16,∴5<中点三角形周长<8.故选A.考点:三角形中位线定理;三角形三边关系.6.D【解析】试题分析:根据平行四边形的性质得BC=AD,BC∥AD,CD∥AB,∠D=∠B,则BC=3DE,再证明△CDE∽△FBC,然后利用三角形相似的性质可计算出△BCF的面积.考点:(1)、相似三角形的判定与性质;(2)、平行四边形的性质.7.B【解析】【分析】根据已知先求得两相似三角形的相似比,然后根据相似比可求得较大的三角形的三边的长,根据其边长判定三角形为直角三角形,从而不难求得其面积.【详解】∵两相似三角形的周长分别是36和12∴相似比为3:1∵周长较大的三角形的最大边为15,周长较小的三角形的最小边为3∴周长较大的三角形的最小边为9,周长较小的三角形的最大边为5∴周长较大的三角形的第三条边为12∴两个三角形均为直角三角形∴周长较大的三角形的面积=12×9×12=54故选B.【点睛】此题主要考查学生对相似三角形的性质及三角形面积公式的运用能力.8.B【解析】【分析】先求出BD的长度,再求得∠ADB=30°.过A作AE⊥BD于E,在△AED中,求AE、ED 的长,可求BE,最后在Rt△ABE中,利用勾股定理求AB的长.【详解】过点A作AE⊥BD,垂足为E.∵BD⊥DC,∠C=60°,BC=6,∴∠1=30°,BD=BC•sin60°=∵AD∥BC,∴∠2=∠1=30°.∵AE⊥BD,AD=4,∴AE=2,DE=∴BE=BD−DE=∴AB故选B.【点睛】本题利用直角三角形30°角所对的直角边等于斜边的一半、平行线的性质和勾股定理求解,需要熟练掌握并灵活运用.9.x2≥【详解】x﹣2≥0,解得x≥2.故答案是x≥2.【点睛】考点:二次根式有意义的条件.10.4【解析】∵这三个正方形的边都互相平行,∴它们均相似,∴x6=69,解得:x=4.故答案为4.11.-1【详解】把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为﹣1.12.23;【详解】试题解析:列表得:所有等可能的情况有12种,其中之和为奇数的情况有8种,则82.123 P==故答案为:2 . 313.1<x≤3【解析】【分析】根据题意得x-1>0,3-x≥0,解不等式组即可.【详解】∵x-1>0,3-x≥0,∴x>1且x≤3,即1<x≤3.故答案为1<x≤3.【点睛】本题考查了二次根式的乘除法,被开方数要大于等于0,分母不能为0.14.36【解析】试题解析:设另外两边长为x,y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取值11时,x=1,2,3,…,11,可有11个三角形;当y取值10时,x=2,3,…,10,可有9个三角形;当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1,∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36.故答案是:36.15.【解析】【分析】根据锐角三角函数的概念,可以证明:同一个角的正弦和余弦的平方和等于1;同一个角的正切等于它的正弦除以它的余弦.【详解】因为在△ABC中,∠C=90°,cosA=13,所以所以tanA=313故答案为【点睛】解答此题要用到同角三角函数关系式,同角三角函数关系常用的是:sin2x+cos2x=1;sinAtanAcosA=.16.y=3x+1【解析】试题分析:图象的平移法则为:“左加右减,上加下减”,然后根据法则就可以得到答案. 考点:一次函数图象与几何变换.17.23.【解析】试题分析:小正方形EFGH面积是a2,则大正方形ABCD的面积是13a2,则小正方形EFGH边长是a ,则大正方形ABCD 的面积是a ,设AE=DH=x ,利用勾股定理求出x ,最后利用熟记函数即可解答.设小正方形EFGH 面积是a 2,则大正方形ABCD 的面积是13a 2, ∴小正方形EFGH 边长是a ,则大正方形ABCD 的面积是a ,∵图中的四个直角三角形是全等的, ∴AE=DH , 设AE=DH=x , 在Rt △AED 中,AD 2=AE 2+DE 2,即13a 2=x 2+(x+a )2 解得:x 1=2a ,x 2=﹣3a (舍去), ∴AE=2a ,DE=3a , ∴tan ∠ADE=考点:(1)勾股定理;(2)全等三角形的判定;(3)锐角三角函数的定义. 18.(1)(2)(4) 【解析】 【分析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;(2)由(1)易证得S 四边形OEBF =S △BOC =14S 正方形ABCD ,则可证得结论; (3)首先设AE=x ,则BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;(4)易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB=OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论. 【详解】∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°, ∴∠BOF+∠COF=90°, ∵∠EOF=90°, ∴∠BOF+∠COE=90°, ∴∠BOE=∠COF , 在△BOE 和△COF 中, BOE COF OB OCOBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOE ≌△COF (ASA ), ∴OE=OF ,BE=CF , ∴;故(1)正确;∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故(2)正确; 过点O 作OH ⊥BC , ∵BC=1, ∴OH=12BC=12,设AE=x ,则BE=CF=1-x ,BF=x , ∴S △BEF +S △COF =12BE•BF+12CF•OH=12x (1-x )+12(1-x )×12=-12(x-14)2+932,∵a=-12<0,∴当x=14时,S △BEF+S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=14;故(3)错误;∵∠EOG=∠BOE ,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE :OB=OG :OE , ∴OG•OB=OE 2,∵OB=12BD ,,∴OG•BD=EF 2,∵在△BEF 中,EF 2=BE 2+BF 2, ∴EF 2=AE 2+CF 2,∴OG•BD=AE 2+CF 2.故(4)正确,综上所述:(1)(2)(4)正确, 故答案为(1)(2)(4) 【点睛】本题考查四边形的综合题、正方形的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题,灵活运用所学知识,学会正确寻找全等三角形解决问题,学会构建二次函数解决最值问题是解题关键.19.【分析】按照实数的运算法则依次计算,注意:()0tan60π11︒=-=. 【详解】解:原式12=⨯2=【点睛】考查实数的混合运算,掌握二次根式,零次幂以及特殊角的三角函数值是解题的关键. 20.O→G→H→A→E→C→D→B→F 【解析】 【分析】先在平面直角坐标系中描出各点,然后顺次连接即可. 【详解】描出各点,如下图所示,设计家访路线时,以路程较短为原则,如:O→G→H→A→E→C→D→B→F【点睛】本题考查了在平面直角坐标系中描点,注意在描点时点的纵横坐标不要写反了. 21.(1)12k ≤;(2)3k =- 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围;(2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12;(2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.22.20% 【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设3月份到5月份营业额的平均增长率是x ,则四月份的营业额是400(1+10%)(1+x ),5月份的营业额是400(1+10%)(1+x )2,据此即可列方程求解.要注意根据实际意义进行值的取舍. 【详解】设月份至月份的营业额的平均月增长率为. 依题意,得: 2400(110%)(1)633.6x ++=. 整理得: 2(1) 1.44x +=.解得: 120.2, 2.2x x ==-(不合题意,舍去). 答:月份至月份的营业额的平均月增长率为20%. 【点睛】可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键. 23.该建筑物的高度为:(tan ?tan tan tan m n αββα+-)米.【解析】试题分析:首先由题意可得,,CE CEBE AE tan tan ,βα== 由AE −BE =AB =m 米,可得CE CEm tan tan αβ-=,继而可求得CE 的长,又由测角仪的高度是n 米,即可求得该建筑物的高度.试题解析:由题意得:,CE CEBE AE tan tan ,βα== ∵AE −BE =AB =m 米, CE CEm tan tan αβ∴-= (米), mtan tan CE tan tan αββα⋅∴=- (米),∵DE =n 米, mtan tan CD n tan tan αββα⋅∴=+- (米).∴该建筑物的高度为:mtan tan n tan tan αββα⋅+-米24【解析】 【分析】根据相似多边形的性质列出比例式,得到一元二次方程,解方程即可. 【详解】∵矩形ABCD ∽矩形ECDF , ∴BC CDCD EC =,即BC CD CD BC AB=- ∴BC 2﹣BC•AB ﹣CD 2=0,解得,CD , ∵BC 、CD 是正数,∴BC AB =【点睛】本题考查的是相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键. 25.这个游戏不公平,理由见解析. 【分析】用列表法或树状图法求出两位数的个数和两位数能被4整除的个数,从而求出甲胜和乙胜的概率,比较两概率是否相等,得出结论.【详解】根据题意列出表格如下:共有9种可能.22,23,24,32,33,34,42,43,44 能被4整除有:24,32,44,∴P(甲胜)=3193,P(乙胜)=23.∵P(甲胜)≠P(乙胜),∴这个游戏不公平.26.大树CD的高度约为6.6米.【解析】【分析】作BF⊥AE于F,则FE=BD=6.4米,DE=BF,设BF=x米,则米,在Rt△ABF 中,由勾股定理得出方程,解方程求出DE=BF=8米,AF≈13.6米,得出AE的长度,在Rt△ACE 中,由三角函数求出CE,即可得出结果.【详解】作BF⊥AE于F,如图所示:则FE=BD=6.4米,DE=BF,∵斜坡AB的坡角为30°,∴,设BF=x米,则米,在Rt△ABF中,由勾股定理得:x2+)2=162,解得:x=8,∴DE=BF=8米,AF≈13.6米,∴AE=AF+FE=20米,在Rt△ACE中,CE=AE•tan36°≈20×0.73=14.6米,∴CD=CE﹣DE=14.6﹣8=6.6米.故大树CD的高度约为6.6米.【点睛】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.27.【详解】试题分析:方法一:作BF⊥DE于点F,CG⊥DE于点G,∴∠F=∠CGE=90°.又∵∠BEF=∠CEG,BE=CE,∴△BFE≌△CGE.∴BF=CG.在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,∴△ABF≌△DCG.∴AB=CD.方法二:作CF∥AB,交DE的延长线于点F,∴∠F=∠BAE.又∵∠ABE=∠D,∴∠F=∠D.∴CF=CD.∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,∴△ABE≌△FCE.∴AB=CF.∴AB=CD.方法三:延长DE至点F,使EF=DE,又∵BE=CE,∠BEF=∠CED,∴△BEF≌△CED.∴BF=CD,∠D=∠F.又∵∠BAE=∠D,∴∠BAE=∠F.∴AB=BF.∴AB=CD.考点:1.全等三角形的判定与性质;2.阅读理解.。
华师大版九年级数学上册期末考试试卷(附带答案)

华师大版九年级数学上册期末考试试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________ 一、选择题(本题共10小题,每小题4分,共40分)1.下列根式中,与20是同类二次根式的是()A.15B.45C.35 D.182.关于x的一元二次方程x2=1的根是()A.x=1 B.x1=1,x2=-1C.x=-1 D.x1=x2=13.用配方法解方程x2+4x-1=0时,配方结果正确的是()A.(x+4)2=5 B.(x+2)2=5 C.(x+4)2=3 D.(x+2)2=34.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有2个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯5.某班一同学在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又各自教会了同样多的同学,这样全班共有36名同学会做这个实验.若设1名同学每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36 B.1+x+(1+x)x=36C.1+x+x2=36 D.x+(x+1)2=3663的整数部分为x,小数部分为y,则3x-y的值是()A.3 3-3 B.3C.1D.37.定义运算:a*b=2ab, 若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a的值为()A.m B.2-2m C.2m-2 D.-2m-28.如图,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cos α=35,AB=4,则AC的长为( ) A .3B.165C.203D.163(第8题)(第9题) 9.如图,在菱形ABCD 中,∠ABC =60°,连结AC 、BD ,则ACBD =( )A.12B.22C.32D.3310.如图,正方形ABCD 的边AB =3,对角线AC 和BD 交于点O ,P 是边CD 上靠近点D 的三等分点,连结P A 、PB ,分别交BD 、AC 于点M 、N ,连结MN .有下列结论:①OM =MD ;②S △OMA S △ONB=52;③MN =35820;④S △MDP =38,其中正确的是( )(第10题)A .①②③B .①②④C .②③④D .①②③④二、填空题(本题共6小题,每小题4分,共24分) 11.计算:12+27=________.12.一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出1个球是红球的概率为________.13.若关于x 的方程x 2+(k -3)x -k 2=0的两根互为相反数,则k =________.14.如图,添加一个条件:__________________________,使△ADE ∽△ABC .(写一个即可)(第14题)(第15题)15.如图,在三角形纸片ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,BF =4,CF =6.将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为________.16.如图,菱形ABCD的顶点A在函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且过B、D两点.若AB=2,∠BAD=30°,则k=________.(第16题)三、解答题(本题共9小题,共86分)17.(8分)计算:(-3)2-2sin 45°+||2-1.18.(8分)解方程:2x2-7x-4=0.19.(8分)如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧按21放大,画出△OAB的一个位似图形△OA1B1;(2)画出将△OAB向左平移2个单位长度,再向上平移1个单位长度后得到的△O2A2B2;(3)△OA1B1与△O2A2B2是位似图形吗?若是,请在图中标出位似中心点M,并写出点M的坐标.(第19题)20.(8分)如图,将Rt△AOB绕直角顶点O按顺时针方向旋转,得到△A′OB′,使点A的对应点A′落在边AB上,过点B′作B′C∥AB,交AO的延长线于点C.(第20题)(1)求证:∠BA′O=∠C;(2)若OB=2OA,求tan∠OB′C的值.21.(8分)如图,已知▱ABCD,点F在AB的延长线上,CF⊥AB.(1)尺规作图:在边BC上找一点E,使得△DCE∽△CBF(保留作图痕迹,不写作法,不必证明)(2)在(1)的条件下,若E为BC的中点,AD=8,BF=3,求AB的长.(第21题)22.(10分)定义:如果关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根互为相反数,那么称这样的方程是“对称方程”.例如:一元二次方程x2-4=0的两个根是x1=2,x2=-2,2和-2互为相反数,则方程x2-4=0是“对称方程”.(1)通过计算,判断下列方程是否是“对称方程”:①x2+x-2=0;②x2-12=0.(2)已知关于x的一元二次方程x2-(k2-4)x-3k=0 (k是常数)是“对称方程”,求k的值.23.(10分)如图,在等腰三角形ADC中,AD=AC,B是DC上的一点,连结AB,且有AB=DB.(1)若∠BAC=90°,AC=3,求CD的长;(第23题)(2)若ABCD=13,求证:∠BAC=90°.24.(12分)在如今智能手机的功能中,都可以利用手势密码进行锁屏和解锁.其中最常见的就是利用3×3的正方形点阵设置密码,我们将其称为“9点码”.通常,在设置“9点码”时,只能连结相邻的两点(如图,不妨将9个点依次对应数字1到9,例如图中路线Ⅰ,Ⅱ是可行的,路线Ⅲ,Ⅳ是不可行的),不能走重复的路线,从而形成相应的密码线段,线段越多,密码越复杂.已知小明设置的“9点码”从右上角的点“3”出发,且用了3个数字.(1)已知横向和纵向的相邻两点距离为1,且以小明设置的“9点码”所经过的点为顶点的三角形恰好是等腰三角形,则该等腰三角形的面积所有可能的值为________;(2)用概率知识并结合树状图回答:若小明设置的“9点码”用了3个数字,对于一个不知道该密码的人(已知出发点和用了3个数字),通过画树状图,求其一次尝试能将小明手机解锁的概率.(第24题)25.(14分)如图,在正方形ABCD中,AB=4,P、Q分别是边AD、AC上的动点.(1)填空:AC=________;(2)若AP=3PD,且点A关于PQ的对称点A′落在边CD上,求tan∠A′QC的值;(3)设AP=a,直线PQ交直线BC于点T,求△APQ与△CTQ面积之和S的最小值.(用含a的代数式表示)(第25题)参考答案一、1.B 2.B 3.B 4.B 5.B 6.C7.D8.C9.D10.D二、11.5 312.3 813.314.∠ADE=∠B(答案不唯一) 15.5 316.6+2 3三、17.解:原式=3-2×22+2-1=2.18.解:原方程可化为(x -4)(2x +1)=0 ∴x -4=0或2x +1=0 ∴x 1=4,x 2=-12.19.解:(1)如图,△OA 1B 1为所作.(2)如图,△O 2A 2B 2为所作.(3)△OA 1B 1与△O 2A 2B 2是位似图形.如图,点M 为所求,其坐标为(-4,2).(第19题)20.(1)证明:如图,∵B ′C ∥AB ,∴∠A +∠C =180°.由旋转,得OA ′=OA ,∴∠1=∠A .∵∠1+∠BA ′O =180°,∴∠A +∠BA ′O =180° ∴∠BA ′O =∠C .(第20题)(2)解:如图,由旋转,得OB ′=OB ∠A ′OB ′=∠AOB =90°,∴∠2+∠3=90°. ∵∠3+∠4=90°,∴∠2=∠4. 由(1)得,∠BA ′O =∠C∴△A ′OB ≌△COB ′,∴∠B =∠OB ′C . 在Rt △AOB 中,OB =2OA∴tan B=OAOB=12.∴tan∠OB′C=tan B=1 2.21.解:(1)如图,点E即为所求.(第21题)(2)∵四边形ABCD是平行四边形,AD=8∴BC=AD=8,AB=CD.∵E为BC的中点,∴CE=BE=12BC=4.∵△DCE∽△CBF,∴CEBF=DCBC∴43=DC8,∴DC=323,∴AB=DC=323.22.解:(1)①x2+x-2=0,即(x+2)(x-1)=0∴x1=-2,x2=1.∵-2和1不互为相反数,∴不是“对称方程”.②由题意,得x=±12=±2 3即x1=2 3,x2=-2 3.∵2 3与-2 3互为相反数,∴是“对称方程”.(2)设x1,x2为原方程的解,∵该方程为“对称方程”∴x1+x2=k2-4=0,即k2=4,解得k=±2.当k=-2时,方程为x2+6=0,无解,不符合题意.当k=2时,方程为x2-6=0,符合题意.∴k的值为2.23.(1)解:∵AD=AC,AB=DB∴∠C=∠D,∠D=∠DAB,∴∠C=∠D=∠DAB.∵∠BAC=90°,∠C+∠D+∠DAC=∠C+∠D+∠DAB+∠BAC=180°,∴∠C+∠D+∠DAB=90°∴∠C=∠D=∠DAB=30°.在△ABC中,∠BAC=90°,∠C=30°∴AB=AC·tan 30°=3×33=1∴BC=2AB=2,BD=AB=1 ∴CD=BD+BC=1+2=3.(2)证明:∵ABCD=13,AB=DB∴BC=2AB,DC=3AB.∵∠DAB=∠C,∠D=∠D∴△DAB∽△DCA,∴ABAC=ADCD.∵AD=AC,∴AC2=3AB2.∵BC=2AB,∴BC2=4AB2.∴AB2+AC2=BC2,∴∠BAC=90°.24.解:(1)12或1(2)如图.(第24题)由树状图可得,所有等可能的结果有15种,而符合条件的结果只有1种,所以一次尝试能将小明手机解锁的概率为1 15.25.解:(1)4 2(2)∵在正方形ABCD中,AB=4,AC为对角线∴AD=AB=4,∠DAC=∠DCA=45°,∠ADC=90°.∵点A关于PQ的对称点A′落在CD边上∴△APQ和△A′PQ关于PQ对称∴AP=A′P,∠P AQ=∠P A′Q=45°.∵∠DA′Q=∠DCA+∠A′QC=∠P A′Q+∠P A′D∴∠A′QC=∠P A′D.∵AP=3PD,AD=4,∴A′P=AP=3,PD=1第 11 页 共 11 页 ∴A ′D =A ′P 2-PD 2=2 2∴tan ∠A ′QC =tan ∠P A ′D =PD A ′D =12 2=24. (3)如图,过点Q 作直线MN ⊥AD 于点M ,交BC 于点N ,则MN ⊥BC .(第25题)∵AP ∥CT ,∴△APQ ∽△CTQ ,∴AP CT =QM QN .设QM =h ,则QN =4-h ,∴a CT =h 4-h解得CT =a (4-h )h∴S =12ah +12·a (4-h )h ·(4-h )=12ah +a (4-h )22h整理得ah 2-(4a +S )h +8a =0.∵方程有实数根∴[-(4a +S )]2-4a ·8a ≥0,即(4a +S )2≥32a 2.又∵4a +S >0,a >0,∴4a +S ≥4 2a∴S ≥(4 2-4)a .当S =(4 2-4)a 时,由方程可得h 1=h 2=2 2,满足题意.故当h =2 2时,△APQ 与△CTQ 面积之和S 最小,最小值为(4 2-4)a .。
2014--2015年新华师大九年级数学上期末考试试卷

1一、选择题:(每小题3分,共30分)1、要使式子有意义,则x的取值范围是()A.x>0 B.x≥-2 C.x≥2 D.x≤22、下列的配方运算中,不正确的是()A.x2+8x+9=0化为(x+4)2=25 B.2t2﹣7t﹣4=0化为C.x2﹣2x﹣99=0化为(x﹣1)2=100 D.3x2﹣4x﹣2=0化为3、关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A.±1B.±2C.-1D.-24、若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:15、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为().D.7、如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,m mA.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖D.抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛很多很多次,那么平均每2次就有1次出现朝正面的数为奇数9、抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A.大于21B.等于21C.小于21D.不能确定10、如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.1p B.2pC.3p D.4p二、填空题:(每小题3分,共18分)11.化简:=32;0,0)x y>> = .12、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.13、已知线段a、b、c满足b是a,c的比例中项,且b=3,则ac=.14、如图,为估计池塘两岸边A,B两点间的距离,在池塘的一侧选取点O,分别去OA、OB的中点M,N,测的MN=32 m,则A,B两点间的距离是_____________m.15、在Rt△ABC中,∠C=90°,sinA=,则tanB=16、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东40°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.三、解答题:(共72分)17、(6分)计算:(1)((2)2333+⨯)))18、(6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.19、(6分)解方程:2x33x x3-=-()()2014-2015九年级数学上学期末阶段性检测(满分:120分;考试时间:90分钟)220、(8分)如图,已知△ABC 中,点D 在AC 上且∠ABD=∠C , 求证:2AB =AD •AC .21、(8分)如图,ABC 中,ADBC ,垂足是D ,若BC =14,AD =12,3tan 4BAD ∠=,求sin C 的值。
2014-2015新华师大版九年级数学上册期末试卷(含答案解析)

新华师大版九年级数学上册期末试卷(含答案解析)一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)1.若反比例函数y=﹣的图象经过点A(2,m),则m的值是()D.A.﹣2 B.2C.﹣2.在Rt△ABC轴,∠C=90°,a=4,b=3,则cosA的值是()A.B.C.D.3.如图,由几个小正方体组成的立体图形的左视图是()4.一个口袋轴装有3个红球,4个绿球,2个黄球,每个球除颜色外其它都相同,搅匀后随机地从中摸出一个球不是红球的概率是()A.B.C.D.5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.200元B.240元C.250元D.300元6.如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.10 B.11 C.12 D.137.下列命题中,不正确的是()A.对角线相等的平行四边形是矩形B.有一个角为60°的等腰三角形是等边三角形C.直角三角形斜边上的高等于斜边的一半D.正方形的两条对角线相等且互相垂直平分8.)将二次函数y=x2﹣2x﹣3化成y=(x﹣h)2+k形式,则h+k结果为()A.﹣5 B.5C.3D.﹣39.在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三条角平分线的交点C.三边中垂线的交点D.三边上高的交点10.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.B A=BC B.A C、BD互相平分C.A C=BD D.A B∥CD11.如图,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高,已知小颖的身高为1.5米,那么路灯A 的高度AB为()A.3米B.4.5米C.6米D.8米12.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A.a c<0 B.2a+b=0C.4a+2b+c>0 D.对于任意x均有ax2+bx≥a+b二、填空题(每小题3分,满分12分)13.一元二次方程x2=3x的解是:_________.14.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们座上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为_________.15.定义运算“@”的运算法则为:x@y=,则(2@6)@8=_________.16.(3分)反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x 轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)17.(5分)计算:.18.(8分)解下列一元二次方程.(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2).19.(6分)如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为30°,向塔前进20米到达D.在D处测得A的仰角为45°,则塔高是多少米?20.(8分)我县实施新课程改革后,学生的自主学习、合作交流能力有很大提高,胡老师为了了解班级学生自主学习、合作交流的具体情况,对某班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,胡老师一共调查了_________名同学,其中女生共有_________名;(2)将上面的条形统计图补充完整;(3)为了共同进步,胡老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(6分)现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.22.(9分)如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.23.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C 为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.参考答案一、选择题(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,12小题,每小题3分,共36分)1.C2.A3.A4.D5.B6.B7.C8.D9.C10.B11.B12.C二、填空题(每小题3分,满分12分)13.x1=0,x2=3.14.5000只.15、.16.12.三、解答题(第17题5分,第18、20题,每题8分,第19、21题每题6分,第22题9分,第23题10分,共52分)17.解:原式=3﹣+﹣1=2.18.解:(1)这里a=1,b=﹣5,c=1,∵△=25﹣4=21,∴x=;(2)方程变形得:3(x﹣2)2﹣x(x﹣2)=0,分解因式得:(x﹣2)(3x﹣6﹣x)=0,解得:x1=2,x2=3.19.解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=20,∴BC=x+20.∴x+20=x∴x==10(+1).即铁塔AB的高为10(+1)米.20.解:(1)调查学生数为3÷15%=20(人),“D”类别学生数为20×(1﹣25%﹣15%﹣50%)=2(人),其中男生为2﹣1=1(人),调查女生数为20﹣1﹣4﹣3﹣1=11(人),故答案为:20,11;(2)补充条形统计图如图所示;(3)根据胡老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:利用图表可知所选两位同学恰好是一位男同学和一位女同学的概率为.21.解:设剪去的小正方形的边长为xcm,根据题意得:(20﹣2x)(10﹣2x)=56,整理得:(x﹣3)(x﹣12)=0,解得:x=3或x=12,经检验x=12不合题意,舍去,∴x=3,则剪去小正方形的边长为3cm.22.(1)证明:∵Rt△OAB中,D为OB的中点,∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BO•cos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.23.解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(3分)(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∴OE=EC=∴y=;(6分)∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去)∴P点的坐标为(,)(8分)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),易得,直线BC的解析式为y=x﹣3则Q点的坐标为(x,x﹣3);S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==(10分)当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.(12分)。
2014-2015学年初三上数学(华师大版)综合题

2014-2015学年初三上数学(华师大版)综合题一、选择题1.下列计算正确的是(A )2·3= 6 (B) 2+3= 6 (C) 8=3 2 (D) 4÷2=22、若α、β方程2220050x x +-=的两个实数根,则23ααβ++的值为 。
3.已知△ABC 的三边长为2、10、2,△A 1B 1C 1的两边长为1和5,若△ABC ∽△A 1B 1C 1,则△A 1B 1C 1的的第三边为( )。
A 、3B 、3C 、2D 、24、一元二次方程220x ax a --=的两根之和是43a -,则两根之积为( )。
A .2B .-2C .-6或2D .-6或-25、已知5tan 3A =,则锐角A ( ) A 、0°〈A 〈30°B 、30°〈A 〈45°C 、45°〈A 〈60°D 、60°〈A 〈90°6.已知抛物线1x y 2-=向上平移3个单位,所得抛物线的解析式为( )。
A 、3x y 2+=B 、4x y 2-=C 、2x y 2+=D 、1)2x (y 2-+=7.已知:如图1,△ABC 中,P 为AB 上一点,在下列四个条件中:①∠ACP =∠B ;②∠APC =∠ACB ;③AC 2=AP ·AB ;④AB ·CP=AP ·CB ,能满足△APC 和△ACB 相似的条件是( )A .①②④B .①③④C .②③④D .①②③二、填空题8、在Rt △ABC 中,∠C=90°,则b= 。
9、 a 、b 、c 是△ABC 的三边,a 、b 、c 满足()()()224b c a c a =+-且5a-3c=0,则sinA+sinB+sinC=10、已知1sin cos 8αα=且00045α<<,则sin cos αα-= 。
11.关于x 的方程01x 3x )1a (2=-++是一元二次方程,则a 。
华师大九年级上册数学期末试卷
华师大九年级上册数学期末试卷
(1)线段MP的长为________(用含t的代数式表示).
(2)当点M与点C重合时,求t的值.
PQM
(3)设与?ABC重叠部分图形的面积为S(S?0),求S与t之间的函数关系式.
PQM
(4)取线段PM的中点H,作直线BH,当直线BH将分成的两部分图形的面积比为1:3
时,直接写出此时t的值.
415152153
2
2
tt?0?t?S?t?t?5S?t?5
【答案】(1);(2);(3)当时,;当时,??;(
377378
27
4)t的值为或3
25
2
G
在平面直角坐标系中,函数y??x?2mx?2m(x?2)的图象记为.
24.
1
G
(1)图象过定点________.
1
G
2x1m
()若图象的最高点到轴的距离为,求此时的值.
1
GGGG
x?2
(3)将图象沿直线翻折,翻折后的图象记为2,和2合称为图象G.
11
①当m?0时,在如图的平面直角坐标系中画出图象G.
A(m?1,?1)B(m?1,?1)
②点、,当图象G和线段AB有且只有两个公共点时,直接写出m的取值
范围.
543
0?m?m?
【答案】(1)(1,-1);(2)或1或;(3)①见解析;②且m?1或或m?2
1?2
232。
2015年元月华师大版九年级数学期末试题.(含答案)
2014-2015学年度上期九年级期末数学试题一、选择题(每题3分,共30分) 1、已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( ) A 1:2 B 1:4 C 2:1 D 4:12、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A .23(1)2y x =-- B .23(1)2y x =+- C .23(1)2y x =++ D .23(1)2y x =-+3、已知二次函数y =ax 2+bx +c 的对称轴为x =2,且经过点(3,0),则a +b +c 的值为( ) A .0 B .1 C .-1 D .24、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是( ) (A )3<k (B )03≠<k k 且 (C )3≤k (D )03≠≤k k 且5、如右图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD=4,DB=2,则AE ︰AC 的值为( ) (A )0.5 (B )2 (C )32 (D )23 6、已知:如下图,(42)E -,,(11)F --,,以O 为位似中心,按比例尺1:2,把EFO △缩小,则点E 的对应点E '的坐标为( )A (21)-,或(21)-, B (84)-,或(84)-, C (21)-, D (84)-, 7、如下图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )使所得的三角形与△ABC 相似,则满足条件的直线最多有( )条 A 、1 B 、2 C 、3 D 、49、如下图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),6题图 第7题图 第9题图 第10题图E DCBA10、如上图,在△ABC 中∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,连接PM ,PN ,则下列结论:①PM=PN ;②;③△PMN 为等边三角形;④当∠ABC=45°时,BN=PC .(5)S △AMN :S △ABC=1:4其中正确的个数是( )二、填空题(每题3分,共30分)11、用1m 长的标杆直立在水平地面上,它在阳光下的影长为0.8m ,此时,若某电视塔的影长为100m ,则此电视塔的高度应是12、两个相似多边形的一组对应边分别为3cm 和4.5cm ,如果它们的面积之和为130cm 2,那么较小的多边形的面积是 cm 2.13、抛物线223y x x =--+与x 轴交点为 .14、抛物线()42)2(22-++-=m x x m y 的图象经过原点,则=m .15、二次函数2y x bx c =++的图象如下图1所示,则对称轴是 ,当函数值0y <时,对应x 的取值范围是 . 16、 二次函数y =x 2+4x -5的顶点为A ,与X 轴的两个交点为B, C,则S △ABC=_____. 17、二次函数Y=x ²-bx+8 的顶点在x 轴上,则b 的值为________.第2第19题图 第20题图18、△ABC 的三边长之比是3:4:5,与其相似的△DEF 的周长为18,则S △DEF = 19、如上图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,角∠ACB 的平分线CE 交AD 于E ,点F 是AB 的中点,则S △AEF :S 四边形BDE F 为_________________. 20、如上图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为___________. 三、(解答题,共60分) 21、(本题8分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为多少米?FE DCBA22、(本题10分)如图,已知抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于点A(-2,0)和点B ,与y 轴相交于点C ,顶点D(1,-4).(1)求抛物线对应的函数关系式;(2)求四边形ACDB 的面积;23、(本题10分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x (元/件)与每天销售量y (件)之间满足如图所示的关系: (1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?24、(本题10分)如图16,△ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)△AEF 与△ABE 相似吗?说说你的理由.(2)BD 2=AD ·DF 吗?请说明理由.元/件)25、(本题10分)如下图,已知矩形ABCD 的边长4cm 8cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问: (1)经过多少时间,AMN △的面积等于矩形ABCD 面积的18? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △相似?若存在,求t 的值;若不存在,请说明理由.26、(本题12分)如图,已知:直线y=-x+3交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)已知点M (0,2),在抛物线的对称轴上,是否存在一点G,使△MCG 的周长最小,若存在,请求出点G 的坐标。
华师大版九年级上册数学期末测试卷及含答案(配有卷)
华师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列二次根式中,最简二次根式是()A. B. C. D.2、如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为,且sin =,则该圆锥的侧面积是()A. B.24π C.16π D.12π3、下列方程中,是一元二次方程的是()A. B. C. D.4、等腰三角形的三边长分别为3x-2,4x-3,6-2x,则该三角形的周长为( )A.6B.6或9或8.5C.9或8.5D.与x的取值有关5、如图,正方形中,点F是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点H,连接.以下四个结论:①;②;③;④.其中正确的个数为()A.1个B.2个C.3个D.4个6、下列事件中,不可能事件是( )A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°7、下列长度的木棒可以组成三角形的是()A.1,2,3B.3,4,5C.2,3,6D.2,2,48、若关于x的一元二次方程的两根之和为3,两根之积为2,则这个方程是()A.x 2+3x﹣2=0B.x 2﹣3x+2=0C.x 2﹣2x+3=0D.x2+3x+2=09、将点,先向右平移4个单位,再向下平移4个单位,则平移后得到点为()A. B. C. D.10、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.11、如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3 ,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是()A. B. C. D.12、若一元二次方程9x2﹣12x﹣39996=0的两根为a,b,且a<b,则a+3b的值为()A.136B.268C.D.13、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.14、如图,在中,,,于点D.则与的周长之比为()A.1:2B.1:3C.1:4D.1:515、如图,DE是△ABC的中位线,点F在DE上,且∠AFC=90°.若AC=10,BC=16,则DF的长为A.5B.3C.8D.10二、填空题(共10题,共计30分)16、如图,在△ABC中,DE∥BC , AD=1,AB=3,DE=2,则BC=________。
2014-2015学年华师大版九年级数学上期末检测题及答案解析
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.已知3y , 则2xy 的值为( ) A.15- B.15 C.152- D.1522.一个正偶数的算术平方根是那么与这个正偶数相邻的下一个正偶数的算术平方根是( )A. B. C. D.3.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55 C.33 D.23 4.(2013·山东潍坊中考)已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( ) A.当0k =时,方程无解B.当1k =时,方程有一个实数解C.当1k =-时,方程有两个相等的实数解D.当0k ≠时,方程总有两个不相等的实数解5.从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张卡片中,任意抽取一张,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .236.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )7.(2013·湖北孝感中考)如图,在△ABC 中,AB AC a ==, BC b =(a b >).在△ABC 内依次作∠CBD =∠A ,∠DCE = ∠CBD ,∠EDF =∠DCE ,则EF 等于( ) A.32b a B.32a b C.43b a D.43a b8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是( )A.24B.18C.16D.69.(2013•山东潍坊中考)一渔船在海岛A 南偏东20︒方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80︒方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10︒方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A./时B.30海里/时C./时D./时10.如图,在△中,∠的垂直平分线交AB 于点D ,交的延长线于点,则的长为( )A.B.C.D.11.周末,身高都为1.6 m 的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出A,B 两点的距离为30 m.假设她们的眼睛离头顶都为,则可计算出塔高约为(结果精确到,参考数据:2,3)( ) A.36.21 m B.37.71 m C.40.98 mD.42.48 m12.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin5A =,则下列结论正确的有( )①6cm DE =;②2cm BE=;③菱形面积为260cm ;④410cm BD =.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共18分)13.(2013·陕西中考)一元二次方程230x x -=的根是 . 14.(2013·江西中考)若一个一元二次方程的两个根分别是Rt ABC △的两条直角边长,且3ABC S =△,请写出一个符合题意的一元二次方程 .15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.16.若k x y z x z y z y x =+=+=+,则k = .17. 如图,在Rt △中,斜边上的高,,则________.18.如图,小明在时测得某树的影长为3米, 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_______米.第18题图A 时B 时第12题图 ADE AD BC第10题图三、解答题(共78分)19.(8分)已知0045x=,其中a是实数,将式子20.(8分)计算下列各题:(1)222sin45sin35sin55︒︒+︒;(2()03tan30π4-︒+-+121-⎪⎭⎫⎝⎛-.21.(10分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2010年为10万只,预计2012年将达到14.4万只.求该地区2010年到2012年高效节能灯年销售量的平均增长率.22.(10分)已知线段OA OB⊥,C为OB的中点,D为AO上一点,连接,AC BD交于P点.(1)如图①,当OA OB=且D为AO中点时,求APPC的值;(2)如图②,当OA OB=,ADAO=14时,求tan∠BPC.23.(10分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动.如图,他们在河东岸边的点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进200米到点C处,测得B在点C的南偏西60︒的方向上,他们测得东江的宽度是多少米?(结果保留整数,参考数据: )24.(10分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一条直线上),测得由点B看大树顶端C的第22题图②ODAPB C①ODAPB C仰角恰好为45°;..(3)量出A,B两点间的距离为45 m请你根据以上数据求出大树CD的高度.(结果保留3个有效数字)25.(10分)(2014·北京中考)阅读下面材料:小腾遇到这样一个问题:如下图①,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC第25题图小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如上图②).请回答:∠ACE的度数为____,AC的长为____.参考小腾思考问题的方法,解决问题:如下图③,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于第25题图26.(12分) 把一副扑克牌中的三张黑桃牌(它们正面的数字分别为3,4,5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用画树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.期末检测题参考答案1.A 解析:由题意,知250x -≥,520x -≥,所以52x =,3y =-,所以215xy =-. 2.C 解析:一个正偶数的算术平方根是,则这个正偶数是与这个正偶数相邻的下一个正偶数是,算术平方根是.3.A 解析:4.C 解析:本题主要考查了一元二次方程根的判别式的应用.当0k =时,原方程变为一元一次方程10x -=,该方程的解是1x =,故A 项错误;当1k =时,原方程变为一元二次方程210x -=,方程有两个不相等的实数解:121,1x x ==-,故B 项错误;当0k ≠时,原方程为一元二次方程,2224(1)4(1)0b ac k k k ∆=-=-+=+≥,方程总有两个实数解,当且仅当1k =-时,方程有两个相等的实数解,故C 项正确,D 项错误.5.B 解析:绝对值小于的卡片有1-,0,1,共3张,故所求概率为3193=. 6.B 解析:方法1:∵()22287484278a ,b ,c ,b ac ==-==-=--⨯⨯=∆,∴,∴∴ 这个直角三角形的斜边长是3,故选B.方法2:设1x 和2x 是方程22870x x -+=的两个根,由一元二次方程根与系数的关系可得:⎪⎩⎪⎨⎧==+,,2742121x x x x ∴ 22221212127()24292x x x x x x +=+-=-⨯=,∴ 这个直角三角形的斜边长是3,故选B.7.C8.C 解析:∵ 摸到红色球、黑色球的频率稳定在和,∴ 摸到白色球的频率为,故口袋中白色球的个数可能是.9.D 解析:如图,过点C 作CD AB ⊥于点D .设AC x =海里. 在△ACD 中,∠90ADC =︒,∠102030CAD =︒+︒=︒,AC x =海里,∴ C D =12AC =12x 海里,AD =3CD =3x 海里.在△BCD 中,∠90BDC =︒,∠802060CBD =︒-︒=︒,∴ BD =3CD =3x 海里. ∵ AD BD AB +=,∴33x 20=,解得103x =∴救援船航行的速度为2010330360=/时). 10. B 解析:在△中,∠由勾股定理得因为所以.又因为所以第9题答图△∽△所以,所以所以 11.D 解析:如图, m ,m ,∠90︒,∠45︒,∠30︒.设m ,在Rt△中,tan∠=DGDF ,即tan 30︒=3=xDF,∴3x .在Rt△中,∵ ∠90°,∠45°,∴ m .根据题意,得,解得31-.∴(m).12.C 解析:由菱形ABCD 的周长为40cm ,知10cm AB BC CD AD ====.因为3sin 5A =,所以6cm DE =.再由勾股定理可得8cm AE =,所以2cm BE =,所以菱形的面积()()2222210660cm 62210cm S AB DE ,BD BE DE =⋅=⨯==+=+= .13.0x =或3x =2560x x -+=(答案不唯一)15.45解析:在圆、等腰三角形、矩形、菱形、正方形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45.16. 12-或 解析: 当时,()22=++=+=+=+z y x x y x z z y ;当时,所以()1-=++-=+=zy z y z y x k . 17. 解析:在Rt △中,∵ ,∴ sin ,.在Rt △中,∵ ,sin ,∴.在Rt △中,∵,∴.18.6 解析:如图,因为,90,90CFD DFE DCF DFC +=︒+=︒∠∠∠∠,所以, 所以△∽△,所以,所以所以19.解:原式=22+2(1)242x x x ++=+.∵5x ,∴ 200820 -≥a 且10040- ≥a , 解得1004 a =, ∴ 5x =, ∴. 20.解:(1)222sin 45sin 35sin 55 ︒+︒+︒=2221)sin 35cos 35+︒+︒112+=.(2)12︒-30tan 3+()0π4-+121-⎪⎭⎫ ⎝⎛-2133332-+⨯-=13-=.21.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简,得解这个方程,得∴.∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴. 答:该地区年到年高效节能灯年销售量的平均增长率为 22.解:(1)过点C 作CE ∥OA 交BD 于点E ,则△BCE ∽△BOD .又C 为OB 的中点,所以BC OC =,所以1122CE OD AD ==.再由CE ∥OA 得△ECP ∽△DAP ,所以2==CEAD PC AP . (2)过点C 作CE ∥OA 交BD 于点E ,设AD x =,则4OA OB x ==,3OD x =.由△BCE ∽△BOD ,得1322CE OD x ==.再由△ECP ∽△DAP ,得32==CE AD PE PD . 由勾股定理可知5BD x =,52DE x =,则32=-PD DE PD ,可得PD x AD ==, 则∠BPC =∠DPA =∠A ,所以tan ∠BPC =tan ∠A =21=AO CO . 23.解:在Rt △中,∠BAC =90°,,A 时B 时第18题答图CDEF∵ACAB,∴ (米). 故测得东江的宽度约为346米.24.解:∵ ∠90°, ∠45°,∴∵ ,∴ 设树高CD 为m x ,则 m ,()45m AD x .=+. ∵ ∠35°,∴ tan ∠tan 35°5.4+x x. 整理,得 4.5tan 351tan 35⨯=-x ≈10.5.故大树的高度约为10.525.解:∠ACE 的度数为75°,AC 的长为3.∵ ∠BAC =90°,∴ AB ∥DF ,∴ △ABE ∽△FDE .∴ 2.AB AE BE DF EF ED===∴ EF =1,AB =2DF .∵ 在△ACD 中,∠CAD =30°,∠ADC =75°,∴ ∠ACD =75°,∴ AC =AD .∵ DF ⊥AC ,∴ ∠AFD =90°. 在△AFD 中,AF =2+1=3,∴ DF =AF tan 30°2AD DF == AC AB ==∴BC ∴26. 解:游戏规则不公平.理由如下: 5 故P (牌面数字相同)3193==, P (牌面数字不同)3296==. ∵ 31<32,∴ 此游戏规则不公平,小李赢的可能性大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、选择题:(每小题3分,共30分)
1、要使式子有意义,则x的取值范围是()
A.x>0 B.x≥-2 C.x≥2 D.x≤2
2、下列的配方运算中,不正确的是()
A.x2+8x+9=0化为(x+4)2=25 B.2t2﹣7t﹣4=0化为
C.x2﹣2x﹣99=0化为(x﹣1)2=100 D.3x2﹣4x﹣2=0化为
3、关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()
A.±1
B.±2
C.-1
D.-2
4、若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()
A.1:2 B.2:1 C.1:4 D.4:1
5、如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,
EF∥AB.若AD=2BD,则的值为()
.D.
7、如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,
m m
A.“明天降雨的概率是80%”表示明天有80%的时间降雨
B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正
面朝上
C.“彩票中奖的概率是1%”表示买100张彩票一定会中奖
D.抛一枚正方体骰子朝正面的数为奇数的概率是0.5“表示如果这个骰子抛
很多很多次,那么平均每2次就有1次出现朝正面的数为奇数
9、抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()
A.大于
2
1
B.等于
2
1
C.小于
2
1
D.不能确定
10、如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()
A.
1
p B.
2
p
C.
3
p D.
4
p
二、填空题:(每小题3分,共18分)
11.化简:=
3
2
;0,0)
x y
>> = .
12、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=.
13、已知线段a、b、c满足b是a,c的比例中项,且b=3,则ac=.
14、如图,为估计池塘两岸边A,B两点间的距离,在池塘的一侧选取点O,分别去OA、OB的
中点M,N,测的MN=32 m,则A,B两点间的距离是_____________m.
15、在Rt△ABC中,∠C=90°,sinA=,则tanB=
16、如图,一渔船由西往东航行,在A点测得海岛C位于北偏东40°的方向,前进20
海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离
CD等于海里.
三、解答题:(共72分)
17、(6分)计算:(1)((2)2
333
+⨯
)))
18、(6分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).
(1)将△ABC向上平移3个单位得到△A
1
B
1
C
1
,请画出△A
1
B
1
C
1
;
(2)请画一个格点△A
2
B
2
C
2
,使△A
2
B
2
C
2
∽△ABC,且相似比不为1.
19、(6分)解方程:2x33x x3
-=-
()()
2014-2015九年级数学上学期末阶段性检测
(满分:120分;考试时间:90分钟)
2
20、(8分)如图,已知△ABC 中,点D 在AC 上且∠ABD=∠C , 求证:2
AB =AD •AC .
21、(8分)如图,ABC 中,ADBC ,垂足是D ,若BC =14,AD =12,3
tan 4
BAD ∠=,求sin C 的值。
22、(8分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A 俯角为30°方向的F 点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B 点,此时测得点F 在点B 俯角为45°的方向上,请你计算当飞机飞临F 点的正上方点C 时(点A 、B 、C 在同一直线上),竖直高度CF 约为多少米?(结果保留整数,参考数值:≈1.7)
23、(8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁
的概率.
24、(10分)如图,根据图中数据完成填空,再按要求答题:
sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .
(1)观察上述等式,猜想:在Rt △ABC 中,∠C =90°,都有sin 2A +sin 2B = .
(2)如图④,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角函数的定义和勾股定理,证明你的猜想.
25、(12分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B (1)求证:△ADF ∽△DEC ;
(2)若AB=8,AD=6,
AF=4,求AE 的长.
D C B
A。