PFC电感及匝数计算
(整理)PFC电感计算.

PFC 电感计算通常Boost 功率电路的PFC 有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
连续模式的基本关系: 1. 确定输出电压U o输入电网电压一般都有一定的变化范围(U in ±Δ%),为了输入电流很好地跟踪输入电压,Boost 级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。
例如,输入电压220V ,50Hz 交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V 。
输出电压可以选择390~410V 。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时ηmin max i o i U P I =(1)其中:o o o I U P =;)%100(min ∆-=in i U U -最低输入电压;η-Boost 级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率1.5kW ,功率管为MOSFET ,开关频率70~100kHz 。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost 变换器输出U o 与输入U in 关系为)1/(D U U i o -=,所以 oi m i mo p U U U D 2m a x -=(2)从上式可见,如果U o 选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD 加大。
5. 求需要的电感量为保证电流连续,Boost 电感应当大于IfD U L p i ∆=maxmin 2 (3)其中:max 22i I k I =∆,k =0.15~0.2。
PFC电感计算

(12)
根据式(11)和(12)可以得到开关周期(频率)与不同电压比的关系。
例如,假定导通时间为10μs,1.414Uimin/Uo=0.65,如果输入电压在±20%范围变化,最低输入电压为220×0.8,输出电压为Uo=1.414×220×0.8/0.65=383V。周期为10/0.35=28.57μs,频率为35kHz。在15°时,周期为12μs,相当于开关频率为83kHz。在最高输入电压时,由式(12)得到最高电压导通时间Tonh=(0.8/1.2)2×TonL=4.444μs,在峰值时的开关周期为T=Tonh/(1-1.414×1.2×220/383)=176μs,相当于开关频率为5.66kHz。
如果我们。输出电压提高到410V,最低输入电压时开关周期为25.45μs,开关频率为39.3kHz。15°时为11.864μs,开关周期为84.5kHz。输入最高电压峰值时,周期为49.2μs,开关频率为20.3kHz。频率变化范围大为减少。即使在输入电压过零处,截止时间趋近零,开关频率约为100kHz。最高频率约为最低频率只有5倍。而在383V输出电压时,却为18倍。
(16)
其中:N-电感线圈匝数;Ae-磁芯有效截面积;Bm<Bs(100)-最大磁通密度,为减少损耗,选择饱和磁感应的70%。
整个窗口铜的截面积
或(17)
将式(17)代入(16),整理得到
(18)
用AP法选择磁芯尺寸。
6.计算线圈匝数
7.线圈导线截面积
例:输入220V±20%,输出功率200W,采用临界连续。假定效率为0.95.
(3)
其中:,k=0.15~0.2。
详解PFC电感的计算

详解PFC电感的计算时间:2011-10-11 来源:作者:关键字:PFC详解电感计算中心议题:Boost功率电路的PFC连续工作模式的基本关系临界连续Boost电感设计通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。
连续模式的基本关系1. 确定输出电压Uo输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。
例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V。
输出电压可以选择390~410V。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率1.5kW,功率管为MOSFET,开关频率70~100kHz。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost变换器输出Uo与输入Uin关系为,所以从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。
5. 求需要的电感量为保证电流连续,Boost电感应当大于其中:,k=0.15~0.2。
6. 利用AP法选择磁芯尺寸根据电磁感应定律,磁芯有效截面积如果电感是线性的,有因为Boost电感直流分量很大,磁芯损耗小于铜损耗,饱和磁通密度限制最大值。
PFC电感计算

PFC电感计算PFC 电感计算通常Boost 功率电路的PFC 有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
连续模式的基本关系: 1. 确定输出电压U o输入电网电压一般都有一定的变化范围(U in ±Δ%),为了输入电流很好地跟踪输入电压,Boost 级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。
例如,输入电压220V ,50Hz 交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V 。
输出电压可以选择390~410V 。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时ηmin max i o i U P I =(1)其中:oo oI U P =;)%100(min∆-=in i U U-最低输入电压;η-Boost 级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率1.5kW ,功率管为MOSFET ,开关频率70~100kHz 。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost 变换器输出U o 与输入U in 关系为)1/(D U Ui o-=,所以oimimo p U U U D 2max -=(2)从上式可见,如果U o 选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD 加大。
5. 求需要的电感量为保证电流连续,Boost 电感应当大于 IfD U L p i ∆=maxmin 2(3) 其中:max22i I kI =∆,k =0.15~0.2。
详解PFC电感的计算

详解PFC电感的计算时间:2011-10-11 来源:作者:关键字:PFC详解电感计算中心议题:Boost功率电路的PFC连续工作模式的基本关系临界连续Boost电感设计通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。
连续模式的基本关系1. 确定输出电压Uo输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的1.05~1.1倍。
例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220×1.2×1.414=373.45V。
输出电压可以选择390~410V。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率1.5kW,功率管为MOSFET,开关频率70~100kHz。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost变换器输出Uo与输入Uin关系为,所以从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。
5. 求需要的电感量为保证电流连续,Boost电感应当大于其中:,k=0.15~0.2。
6. 利用AP法选择磁芯尺寸根据电磁感应定律,磁芯有效截面积如果电感是线性的,有因为Boost电感直流分量很大,磁芯损耗小于铜损耗,饱和磁通密度限制最大值。
详解PFC电感的计算

详解PFC电感的计算时间:2011-10-11 来源:作者:关键字:PFC详解电感计算中心议题:Boost功率电路的PFC连续工作模式的基本关系临界连续Boost电感设计通常Boost功率电路的PFC有三种工作模式:连续、临界连续和断续模式。
控制方式是输入电流跟踪输入电压。
连续模式有峰值电流控制,平均电流控制和滞环控制等。
本文介绍Boost功率电路的PFC连续工作模式的基本关系及临界连续Boost电感设计。
连续模式的基本关系1. 确定输出电压Uo输入电网电压一般都有一定的变化范围(Uin±Δ%),为了输入电流很好地跟踪输入电压,Boost级的输出电压应当高于输入最高电压的峰值,但因为功率耐压由输出电压决定,输出电压一般是输入最高峰值电压的~倍。
例如,输入电压220V,50Hz交流电,变化范围是额定值的20%(Δ=20),最高峰值电压是220××=。
输出电压可以选择390~410V。
2. 决定最大输入电流电感应当在最大电流时避免饱和。
最大交流输入电流发生在输入电压最低,同时输出功率最大时其中:Uimin -最低输入电压;η-Boost级效率,通常在95%以上。
3. 决定工作频率由功率器件,效率和功率等级等因素决定。
例如输出功率,功率管为MOSFET,开关频率70~100kHz。
4. 决定最低输入电压峰值时最大占空度因为连续模式Boost变换器输出Uo与输入Uin关系为,所以从上式可见,如果Uo选取较低,在最高输入电压峰值时对应的占空度非常小,由于功率开关的开关时间限制(否则降低开关频率),可能输入电流不能跟踪输入电压,造成输入电流的THD加大。
5. 求需要的电感量为保证电流连续,Boost电感应当大于其中:,k=~。
6. 利用AP法选择磁芯尺寸根据电磁感应定律,磁芯有效截面积如果电感是线性的,有因为Boost电感直流分量很大,磁芯损耗小于铜损耗,饱和磁通密度限制最大值。
PFC电感及匝数计算

PFC电感及匝数计算PFC(Power Factor Correction)电感是一种用于改善电路功率因数的电感元件。
功率因数是指电路中有用功率与总功率之间的比值,用来描述电路对电源的有效利用程度。
在实际应用中,为了更好地利用电能并减少能源浪费,需要通过PFC电感来改善电路的功率因数。
首先,需要计算所需的电感值。
电感的单位是亨利(H),可以通过下式计算得出:L=(V×(1-PF))/(2×π×f×I)其中,L为所需的电感值,V为电路的工作电压,PF为所需的功率因数,f为电路的工作频率,I为电路的额定电流。
接下来,需要计算所需的匝数。
匝数是衡量电感元件的绕组数量,对电感值和电路的特性有很大的影响。
匝数的计算可以通过下面的公式完成:N=√(L×R/μ0)其中,N为所需的匝数,L为所需的电感值,R为电感线圈的半径,μ0为真空磁导率(约等于4π×10^-7H/m)。
然后,根据计算结果选择合适的电感元件。
电感元件的参数主要包括电感值、匝数、额定电流和最大电流等。
根据实际应用的需求,可以选择合适的电感元件。
最后,需要进行实验验证。
将选择好的电感元件连接到电路中,观察电路的功率因数是否得到改善。
可以使用电能表等仪器来测量电路的功率因数,分析实验结果是否符合设计要求。
需要注意的是,PFC电感的设计和计算需要考虑到电路的具体要求和应用环境。
不同的应用场景可能需要不同的电感参数,因此需要根据实际情况进行调整和优化。
在PFC电感的设计和计算过程中,还需要考虑到电感的损耗、温升和安全性等因素。
如果电感工作在高电流、高频率或高温环境下,需要选择适合的材料和结构来确保电感的稳定性和可靠性。
总之,PFC电感的设计和计算是一个复杂而重要的工作,需要考虑多个因素并进行实验验证。
通过合理选择电感参数,可以改善电路的功率因数,提高能源利用效率,减少能源浪费,从而实现节能和环保的目标。
如何简单、快速的计算PFC电感的方法

如何简单、快速的计算PFC\抗饱和滤波储能电感电感的方法电感值要求、工作频率等就可以选择磁芯材质、先了解此磁性材料的 Bs值、μ、AL值,磁芯材质的工作频率等选择尺寸和相关要求根据如下公式既可以快速简单的计算B==H*μ、 H=0.40*π*N*I/Le μ=L*Le*/0.4*π* N²*Ae假设:工作电流 6.5A 、70KHz、电感值 L0 要求:1.0mH注意:实际PFC电感值的大小必须经过电路的实际检测。
电感值的大小决定了效率的高低。
通过计算公式L=N*N*AL 绕线112圈,理论值电感 1.016mH通过计算公式 H=0.40*π*N*I/Le H=9098A/m2通过B==H*μ B = 60*9098*0.001 = 540mT (合理)通过计算公式L=N*N*AL 绕线128圈,理论值电感 0.999mH通过计算公式 H=0.40*π*N*I/Le H=12560A/m2通过B==H*μ B = 60*12560*0.001 = 760mT (B值偏大设计比较冒险)以上数据截面积、磁路长、与磁导率μ、 B值、 H 的关系式参考所选的磁芯的磁导率,查对磁芯的工作频率根据此公式 1T奥斯特 =79.56A/m 计算,查找对应的磁导率与奥斯特的交叉点铁硅铝157060H=9098A/m2=100奥斯特,100奥斯特磁场强度下对应的磁导率估计为 48μ,电感值衰减后估计为 815uH (选材完全合理)铁硅铝130060H=12560A/m2=158奥斯特,158奥斯特磁场强度下对应的磁导率估计为 30μ,电感值衰减后估计为 520uH (选材不理想温升会高)实际应用前,请叠加DC电流测试电感值的衰减。
看曲线图表只是初步快速的选择方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 升压电感的设计
升压电感的值决定转换器开关频率的大小,它主要由最小开关频率和输出功率决定。
设开关管在一个周期里的导通时间为on t ,关断时间为off t ,则:
VAC I L V I L t Lpk
inpk Lpk on ⋅⋅=⋅⋅⋅=2)sin()
sin(θθ (2.32)
)sin(2)
sin(θθ⋅⋅-⋅⋅=VAC V I L t out Lpk off (2.33)
式中,θ为交流输入电压的瞬时相位。
由式(2.33)可知,在交流输入电压的一个周期内,开关管的导通时间与电压的瞬时相位无关。
由on t 和off t ,可得开关周期: [])sin(22)
sin(22)sin(2)sin(2122θθθθ⋅⋅-⋅⋅⋅⋅=⋅⋅-⋅⋅⋅⋅=⎥⎦
⎤⎢⎣⎡⋅⋅-+⋅⋅⋅=+=VAC V VAC P V L VAC V VAC V I L VAC V VAC I L t t T out in out out out Lpk out Lpk off on s (2.34) 故变换器的开关频率为: []
in
out out sw sw P V L VAC V VAC T f ⋅⋅⋅⋅⋅-⋅==2)sin(212θ (2.35) 所以,当1)sin(=θ时,开关频率最小;当0)sin(=θ时,开关频率最大。
故升压电感大小为: []
in
out sw out P V f VAC V VAC L ⋅⋅⋅⋅-⋅=min 222 (2.36) 由式(2.35)可知,最小开关频率出现在交流输入电压最大或最小时,分别计算它们对应的电感值:
uH H VAC L 35.336400
220300002)2652400(265)(2max =⨯⨯⨯⨯-⨯= (2.37) uH H VAC L 89.382400220300002)852400(85)(2min =⨯⨯⨯⨯-⨯= (2.38) 比较两个值,取uH L 310=。
当Vac V in 85=时,由式(2.36)可得kHz kHz f sw 207.33min >=,从而可以避免音频噪声。
根据近似的面积乘积(AP )法来估算升压电感磁芯尺寸的大小,其中面积
乘积经验公式为:
3
441max max )10(-⨯⋅⋅⋅⋅=⋅=w FL p w e k J B I I L A A AP 4cm (2.39) 式中,e A 为磁芯有效截面积;w A 为磁芯窗口截面积;FL I 为满载电流有效值;p I 为最大峰值电流;max B 为磁芯的饱和磁感应强度;m ax J 为最大电流密度;w K 1为线圈窗口利用率,即总的铜面积与窗口面积w A 之比。
高频开关电源变压器中的铁氧体应该具有以下特性:高饱和磁通密度,在工作频率范围内较低的磁芯损耗,较低的温度系数和较高的居里温度。
PQ 磁芯具有优化的体积与线圈面积和表面面积的比率,可以最小化的磁芯尺寸和线圈面积得到最大的电感。
综合考虑电路的工作频率和磁芯的性价比,选用PC40材质的PQ3230磁芯,磁芯有效截面积200.161mm A e =,线圈窗口面积260.149mm A w =。
由安培环路定律,得
00L H H HL NI +==δδ (2.40)
式中,δH 为气隙磁场强度;δ为气隙长度;0H 为磁芯磁场强度;0L 为磁芯磁路长度。
由于空气磁导率远小于磁芯磁导率,所以式(2.40)可近似为:
δμδδ⋅=⋅≈⋅=⋅0max
B H L H I N (2.41)
电感的计算公式为:
δ
μe A N L ⋅⋅=02 (2.42) 从式(2.42)中解出δ代入式(2.41)可得电感线圈的匝数:
m ax B A I L N e pk
⋅⋅= (2.43)
计算得69.49=N ,取50匝。
(2) 辅助绕组设计
在L6562为控制器的PFC 方案中,辅助绕组主要有两个作用:一是提供零电流检测信号,二是给L6562芯片供电。
L6562零电流检测电路的门限电压为
2.1V ,且当交流输入瞬时电压最高时,辅助绕组输出电压最低,故: 匝2.48.374400501.21.2(max)=-⨯=-⋅>V
V V V V N V N inpk O p
aux (2.44) 式中,p N 为升压电感的原边匝数,(m ax)inpk V 为最大交流输入电压(265V AC )的峰值电压。
从上式计算可得,匝2.4≥aux N ,实际取6=aux N 。
(3) 功率开关管的选择
功率开关管的选取主要考虑开关管自身的源漏极导通电阻)(on DS R ,因为)(on DS R 决定功率开关管导通损耗的大小。
对于工作在临界导通模式的L6562,开关损耗发生在功率开关管关断的时刻。
针对PFC 应用,开关管的耐压由输出电压和过压允许值决定,其承受的最大电压在其关断时刻出现,约为额定直流输出电压值。
确定开关管耐压规格时,应留出20%的电压裕量,所以本设计中开关管源漏极承受电压:
V V V out DSS 4804001.22.1=⨯=⋅≥
(2.40)
流过开关管的最大平均电流:
out in Lpk Qrms V V I I ⋅⋅-⋅=π92461(min)(max)
(2.41)
式中,(m in)in V 为交流输入电压的最小值。
由式(2.21)可知,A I Lpk 03.8=,并且V V in 85(min)=,V V out 400=;代入式(2.41)求得:A I Qrms 83.2=。
根据以上计算,选用IR 公司的IRF840,其导通电阻Ω=85.0)(on DS R ,源漏极耐压V V DS 500=,额定电流A I D 8=,符合要求。