经济数学基础作业问题详解

合集下载

经济数学基础及参考答案

经济数学基础及参考答案

作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。

《经济数学基础12》作业讲解

《经济数学基础12》作业讲解

《经济数学基础 12》作业讲解 篇一:《经济数学基础 12》作业 经济数学基础 形 成 性 考 核 册 专业:工商管理 学号: 1513001400168 姓名:王浩 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订) 作业一 (一)填空题 1.limx?0x?sinx?___________________.答案:0 x ?x2?1,x?02.设 f(x)??,在 x?0 处连续,则 k?________.答案:1 ?k,x?0? 3.曲线 y?x+1 在(1,2)的切线方程是答案:y?11x? 22 __.答案:2x 4.设函数 f(x?1)?x2?2x?5,则 f?(x)?__________ 5.设 f(x)?xsinx,则 f??()?__________.答案:?π 2π 2 (二)单项选择题 1. 当 x???时,下列变量为无穷小量的是( )答案:D x2 A.ln(1?x)B.x?1 C.e?1 xD.sinxx 2. 下列极限计算正确的是 () 答案: B A.limx?0xx?1B.lim?x?0xx?1 C.limxsinx?01sinx?1D.lim?1 x??xx 3. 设 y?lg2x,则 dy?().答案:B A.11ln101dxB.dxC.dxD.dx 2xxln10xx 4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B A.函数 f (x)在点 x0 处有定义 B.limf(x)?A,但 A?f(x0) x?x0 C.函数 f (x)在点 x0 处连续 D.函数 f (x)在点 x0 处可微 5.若 f()?x,f?(x)?(). 答案:B A. 1x1111??B.C. D. xxx2x2 (三)解答题 1.计算极限 1 / 22x2?3x?21x2?5x?61?? (2)lim2? (1)limx?1x?2x?6x?822x2?1 2x2?3x?51?x?11? (3)lim??(4)lim2x??x?0x23x?2x?43 sin3x3x2?4? (6)lim(5)lim?4 x?0sin5xx?25sin(x?2) 1?xsin?b,x?0?x?2.设函数 f(x)??a,x?0, ?sinxx?0?x? 问:(1)当 a,b 为何值时,f(x)在 x?0 处有极限存在? (2)当 a,b 为何值时,f(x)在 x?0 处连续. 答案:(1)当 b?1,a 任意时,f(x)在 x?0 处有极限存在; (2)当 a?b?1 时,f(x)在 x?0 处连续。

经济数学基础作业4解答

经济数学基础作业4解答

经济数学基础作业 4 解答一、填空题1、函数f (x)4x1的定义域为ln( x1)4 x0x4x4解:∵ ln( x1)0, x11, x2x 10x1x1∴函数 f (x)4x1的定义域为: (1,2)(2,4]ln( x1)2、函数y 3( x1) 2的驻点是,极值点是,它是极值点解: y6(x1), y6,令 y6( x1)0 ,得x1所以函数的驻点是 x 1 ,极值点是(1,0)因为 y60 ,所以它是极小值点p3、设某商品的需求函数为q( p)10e2,则需求弹性 E p解: E ppq ( p)pq( p)10eppp( 5e 2 )22x1x204、若线性方程组x2有非 0 解,则x10答:111165、设线性方程组 AX b ,且A0132,则 t时,方程00t 10组有唯一解答:当 t 1 0,即 t1时,方程组有唯一解二、单项选择题1、以下函数在指定区间( , ) 上单调增加的是()A、 sin xB、e xC、x2D、 3 x解: sin x 、x2不是单调函数, 3 x 是减函数,所以应选B2、设 f ( x)1,则 f ( f ( x))()A、1xB、12C、x D、x2 x x解: f ( f ( x))11x ,所以应选C f ( x)1x3、以下积分计算正确的选项是()A、1( x2x3)dx 0 1 e x e xB、1dx 012C、1x sin xdx01e x e xD、dx 112解:因为e x e x 1 e x e xdx0 ,应选D 2是奇函数,所以124、设线性方程组A m n Xb 有无量多解的充分必要条件是()A、r ( A) r ( A) mB、r (A)nC、m nD、r ( A) r ( A) n 答:应选 Dx1x2a15、设线性方程组x2x3a2,则方程组有解的充分必要条件是()x12x2x3a3A、a1a2a30B、a1a2a30C、a1a2a30D、a1a2a301 1 0 a1 1 1 0a1 1 1 0a1解: 0 1 1 a20 1 1a20 1 1a21 2 1 a30 1 1 a3a10 0 0 a3 a1a2若方程组有解,则 a3a1a20 ,即 a1a2a30 ,应选C三、解答题1、求解以下可分别变量的微分方程:(1)y e xy解:由 y e x y ,得dy e x e y,从而dye x dx ,两边积分得:dx e y e y dy e x dx ,e y e x c(2)xdy xe 2dx 3y解: 3y 2 dy xe x dx ,两边积分得:3 y 2dyxe x dx , y 3 xe x e x c2、求解以下一阶线性微分方程:(1) y2 y x 2x2, Q(x)解:这是一阶线性微分方程, P( x)x 2xyeP( x )dxQ ( x) e P (x) dxdx c)(( 2(2) dx) dx2x2 ln x22 ln xex( edx c) (e dx c)xe xe 2 ln x ( x 2 x 2 dx c) x 2 ( x c)(2) y yx sin 2x2x1, Q( x) 解:这是一阶线性微分方程, P( x)2x sin 2xx yeP( x )dxQ ( x) e P (x) dxdx c)(( 1( 1) dx()dxe ln x ( 2x sin 2xe ln x dx c)e x2xsin 2xexdx c)x( 2x sin 2x 1dx c) x( sin 2xd 2x c)x( cos2x c)x3、求解以下微分方程的初值问题:(1) y e 2 x y , y(0)解:dye 2 xydydx e y , e∵ y(0) 0 ,∴ c(2) xy y e x0 ,e 2 x dx ,两边积分得: e y 1 e 2 x c21,从而所求解为e y1 e2 x 1 22 2y(1) 0解: y1 y 1e x,这是一阶线性微分方程, P( x)1, Q(x) 1 e xxxxxP( x) dxP ( x) dx1 dxx 1dxx ee xy e( Q( x)e dx c) e( dx c)xe ln x (x ee ln x dxc)1 (x exdxc)xxx1( e x dx c)1 (e x c)xx∵ y(1)0 ,∴ ce ,从而所求解为y1 ( e x)xe4、求解以下线性方程组的一般解:x 1 2x 3x 4 0(1)x 1 x 2 3x 3 2x 4 02x 1 x 25x 3 3x 4 010 2 1 1 0 2 1 1 0 2 1 解:1 1 32 0 1 1 1 0 1 1 1 21 531110 0所以得方程组的一般解为x 1 2 x 3 x 4(其中 x 3 , x 4 为自由未知量)x 2x 3 x 42x 1 x 2 x 3 x 4 1 (2) x 12x 2 x 3 4x 42x 1 7x 2 4x 311x 4 5211 1 1 12 1 4 2 解: 12 1 4253 7 317411 55 37311 6 41 2 1 4 25 5 50 1 3 7 313 7 35 5 55 5 50 00 0 0所以得方程组的一般解为:x 11x 36x 4 4555x 23 x 3 7 x4 35 5 5x1x25x34x425、当2x1x23x3x41为何值时,线性方程组2x22x33x4有解,并求一般解3x137x15x29x310x41154211542解:21311011393 32233011393 7591002261814 108510113930000000008当80 ,8时线性方程组有解,其一般解为:x18x35x41(其中 x3, x4为自由未知量)x213x39x43x1x2x316、a, b 为何值时,方程组x1x22x3 2 有唯一解、无量多解或无解x13x2ax3b11111111解: 1122021113a b04 a 1b11111111101110111 22220 4 a 1 b 10 a 3 b 310、当 a30 ,即 a 3 时方程组有唯一解;20、当 a3 b 30 ,即 a 3 , b 3 时方程组有无量多解;30、当a30 , b30 ,即 a 3, b 3 时方程组无解。

经济数学基础第五次作业参考解答

经济数学基础第五次作业参考解答

经济数学基础第五次作业 第一编 习题31.求下列函数的单调区间: (2))1ln()(2++=x x x f ;解:该函数的定义域为),(+∞-∞,11)1(11])1[ln()(2222+='++++='++='x x x x x x x x f因为在),(+∞-∞内,0)(>'x f ,所以该函数的单调增加区间为),(+∞-∞。

(3)x x x f -=3223)(解:该函数的定义域为),(+∞-∞,33331321111)23()(xxxx x xx f -=-=-=-='-当)0,(-∞∈x 及)1,0(∈x 时,0)(>'x f , 当),1(+∞∈x 时,0)(<'x f ,该函数的单调增区间为当)1,(-∞,单调减区间为),1(+∞。

2.求下列函数的极值: (1)23)5()(-=x x x f ; 解:该函数的定义域为),(+∞-∞,)5)(3(5])5([)(223--='-='x x x x x x f令0)(='x f ,解得驻点为5,3,0===x x x ,函数的定义域被驻点分为),5(),5,3(),3,0(),0,(+∞-∞几部分,由上表可知,函数在3=x 时取得极大值,其值为=)3(f函数在5=x 时取得极大值,其值为=)5(f(3)31)1(23)(+-=x x f 解:该函数的定义域为),(+∞-∞,3231)1(32])1(23[)(-+-='+-='x x x f当1=x 时)(x f '无意义,即1=x 为函数的不可导点, 函数的定义域被它分为),1(),1,(+∞-∞两部分,由上表可知,该函数无极值。

3.求下列函数在指定区间的最大值与最小值: (2)x x x f 54)(2-=,]0,[-∞∈x解:22542)54()(xx xx x f +='-='令0)(='x f ,解得驻点为3-=x ,函数的定义域被驻点划分为)0,3(),3,(---∞两部分, 在)3,(--∞内0)(<'x f ,函数为减函数, 在)0,3(-内0)(>'x f ,函数为增函数,所以3-=x 为该函数的极小值点,由于3-=x 是函数定义域内的唯一驻点,所以3-=x 也是该函数的最小值点,函数的最小值为27)3(=-f 。

经济数学基础四次作业参考答案

经济数学基础四次作业参考答案

《经济数学基础》四次作业参考答案 作业一参考答案一、填空题 1、0;2、1;3、x-2y+1=0;4、2x+2;5、-π/2 二、单项选择题 DBBBB 三、解答题 1. 计算极限 (1) 解:原式=lim1→x )1+)(1-()2-)(1-(x x x x =-21(2) 解:原式=lim2→x )4-)(2-()3-)(2-(x x x x =21(3) 解:原式=lim→x 1+-11-x =-21 (4) 解:原式=lim ∞→x 22x 4+x 2+3x 5+x 3-1=31 (5) 解:原式=lim→x 5x sin5x *53x sin3x *3=53 (6) 解:原式=lim2→x )2-sin()2+)(2-(x x x =42、解:(1)∵lim-0→x f(x)=lim-0→x (xsinx1+b)=blim+0→x f(x)=lim+0→x xxsin =1 ∴要使f(x)在x=0处极限存在,必须b=1,a 可取任何实数。

(2)要使f(x)在x=0处连续,必须lim 0→x f(x)=f(0)=a∴a=b=1.3、解:(1)y '=2x+2xln2+2ln 1x (2) y '=2d)+(b)+c(ax -d)+(cx cx a =2d)+(cx bc-ad(3)y '=-23(3x-5)23-(4) y '=x21-e x -x e x(5)dy=(asinbx+bcosbx) eaxdx(6) dy=(-21xe x 1+23x)dx(7) dy=(-x21sinx +2xe 2-x )dx(8) y '=nsin 1-n xcosx+ncosnx(9) y '=2x+1+1x (1+2x+122x )=2x+11(10) y '=xx x1sin 22ln 221cot+xx x21-6164、解:(1)2xdx+2ydy-ydx-xdy+3dx=0,dy=dx y y x-23-2x -(2)cos(x+y)(1+ y ')+e xy(y+x y ')=4, y '=xyxyxe +y)+cos(ye -y)+cos(x -4x5、解:(1)y '=2x + 12x ,y ,,=222)x +1(2x -2 (2) y '=-xx 2x1+, y ,,=24x3+xx , y ,,(1)=1作业二参考答案一、填空题 1.2xln2+2;2.sinx+c;3.-21F(1-x 2)+c;4.0;5. 2x+11二、单项选择题DCCDB三、解答题1.计算下列不定积分解:(1)原式=∫(e 3)xdx=1-3ln )3(xe +c(2) 原式=∫(x 21-+2x 21+x 23)dx=2x 21+34x 23+52x 25+c(3) 原式=∫(x-2)dx=21x 2-2x+c (4) 原式=-21∫x 2-11d(1-2x)= -21ln ∣1-2x ∣+c (5) 原式=21∫(2+ x 2)21d(2+ x 2)=31(2+ x 2)23+c(6)原式=2∫sin x d x =-2cos x +c(7) 原式=-2∫xdcos21x=-2xcos 21x+2∫cos 21xdx=-2xcos 21x+4sin 21x+c (8) 原式=xln(x+1)-∫1xx +dx= xln(x+1)-x+ln(x+1)+c2.(1) 原式=11(1)x --⎰dx+21(1)x -⎰dx=(x-21x 2)∣11-+(21x 2- x) ∣21=52(2) 原式=-121xe ⎰d(x1)=-121x e =-12e e + (3) 原式=3121(1ln )(1ln )e x d x -++⎰=31212(1ln )e x +=2(4) 原式=550550'500500(550)(500)()(100.02)25L L L L x dx x dx ∆=-==-=-⎰⎰=201sin 22x x π∣-201sin 22xdx π⎰=-21 (5) 原式=211ln 2e xdx ⎰=21111ln 22e ex x xdx ∣-⎰=221124e x ε1-∣=21(1)4e + (6) 原式=4400x dx xe dx -+⎰⎰=4-4400x x xe e dx --∣+⎰=5-54e -作业三参考答案一、填空题1、3;2、-72;3、A 与B 可交换;4、1()I B A --;5,100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦二、单项选择题CADAB三、解答题1.计算(1)原式=12 35-⎡⎤⎢⎥⎣⎦(2)原式=0000⎡⎤⎢⎥⎣⎦(3)原式=[]02.原式=5152 1110 3614⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦3.解:∣113121111A-⎡⎤⎡⎤∣=-⎢⎥⎢⎥--⎣⎦⎣⎦=4-2=2,12231111⎡⎤⎡⎤∣B∣=-⎢⎥⎢⎥⎣⎦⎣⎦=-1+1=0∴AB B∣∣=∣A∣∙∣∣=04.解:对矩阵A施行初等行变换A=124014090 21021021 110110110λλλλ-+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⇒-⇒-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦当-λ+9=0,即λ=9时,第一行变为0,r(A)=2 5.解:对矩阵A施行初等行变换A=2532125321 1742017420 1742000000 21484000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥⇒⎢⎥⎢⎥-⎢⎥⎢⎥---⎣⎦⎣⎦∴r(A)=26.(1)解:[]132100100113 301010 (010237)111001001349A I-⎡⎤⎡⎤⎢⎥⎢⎥∙=-⇒⇒⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦∴1113 237 349A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2)解:[]1363100100130 421010 (010271)211001001012A I----⎡⎤⎡⎤⎢⎥⎢⎥∙=---⇒⇒--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦∴1130 271 012A--⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦7. 解:∵[]12101052......35010131A I -⎡⎤⎡⎤∙=⇒⇒⎢⎥⎢⎥-⎣⎦⎣⎦∴15231A --⎡⎤=⎢⎥-⎣⎦∴X=1125210233111BA --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦四、证明题1、 证:由题意知 1122,B A AB B A AB ==∴12121212()()B B A B A B A AB AB A B B +=+=+=+121212121212()()()()()()B B A B B A B AB B A B AB B A B B =====2、 证:(1)∵()()T T T T T T A A A A A A +=+=+ ∴TA A +是对称矩阵。

经济数学基础作业(一)答案

经济数学基础作业(一)答案

经济数学基础作业(一)答案一、填空题1、函数)1ln(4--=x xy 的定义域是 (1,2)∪(2,4〕;2、函数216)3ln(x x y -+-=的定义域是-4≤x <3;3、函数xx y --+=21)5ln(的定义域是-5<x <2; 4、函数24)2ln(1x x y -+-=的定义域是-2≤x <1; 5、函数⎩⎨⎧-+=12)(2x x x f 2005<≤<≤-x x 的定义域是-5≤x <2; 6、函数)1ln(1+=x y 的定义域是x >-1,且x ≠0; 7、1412-+-=x x y 的定义域是x ≥1,且x ≠2;8、已知34)1(2-+=+x x x f ,则=)(x f 622-+x x ;6)0(;621)1(2-=-+=f x x x f 。

9、已知54)(2-+=x x x f ,则0)1(;5)0(=-=f f ;54)(2--=-x x x f 。

10、已知52)1(2-+=+x x x f ,则6)(2-=x x f 。

11、已知2)(2+=x x f ,则32)1(;2)0(2++=+=x x x f f 。

12、已知函数1)(-=x xx f ,则x x x f 1)1(+=+。

13、已知x x x f +=+2)1(,则23)1(;)(2422+-=--=x x x f x x x f 。

14、生产某种产品的固定成本为2000元,每生产一个单位产品,成本增加4元,则生产x 个单位产品的总成本函数为x y 42000+=,此时的平均成本函数为42000+=x y 。

15、某商品的需求规律是P=25-2X (P 为商品价格,x 为需求量)供应规律是P=3X+5(P 为价格,x 为供应量),则均衡价格是 17,均衡数量是 4 。

16、已知某产品当产量为x 时的成本为48643.0)(2++=x x x f ,且平均需求规律为 x = 200 – 5P (x 为销售量,P 为价格),则利润函数为4865.036)(2--=x x x f 。

经济数学基础形成性考核册作业1参考答案Word版

经济数学基础形成性考核册作业1参考答案Word版

经济数学基础形成性考核册作业1参考答案(一)填空题1.0;2. 1;3. 2121+=x y ;4. x 25. 2π- (二)单项选择题1. D;2.B3. B4.B5.B (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = 12lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = 43lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21111lim0-=+--→x x (4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 05355sin 33sin lim 0⨯→xx x xx =53 (6)=--→)2sin(4lim 22x x x 42)2sin(2lim )2sin()2)(2(lim22=--+=-+-→→x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)b b xx x f x x =+=--→→)1sin ()(lim lim 00,1sin )(limlim 00==++→→xxx f x x 所以,当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)a f =)0(,所以,当1==b a 时,)(x f 在0=x 处连续。

经济数学基础应用题

经济数学基础应用题

经济数学基础应用题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-经济数学基础应用题1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)因为总成本、平均成本和边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C ,65.0)(+='q q C . 所以,1851061025.0100)10(2=⨯+⨯+=C , 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C . (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去). 因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当q =20时,平均成本最小.2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q=1000-10p (q 为需求量,p 为价格)。

试求:1)成本函数,收入函数;2)产量为多少吨时利润最大?解 1)成本函数C (q )=60q+2000.因为q=1000-10p ,即p=100-q 101, 所以收入函数R (q )=p ⨯q=(100-q 101)q=100q-2101q (2)因为利润函数L (q )=R (q )-C (q )=100q-2101q -(60q+2000) =40q-2101q -2000且'L (q)=(40q-2101q -2000)'= 令'L (q )=0,即=0,得q200,它是L (q )的最大值点,即当产量为200吨时利润最大。

3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元,又已知需求函数q=2000-4p ,其中p 为价格,q 为产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁波电大07秋《经济数学基础(综合)》作业1 参考答案第一篇 微分学一、单项选择题1. 下列等式中成立的是(D).A . e x x x =+∞→2)11(lim B .e xx x =+∞→)21(limC .e x x x =+∞→)211(lim D . e xx x =++∞→2)11(lim2. 下列各函数对中,( B )中的两个函数相等.A .2)(,)(x x g x x f == B .x x g x x f ln 5)(,ln )(5==C .x x g x x f ln )(,)(==D .2)(,24)(2-=+-=x x g x x x f 3. 下列各式中,( D )的极限值为1 .A .x x x 1sinlim 0→ B .x x x sin lim ∞→ C .x x x sin lim 2π→D . x x x 1sin lim ∞→4. 函数的定义域是5arcsin 9x 1y 2x+-=( B ).A .[]5,5-B .[)(]5,33,5U --C .()()+∞-∞-,33,UD .[]5,3-5. ()==⎪⎩⎪⎨⎧=≠=a ,0x 0xa 0 x 3x tan )(则处连续在点x x f ( B ). A .31B . 3C . 1D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2p -3e Q =( C ).A .2p -e 23-B .23p Pe -C .2)233(p e P -- D .2)33(pe P -+7. 函数24)(2--=x x x f 在x = 2点( B ).A. 有定义B. 有极限C. 没有极限D. 既无定义又无极限 8. 若x x f 2cos )(=,则='')2(πf ( C ).A .0B .1C . 4D .-4 9. 曲线x x y -=3在点(1,0)处的切线是( A ).A . 22-=x yB . 22+-=x yC . 22+=x yD . 22--=x y10. 设某产品的需求量q 与价格p 的函数关系为bp -a q =)为常数0b (a, >,则需求量Q 对价格的弹性是( D ). A. b - B.b -a b - C. %b-a b- D.bp -a bp 11. 已知函数⎩⎨⎧>≤=0x e x x -1x f x-0)(,则f(x)在点0x =处( C ).A . 间断B . 导数不存在C . 导数()1-=0f 'D . 导数()1=0f '12. 若函数)1()1(-=-x x x f ,则=)(x f ( B ).A . )1(-x xB . x (x+1)C . )1)(1(+-x xD . 2)1(-x 13. 设函数()()=--+→hh x f h x f x f 22lim,x )(000h 0则可导在( D ). A .()0x f 41 B .()0'x f 21C .()0'x fD .()0'x 4f 14. 设函数,xlnxy =则下列结论正确的是( A ). A .在(0,e)内单调增加 B .在(0,e)内单调减少 C .在(1,+∞)内单调增加 D .在(e,+∞)内单调增加 15. 设方程=-==112x '3y, x y y xy 则的函数是确定 ( D )A. 0B. 2C. 1D. -1二、填空题1. 函数xx x f --+=21)5ln()(的定义域是)2,5(-.2. 已知某产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .3. 函数⎪⎩⎪⎨⎧+=2)1ln(xax f(x) 00=≠x x 在0=x 处连续,则常数a 的值为2a =. 4. 抛物线)0(22>=p px y ,在点M ),2(p p 的切线方程是2p x y +=. 5. 设函数)sin(ln 3x y =,则=dx dy )cos(ln 33x x.6. 已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2.7. 设)1ln()(x x x f +-=有极值,则其极值是极小值0.8. 设)0(1)1(2>++=x x x xf ,则f (x )= x x 112++.9. 设x xy ln =,则==122x dxy d -3 . 10. =-→1x 1)-sin(x lim1x 2.三、解答题1. 求下列极限:⑴ )4421(lim 22---→x x x ⑵ 1)211(lim +∞→-x x x ⑶ 625)32)(1()13()21(lim --++-∞→x x x x x x 解:⑴ 原极限=)44)2)(2(2(lim 22--+-+→x x x x x =)2)(2(2lim 2-+-→x x x x =41)2(1lim2=+→x x ⑵ 原极限=)211(lim )211(lim xx x x x --∞→∞→=1e 21⨯-=21e -⑶ 原极限=23)32)(11()113()21(lim625-=--++-∞→xx x x x x2. 求下列函数的导数y ':⑴ y xx x--=1cos 2 ⑵ y =32ln 1x + ⑶ )cos (sin e x x y x-= 解:⑴ y '(x ) =2)1(cos )1(sin )1(2ln 2x x x x x------=2)1(sin )1(cos 2ln 2x x x x x---- ⑵ )ln 1()ln 1(312322'++='-x x y =x x x ln 2)ln 1(31322-+=x x xln )ln 1(32322-+ ⑶ )cos (sin )cos (sin )(])cos (sin e ['-+-'='-='x x e x x e x x y xx xx e x x e x x e x x x sin 2)sin (cos )cos (sin =++-=3. 设⎪⎪⎩⎪⎪⎨⎧>+=<-=0 x ,x bx)ln(10 x , a 0 x , cos 1)(2x xx f 问当a 、b 为何值时,)(x f 在0=x 处连续?解:a f =)0(. 当0<x 时,xx x x x x x x x x f cos 11sin )cos 1()cos 1)(cos 1(cos 1)(2222+⋅=++-=-= 211111cos 11lim )sin (lim )(lim 2020=+⨯=+⋅=∴---→→→x x x x f x x x而 b e b bx b bx bxb x bx x f bx x x x x ==+=+⋅=+=++++→→→→ln )1ln(lim )1ln(1lim )1ln(lim )(lim 10000 由于)(x f 在0=x 处连续的条件是极限)(lim 0x f x →存在,且极限值等于)0(f ,即)0()(lim )(lim 00f x f x f x x ==+-→→据此即得 21==b a 4. 设 y = f (x ) 由方程 x y x y=++e )cos(确定,求y '解:两边取对求导)()e (])[cos('='+'+x y x y 1e ]1)[sin(='+'++-y y y x y)sin(e )sin(1y x y x y y +-++='5. 下列各方程中y 是x 的隐函数,试求y d : ⑴ 4e)sin(=++xyy x ⑵ 1ln ln =+x y y x ⑶ 222e xy e y =-解:(1)方程两边对x 求导,得0)(e )1()cos(='+⋅+'+⋅+y x y y y x xy解出y ',得xy xy xe y x ye y x y ++++-=')cos()cos( ∴ dx xey x ye y x dy xyxy++++-=)cos()cos( (2)方程两边对x 求导,得01ln 1ln =⋅+'+'⋅⋅+xy x y y y x y 解出y ',得22ln ln x x xy y y xy y ++-=' ∴dx xx xy y y xy dy 22ln ln ++-= ⑶ 方程222e xy ey=-两边对x 求导,得0)2(222='⋅⋅+-'⋅⋅y y x y y e y解出y ',得xy e y y y 2222-=' ∴dx xy e y dy y)(222-= 6. 确定下列函数的单调区间。

⑴ 1--=x e y x⑵ x x y -=3223⑶ )1ln(x x y +-=解: ⑴ 0,01>⇒>-='x e y x,函数单增区间为),0[∞,单减区间为]0,(-∞。

⑵ 10,0131><⇒>-='-x x y ,函数单增区间为]1,0[,单减区间为),1[]0,(∞-∞U 。

⑶ 10,01-<>⇒>+='x x xxy 或,函数单增区间为),0[∞,单减区间为]0,1(-。

7. 求下列函数在指定区间的最大值与最小值。

⑴233)(x x x f -=,[-1,4] ⑵x x x f -+=1)(,[-5,1] ⑶)1ln()(2+=x x f ,[-1,2]解: ⑴ )2(3-='x x f ,0)0(=f ,4)2(-=f ,4)1(-=-f ,16)4(=f ,最大值为16)4(=f ,最小值为4)1()2(-=-=f f 。

⑵ xf --='1211,45)43(=f ,65)5(+-=-f ,1)1(=f , 最大值为45)43(=f ,最小值为65)5(+-=-f 。

⑶ 122+='x xf ,0)0(=f ,2ln )1(=-f ,5ln )2(=f , 最大值为5ln )2(=f ,最小值为0)0(=f 。

8. 设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元。

又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.解:C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2-250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 9. 试证:可微偶函数的导数为奇函数.证:设f (x )为可微偶函数,即f (x ) = f (-x ),则f ' (x ) = (f (x ))'= (f (-x ))'=f ' (-x ) (-x )'= -f ' (-x )即 f ' (-x ) = -f ' (x )所以 f ' (x ) 为奇函数.10. 试证:当0>x 时,)1ln(x x +>.证:设F (x ) = x – ln(1+x )因为 xx F +-='111)( 当x >0时,)(x F '>0,即F (x )单调增加. 有F (x ) > F (0) = 0 x – ln(1+x ) > 0所以,当x >0时,x > ln(1+x )宁波电大06秋《经济数学基础(综合)》作业2参考答案第二篇 积分学一、单项选择题1. 若)(x F 为)(x f 的一个原函数,则⎰=+dx x f )23(( C ). A .C x F ++)23( B .C x F +)(31 C .C x F ++)23(31D .C x F +)( 2. 若=⎰dx x f e x)f '-2x )(,(则的一个原函数是( B ). A .-2xeB .C +-2x2e- C .2x -e 21- D .C +2x -e 21-3. 设R '(q )=100-4q ,若销售量由10单位减少到5单位,则收入R 的改变量是( B ).A .-550B .-350C .350D .以上都不对 4. 若f (x )的一个原函数为x ln ,则=)('x f ( D ). A. x ln B. x x ln C.x 1D. 21x- 5. 某产品边际成本为'C q (),固定成本为c 0,边际收入为'R q (),则利润函数L q ()=( D ). A. [()()]'-'⎰R x C x x qd 0 B. [()()]'-'-⎰C x R x x c qd 0C.[()()]'-'+⎰R x C x x c qd 00 D. [()()]'-'-⎰R x C x x c qd 06. 下列等式成立的是( D ).A.x d dx x=1B.)1(12x d dx x -=C. sinxdx=d(cosx)D. x xda adx a ln 1= 7. 设=⎰dx f )x -1f(,x )(1则为连续函数为( A ) .A .⎰10 x f(x )dx 2 B .⎰10 x f(x )dx 2- C .⎰10f(x)dx 21 D .⎰1f(x)dx 21-8. =⎰dx x ln ( C ) A .c x+1B .c x x +lnC .c x x x +-lnD .c x x x ++ln 9. 若⎰+=C x F dx x f )()(,则=--⎰dx e f ex x)()(( C ).A. C e F x +)(B. C e F x+-)( C. C e F x +--)( D.C xe F x+-)( 10. 下列定积分中, 其值为0的是( A ). A .⎰-112sin xdx x B .xdx x cos 112⎰- C .xdx e x sin 12⎰- D .dx x )1(112⎰-+11. 某产品的边际成本为)('q C , 固定成本为0c , 则总成本函数=)(q C ( C ). A. ⎰qdx x C 0)(' B. ⎰-qdx c x C 00])('[C.00)('c dx x C q+⎰ D. 00)('c dx x C q-⎰12. 当k =( D )时,抛物线2kx y =与直线1=x 及x 轴所围成的图形面积等于1.A. 1B. 2C. 3D. 3或-3 13.=⎰-dx x x 11( B )A. 4B. 0C. 32D. 32- 14. 微分方程xy y 2='的通解是=y ( A ) A. 2x Ce B. C ex +2C. C x +2D. 2x e15. 若f (x )是可积函数,则下列等式中不正确的是( D ).A. )())(('x f dx x f =⎰B.c x f dx x f +=⎰)()('C. ⎰=dx x f dx x f d )())(( D. ⎰=)()(x f x df二、填空题1. 若2x e 是)(x f 的一个原函数,则=⎰dx x f e 2-x)(c x +2.2. dx ex x 232⎰= c e x +3261.3.=+⎰-1122d )1(x x x0.4. 若c x x x x f +-+=⎰11d )(,则=)(x f 2)1(2--x .5. 若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰=C e F x+--)(.6. 设曲线在任一点)0(>x x 处的切线斜率为xx 1-,且过(1,3)点,则该曲线的方程是2ln +-=x x y .7. 某商品的边际收入为q 210-,则收入函数R q ()=210q q -. 8. 设)(x f 为连续函数,积分⎰1)(dt t f 经代换)0(≠=a at u 换元后变为积分du aa u f a⎰⋅01)(.9.=-⎰dx x x 21c x +--21.10.⎰+∞123d 1x x=2.三、解答题1. 求下列不定积分:(1) dx x x ⎰-235; (2)dx xx ⎰-1 ; (3) dx x x⎰1sin 12. 解:(1)原式=Cx C x x d x +--=+-+⨯-=---⎰2322322212)35(91)35(121161)35()35(61(2) 原式c x x c t t dt t t t t x +-+--=++-=--=-⎰2332)1(3212322)2(11 (3) 原式=⎰+=-C xx d x 1cos 11sin 2. 求下列定积分:(1)dx xe x ⎰12; (2) dx e xx ⎰-4131; (3) ⎰-+12|1|dx x .解:(1) 原式=414142412212121222122102102102+=+-=-=-=⎰⎰e e e e e dx e xe xde x x x x(2) 原式=36413413323232)3(32----+-=-=--⎰e e e x d ex x(3) 原式⎰⎰⎰⎰------+++++-=+++-=11121112)1()1()1()1()1()1(x d x x d x dx x dx x2522104211021)1(21)1(21112122=+=-+--=+++-=--)()(x x3. 设由曲线2x y =,直线0,2,=+==y k x k x 所围成的面积最小,求k 的值. 解:)1(4)(),8126(3131x (k) S '2232k k2+=++===++⎰k k S k k x dx k k得驻点1-=k ∴当1-=k 时,其图形面积S 有最小值.4. 求曲线322+-=x x y 和曲线322++-=x x y 所围平面图形的面积. 解: 平面图形的面积[]38232)32()32(2023=⎥⎦⎤⎢⎣⎡+-=+--++=⎰x x dx x x x -x S 20225. 求下列广义积分:(1)dx x⎰+∞11(2) dx x x e ⎰+∞2)(ln 1 (3)dx x e x⎰∞+121. 解:(1)∞∞+=⎰121121x dx x,发散。

相关文档
最新文档