基于Matlab的车牌识别系统设计论文_【完整】
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌识别技术已成为智能交通系统的重要组成部分。
车牌识别技术能够有效地对车辆进行身份识别、交通监控、违法查处等,对于提高交通管理效率和保障交通安全具有重要意义。
本文将基于MATLAB平台,对车牌识别系统进行深入研究。
二、车牌识别系统概述车牌识别系统主要由图像采集、预处理、特征提取和识别四个部分组成。
首先通过摄像头等设备采集包含车牌的图像,然后对图像进行预处理,包括去噪、二值化、边缘检测等操作,使车牌图像更加清晰。
接着,通过特征提取算法提取出车牌上的字符特征,最后通过识别算法对字符进行识别,实现车牌号码的识别。
三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能,非常适合用于车牌识别系统的研究和开发。
在车牌识别系统中,MATLAB可以用于图像预处理、特征提取和识别等各个环节。
1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种函数对车牌图像进行预处理。
例如,可以使用imread函数读取图像,使用imnoise函数添加噪声模拟实际环境中的干扰,使用gray2ind 函数进行图像二值化等。
此外,MATLAB还提供了许多滤波器和边缘检测算法,如Sobel算子和Canny算子等,可以用于去除图像中的噪声和增强边缘信息。
2. 特征提取特征提取是车牌识别系统中的关键环节。
在MATLAB中,可以使用各种算法对车牌图像进行特征提取。
例如,可以使用投影法、连通域法等算法对车牌字符进行分割和定位,然后使用模板匹配、神经网络等算法对字符进行特征提取和分类。
此外,MATLAB还提供了许多机器学习算法,如支持向量机、决策树等,可以用于训练和优化车牌识别模型。
3. 识别算法在特征提取后,需要使用识别算法对字符进行识别。
在MATLAB中,可以使用各种分类器对字符进行识别。
例如,可以使用最近邻分类器、贝叶斯分类器等基于统计的分类器,也可以使用神经网络、支持向量机等基于机器学习的分类器。
《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。
基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。
本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。
二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。
基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。
1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。
MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。
2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。
在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。
3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。
在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。
首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。
4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。
在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。
模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。
神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。
三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。
首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。
基于matlab图像处理的车牌识别系统_毕业设计论文

基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
基于MATLAB的车牌识别系统设计

信电1&China Computer&Communication 软件卄域;与龛用2021年第2期基于MATLAB的车牌识别系统设计张金凤(南京交通职业技术学院,江苏南京211188)摘要:本文在对国内外车牌识别算法的现状和已有的技术进行研究的基础上,开发一个基于MATLAB的车牌识别系统.该系统使用Radon变换对倾斜的车牌进行准确校正,采用OTUS算法二值化车牌图像,利用形态学理论中的开操作和闭操作对图像进行细化处理。
关键词:车牌识别;字符分割;字符识别;MATLAB中图分类号:TP391.41;U495文献标识码:A文章编号:1003-9767(2021)02-153-03The Design of the License Plate Recognition System Based on MATLABZHANG Jinfeng(Nanjing Vocational Institute of Transport Technology,Nanjing Jiangsu211188,China)Abstract:This paper develops a MATLAB-based license plate recognition system based on the research on the current status of domestic and foreign license plate recognition algorithms and existing technologies.The system uses the Radon transform to accurately correct the tilted license plate,uses the OTUS algorithm to binarize the license plate image,and uses the open and closed operations in the morphological theory to refine the image.Keywords:license plate recognition;character segmentation;character recognition;MATLAB0引言一般来说,车辆牌照识别系统由相机、计算机和自定义设计的图像处理软件组成,是智能交通管理系统中的重要组成部分E。
基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
基于MATLAB的车牌识别系统的设计毕业设计

毕业设计基于MATLAB的车牌识别系统的设计摘要:汽车车牌的识别系统是现代智能交通管理的重要组成部分之一。
车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。
车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别等五大核心部分。
本文主要介绍图像预处理、车牌定位、字符分割三个模块的实现方法。
本文的图像预处理模块是将图像灰度化和用Roberts算子进行边缘检测的步骤。
车牌定位和分割采用的是利用数学形态法来确定车牌位置,再利用车牌彩色信息的彩色分割法来完成车牌部位分割。
字符的分割采用的方法是以二值化后的车牌部分进行垂直投影,然后在对垂直投影进行扫描,从而完成字符的分割。
本文即是针对其核心部分进行阐述并使用MATLAB软件环境中进行字符分割的仿真实验。
关键词:MATLAB、图像预处理、车牌定位、字符分割一、发展背景车辆的牌照是机动车的识别标志,在交通管理中有着重要的作用。
通过汽车车牌识别系统可以监控车辆的信息和行驶状况,可以最迅速的实现车辆控制以及交通状况的调控,所以对于现代智能交通至关重要。
该系统主要有两大模块:图像处理模块和字符识别模块。
本文主要对图像处理模块进行设计和研究。
图像处理模块的质量好坏更是衡量整个系统成功与否的关键。
MATLAB语言对于图像的处理非常方便,能够直接调用编好的函数,为整个系统提供了保障。
二、系统框架结构以及流程汽车车牌自动识别系统主要包括触发拍照、图像采集、图像预处理、车牌定位、字符分割、字符识别、输出结果等单元。
触发拍照:该单元会自动检测车辆在指定区域的存在,现有的成熟技术的有线圈触发、视频触发、红外触发、雷达触发以及激光触发。
其中线圈触发和视频触发得到了广泛的应用。
图像采集:该单元是指道路上安装的摄像头在检测到有车辆通过的同时进行拍照并借助网络传送到汽车自动识别系统。
图像预处理:该单元是指车牌识别系统对拍摄的汽车图片进行灰度化和边缘检测等处理。
基于Matlab的车牌识别系统设计

DOI:10.16661/ki.1672-3791.2019.08.017基于Matlab的车牌识别系统设计①王常衡 谢志进 卢曼 李嘉伟 罗钦(山东科技大学 山东济南 250031)摘 要:近年来,汽车的增多加重了道路交通的负担,车主的不文明行为将会对行车造成很大影响。
智能监管系统的使用使车主的行为得到了很好的约束,而车牌识别又是道路智能监管系统的重要部分。
该文首先提出了车牌识别系统的整体设计方案,而后使用Matlab实现车牌识别系统的设计,最后通过一个实例测试其识别结果较为准确,最后提出了该设计中的不足以及改进方法。
关键词:车牌识别 Matlab 图像处理中图分类号:TP391.41 文献标识码:A 文章编号:1672-3791(2019)03(b)-0017-02①作者简介:王常衡(1997,12—),男,汉族,山东淄博人,本科在读,研究方向:通信工程。
随着城市人口的增加和生活水平的提高,汽车成为人们出行的主要交通工具。
但日渐增多的汽车给道路交通带来了严重的问题,例如交通堵塞、交通事故和停车问题。
解决交通问题的根本是提高人们的自觉性,要通过督促手段培养自觉意识。
车牌识别系统便能起到很好的监督作用,通过抓拍违法违章车辆的照片,对其车牌进行识别,可确定车主信息以便对其做出相应的处罚。
因此该文介绍了一种车牌识别系统的设计方案。
1 整体设计方案该系统使用Matlab实现车牌识别系统的设计,系统主要包含图像预处理、车牌定位、字符分割、字符识别等部分,系统框图如图1所示。
2 分步设计方案2.1 图像预处理为去除原始图像中的噪音,加强所需要的车牌信息,首先要对图像进行预处理。
预处理包括灰度转换、灰度加强和边缘检测。
定义变量picture为需要识别的照片中的数据,使用rgb2gray函数将原始图像转换为灰度图像。
之后使用imadjust函数和histeq函数对灰度图像进行灰度增强和均匀化。
再使用edge函数的sobel算子进行边缘检测。
基于某MATLAB地车牌识别系统设计

基于MATLAB的车牌识别系统设计学院测控与通信工程学院专业信号与信息处理学生姓名二妮子学号 1101101101指导教师么么哒基于MATLAB的车牌识别系统设计摘要:本文主要介绍了基于MATLAB的有关数字图像处理的车牌数字识别系统。
系统是利用单张包含车牌的静态图片进行识别的,整个识别过程主要分为车牌定位和字符分割和字符识别三个大的模块。
而其中的字符识别是系统的核心部分。
字符识别目前运用的最多的就是神经网络和模板匹配的方法,本文所介绍的就是基于神经网络的方法来实现车牌数字的识别。
过程中也相应结合了特征提取、直方图统计等一系列方法。
从实验得知,这种神经网络的方法实现简单,且容易理解,在确保识别准确率的前提下,可以提高识别的效率,使得系统在比较准确地定位了车牌及分割出字符后,能更准确地实现字符的识别。
关键词:车牌识别;matlab;神经网络1 引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车牌识别系统(LPRS)是智能交通系统的重要组成部分。
随着机动车辆数量的大幅度增加以及计算机技术的发展,人们对交通控制系统的要求显著提高。
因而智能交通系统被广泛地应用于交通控制系统当中,比如高速公路收费、停车场车辆管理、违章车辆监控、交通诱导控制等场合。
这使得车牌识别系统也得到了更广泛的关注。
与传统的车辆管理方法比较,车牌识别系统可以大大提高交通管理的效率和水平,帮助实现车辆管理的规范化。
由于牌照是机动车辆管理的唯一标识符号,因此,车辆牌照识别系统的研究在机动车管理方面具有十分重要的实际意义。
2 车辆牌照识别系统工作原理车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG 或BMP格式的数字,输出则为车牌号码的数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌航空大学科技学院课程设计(数字信号处理)题目:基于matlab的车牌识别系统设计姓名:江祁贤、江涛、蒋晨亮、蒋少兵、金杰学号:128202117、128202118、128202119、128202120、128202121指导老师:王海威目录1 绪论 (3)1.1 车牌号识别研究背景 (3)1.2 车牌号识别技术研究现状和趋势 (4)1.3 车牌识别研究内容 (5)2 车牌识别系统设计原理概述 (6)3 车牌识别系统程序设计 (8)3.1 图像读取及车牌区域提取 (8)3.2 字符切割 (15)3.3字符识别 (18)4 仿真结果及分析 (20)4.1 车牌定位及图像读取及其图像处理 (20)4.2 车牌字符分割及其图像处理 (21)4.3 车牌字符识别及其图像处理 (22)5 结论 (22)6 个人心得 (25)附录:程序清单 (26)1 绪论1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。
微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
作为信息来源的自动检测、图像识别技术越来越受到人们的重视。
近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。
汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。
车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。
2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。
3)牌照多样性。
其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。
而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。
我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。
4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。
5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。
使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。
目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。
因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。
1.2 车牌号识别技术研究现状和趋势1.2.1国内外车牌识别技术情况及我国车牌特点目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。
首个字符为中文字符,为各个省或直辖市的简称,第二个字符为英文大写字符,前两个字符确定该车牌所在地,后五个字符由阿拉伯数字及英文大写字符组合而成,并且后五个字符间距相同,七个字符大小也相同。
图 1.1 我国车牌号示例1.2.2车牌识别技术的应用前景车辆牌照自动识别技术是智能交通系统的一个重要组成部分,广泛应用于交通的监控及管理。
车辆牌照识别系统技术能够从一幅车辆图像中准确定位出车牌区域,然后经过字符切割和识别实现车辆牌照的自动识别。
目前车牌识别系统主要应用于以下领域:1)停车场管理系统。
利用车牌识别技术对出入车辆的号牌进行识别和匹配,与停车卡结合实现自动计时、计费的车辆收费管理系统。
2)公路自动管理系统。
以车牌自动识别技术为基础,与通信等其他高科技结合,对高速公路交通流状况进行自动监测、自动布控,从而降低交通事故的发生率,确保交通顺畅。
3)安防布控。
采用车牌识别技术实现对车辆的自动识别,快速报警,既可以有效查找被盗车辆,同时又为公安机关提供了对犯罪嫌疑人的交通工具进行远程跟踪与监查的技术手段。
4)城市十字交通路口的“电子警察”。
可以对违章车辆进行责任追究,也可以辅助进行交通流量统计,交通监测和疏导。
5)小区、校园车辆管理系统。
社区保安系统将出入的车辆通过车牌识别技术进行记录,将结果与内部车辆列表对比可以实现防盗监管。
1.3 车牌识别研究内容车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。
车牌识别系统是一特定目标位对象的专用计算机系统,该系统能从一幅图像中自动提取车牌图像、自动分割自符,进而对分割自符的图像进行图像识别。
系统一般由硬件和软件构成。
硬件设备一般由车体感应设备、辅助光源、摄像机、图像采集卡和计算机。
软件部分是系统的核心,主要实现车牌自符的识别功能。
车牌识别学科主要有模式识别、人工智能、图像处理、计算机视觉和信号处理等。
这些领域的许多技术都可以应用到车牌识别系统中,车牌识别技术的研究也必然推动这些相关学科的发展。
车牌识别的关键技术有:车牌定位、字符切割和字符识别等。
车牌定位是要完成从图像中确定车牌位置并提取车牌区域图像,目前常用的方法有:基于直线检测的方法、机遇与域值化的方法、基于灰度边缘检测方法、基于彩色图像的车牌分割方法、神经网络法和基于矢量量化的牌照的定位的方法等。
字符切割时完成车牌区域图像的切分处理从而得到所需要的单个字符图象。
目前常用的方法有:基于投影的方法和基于连通字符的提取等方法。
字符识别是利用字符识别的原理识别提取出的字符图像,目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。
2 车牌识别系统设计原理概述一个完整的车牌号识别系统要完成从图像采集到字符识别输出,过程相当复杂,基本可以分成硬件部分跟软件部分,硬件部分包括系统触发、图像采集,软件部分包括图像预处理、车牌位置提取、字符分割、字符识别四大部分,一个车牌识别系统的基本结构如图2.1所示:图 2.1 车牌识别系统基本结构框图一:原始图像:由停车场固定彩色摄像机、数码相机或其他扫描装置拍摄到的图像。
二:图像预处理:对动态采集到的图像进行滤波,边界增强等处理以克服图像处理。
三:车牌位置提取:通过运算得到图像的边缘,再计算边缘图像的投影面积,寻找谷峰点以大概确定车牌的位置,再计算连通域的宽高比,剔除不在阈值范围内的连通域,最后便得到了车牌区域。
四:字符分割:利用投影检测的字符定位分割方法得到单个的字符。
五:字符识别:利用模板匹配的方法与数据库中的字符进行匹配从而确认出字符。
六:输出结果:得到最后的汽车牌照,包括汉字、字母和数字。
车牌号图像识别要进行牌照号码、颜色识别 。
为了进行牌照识别,需要以下几个基本的步骤:a.牌照定位,定位图片中的牌照位置;b.牌照字符分割,把牌照中的字符分割出来;c.牌照字符识别,把分割好的字符进行识别,最终组成牌照号码。
牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。
原始图像 图像预处理 车牌 位置 提取 字符 分割 字符 识别 输出 结果(1)牌照定位:自然环境下,由于汽车图像背景复杂、光照不均匀等原因,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。
一般采用的方案是首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图象中分割出来。
通过以上步骤,牌照一般能够被定位。
(2)牌照字符分割 :在完成牌照区域的定位后,还需要将牌照区域分割成单个字符,然后进行字符识别,最后输出结果。
字符分割一般采用垂直投影法。
垂直投影法的原理是由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。
所以利用垂直投影法对复杂环境下的汽车图像的字符分割有较好的效果。
(3)牌照字符识别:字符识别方法目前主要得算法有两种即基于模板匹配算法和基于人工神经网络算法。
基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。
基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,牌照识别系统的识别率与牌照质量和拍摄质量密切相关。
牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假牌照等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。
这些影响因素不同程度上降低了牌照识别的识别率,也正是牌照识别系统的困难和挑战所在。
为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像最利于识别。
3 车牌识别系统程序设计3.1图像读取及车牌区域提取图像读取及车牌区域提取主要有:图像灰度图转化、图像边缘检测、灰度图腐蚀、图像的平滑处理以及车牌区域的边界值计算。
其程序流程图如下:输入车牌图象灰度校正平滑处理提取边缘图 3.1 预处理及边缘提取框图目前比较常用的图像格式有*.BMP、*.JPG、*.GIF、*.PCX、*.TIFF 等,本课题采集到的图片是*.JPG 的格式。
因为使用*.JPG图像时有一个软件开发联合会组织制定、有损压缩格式,能够将图像压缩在很小的储存空间,而且广泛支持 Internet 标准,是面前使用最广的图片保存和传输格式,大多数摄像设备都以*.JPG格式保存。
利用图像工具箱的Car_Image_RGB=imread(‘Image_Name’);即可将图像读取出来,这样读取得到的是RGB图像,RGB图像分别用红、绿、蓝三个色度值为一组代表每个像素的颜色,因此Car_Image_RGB是一个错误!未找到引用源。
的数组,m、n表示图像像素的行、列数。
3.1.1图像灰度图转化我国车牌颜色及其RGB值如下,蓝底(0,0,255)白字(255,255,255)、黄底(255,255,0)黑字(0,0,0)、黑底(0,0,0)白字(255,255,255)、红底(255,0,0)黑字(0,0,0),由于车牌的底色不同,所以从RGB图像直接进行车牌区域提取存在很大困难,但不管哪种底色的车牌,其底色与上面的字符颜色的对比度大,将RGB 图像转化成灰度图像时,车牌底色跟字符的灰度值会相差很大。