基于Matlab的车牌识别(完整版)
(完整版)基于matlab的车牌识别(含子程序)

基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
基于matlab图像处理的车牌识别系统_毕业设计论文

基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。
本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。
该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。
关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。
为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。
车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。
二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。
灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。
2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。
在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。
这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。
3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。
这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。
三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。
基于MATLAB的车牌识别系统的源代码(可以实现)

k=input('Enter the file name:','s');%输入车牌照片im=imread(k);imshow(im);im_gray=rgb2gray(im);im_gray=medfilt2(im_gray,[3,3]);%对图像进行中值滤波Image=im2bw(im_gray,0.2);BW=edge(im_gray,'sobel');%找出图像边缘[imx,imy]=size(BW);%计算图像大小msk=[0 0 0 0 0;0 1 1 1 0;0 1 1 1 0;0 1 1 1 0;0 0 0 0 0;];B0=conv2(double(BW),double(msk));%对边缘区域进行加强se=ones(2,80);B1=imdilate(B0,se);%figure;%imshow(B1);B2=imerode(B1,se);%figure;%imshow(B2);se=ones(20,2);B3=imdilate(B2,se);%figure;imshow(B3);B4=imerode(B3,se);%figure;imshow(B4);se=ones(50,2);B5=imdilate(B4,se);%figure;imshow(B5);B6=imerode(B5,se);%figure;imshow(B6);%对边界图进行小区域连通,使车牌区域连通为一个方块[B,L]=bwboundaries(B6,4);imshow(label2rgb(L,@jet,[.5 .5 .5]))%对连通区域进行标记hold onfor k=1:length(B)%用线条给连通区域标上边界线boundary=B{k};plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)endstats=regionprops(L,'Area','Centroid');%找到每个连通域的质心for k=1:length(B)%循环遍历每个连通域的边界boundary=B{k};%获取一条边界上的所有点delta_sq=diff(boundary).^2;perimeter=sum(sqrt(sum(delta_sq,2)));%计算边界周长area=stats(k).Area;%获取边界所围面积metric=27*area/perimeter^2;%计算匹配度metric_string=sprintf('%2.2f',metric);%要显示的匹配度字串if metric>=0.85&&metric<=1.15&&area>1000%截取出匹配度接近1且面积大于1000像素的连通域centroid=stats(k).Centroid;plot(centroid(1),centroid(2),'ko');%提取该连通域所对应在二值图像中的矩形区域goalboundary=boundary;s=min(goalboundary,[],1);e=max(goalboundary,[],1);goal=imcrop(Image,[s(2) s(1) e(2)-s(2) e(1)-s(1)]);endtext(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','g','FontSize',14,'FontWeight','bold') ;%显示匹配度字串endgoal=~goal;%对截取图像进行反色处理figure;imshow(goal);[a,b]=size(goal);for i=a/2:-1:1 %从图像水平中轴开始向上扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的上限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_up=i;break;endendfor i=a/2:a %从图像水平中轴开始向下扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的下限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_down=i;break;endendgoal=goal(line_up:line_down,1:b);%根据之前定义的上下限截取车牌字符区域figure;imshow(goal);%显示车牌字符区域[a,b]=size(goal);row=zeros(18);now=1;flag=0;for j=1:b %对截取出的字符区域进行竖列扫描,并取每列总点数的1/10作为阈值点,当每列的白点数从阈值以上掉落到阈值以下或从阈值以下上升到阈值以上时,记录该列的横坐标num=0;for i=1:aif goal(i,j)==1num=num+1;endendif flag==0if num<0.1*arow(now)=j;now=now+1;flag=1;endelseif num>0.1*arow(now)=j;now=now+1;flag=0;endendendif row(3)-row(2)>10 %判断扫描出的第二块区域(扫描到的第二列与第三列之间)是否包含有效字符,如包含,则将扫描到的第二列定义为字符分割的起始列;否则,则定义第一列为起始列now=2;elsenow=1;endfigure;l1=0;l2=0;for k=1:8m=row(now);n=row(now+1);temp=goal(1:a,m:n);point=0;%扫描每一个字符图片的白点数for i=1:afor j=1:n-mif temp(i,j)==1point=point+1;endendendif point>0.4*a*(n-m)&&n>m %当扫描到的白点数小于总点数的2/5时放弃输出(有可能是车牌上的点状分隔符)l2=l2+1;%l2用来记录识别出的字符数subplot(1,7,l2);x(k)=code(temp);%调用子程序进行字符扫描,并返回字符的ASCII码x(k)=uint8(x(k));if x(k)>0 %当所选区域不为空时进行输出l1=l1+1;%l1用来记录输出的字符数s(l1)=char(x(k));endtemp(32,32)=0;imshow(temp);endnow=now+2;endy=char(s);%将得到的ASCII码重新转换为字符并在屏幕上输出fprintf('\r\n该车辆的车牌号为:\r\n');disp(y);fprintf('\r\n输出的字符数为:%4d\r\n',l1);fprintf('识别出的字符数为:%4d\r\n',l2);。
(完整版)MATLAB车牌识别

目录1.引言 (2)2.设计概述 (3)2.1车牌识别技术 (3)2.2 车牌识别技术的发展 (3)2.3 车牌识别技术的国内外研究现状 (4)2.4 主要应用领域 (6)3.设计方案 (7)4.车牌识别系统的matlab实现 (8)4.1 图像的读取 (8)4.2 图像预处理 (9)4.2.1灰度变换 (9)4.2.2 图像校正 (10)4.3 牌照分割 (10)4.3.1 图像边缘提取及二值化 (11)4.3.2 BP神经网络 (14)4.4 车牌提取 (15)5.设计结果及分析 (16)5.1程序运行结果 (16)5.2程序结果分析 (17)总结体会 (18)参考文献 (19)附录1 (20)附录2 (28)1.引言伴随着世界各国车辆数量的增加,城市交通状况日益受到人们的重视。
如何有效地进行交通管理,越来越成为各国政府的相关部门所关注的焦点。
针对这一问题,人们运行先进的信息处理技术、导航定位技术、无线通信技术、自动控制技术、图像处理和识别技术及计算机网络技术等科学技术,相继研发了各种交通道路监视管理系统、车辆控制系统及公共交通系统。
这些系统将车辆和道路综合起来进行考虑,运行各种先进的技术解决道路交通的问题,统称为智能交通系统( Intelligent Transportation System,简称ITS)。
ITS 是20世纪90年代兴起的新一代交通运输系统。
它可以加强道路、车辆、驾驶员和管理人员的联系,实现道路交通管理自动化和车辆行驶的智能化,增强交通安全,减少交通堵塞,提高运输效率,减少环境污染,节约能源,提高经济活力。
智能交通系统以车辆的自动检测作为信息的来源,因而对车牌照等相关信息的自动采集和处理的一门新的交通信息获取技术——车牌识别(License Plate Recognition ,LPR) 技术逐渐发展起来,成为信息处理技术的一项重要研究课题。
车牌自动识别是智能交通管理系统中的关键技术之一。
基于matlab车牌的定位与分割识别程序概要

基于Matlab 的车牌定位与分割 经典算法I 二imread('car.jpg');I1=rgb2gray(l);%转化为灰度图像subplot(3,2,2),imshow(I1),title('灰度图像');I2=edge(I1,'robert',0.09,'both');%采用 robert 算子进行边缘检测 subplot(3,2,3),imshow(I2),title('边缘检测后图像');%读取图像figure 。
; subplot(3,2,1),imshow(l), title('原始图像');边绿检浪I 启图像se=[1;1;1]; %线型结构元素 I3=imerode(l2,se);%腐蚀图像subplot(3,2,4),imshow(l3),title('腐蚀后边缘图像');se=strel('recta ngle',[25,25]);矩形结构元素 I4=imclose(l3,se);%图像聚类、填充图像 subplot(3,2,5),imshow(I4),title('填充后图像');一5Hbwa「eaopen(一4200S % 卅弗W HM W 血、」丿-H 2000subp_0f(326二M X N H si z e (_5=_6Hdoub_e(_5xYlHzeros(y3_fonyf o r li-r xif(l6(i,j,1)==1)Y 1(i,1)= Y1(i,1)+1;endend[temp MaxY]=max(Y1);figure。
;subplot(3,2,1),plot(0:y-1,Y1),title('行方向像素点灰度值累计和'), xlabel('行值'),ylabel('像素');行值%求的车牌的行起始位置和终止位置PY 仁Max Y;while ((Y 1(PY1,1)>=50)&&(PY 1>1))PY 1=P Y1-1;endPY 2=Max Y;while ((Y 1(PY2,1)>=50)&&(PY2<y))endPY 2=P Y2+1;endIY=I(P Y1:P Y2,:,:);X1= zeros(1,x);for j=1:xfor i=PY1:PY2if(l6(i,j,1)==1)X1(1,j)= X1(1,j)+1;endend endsubplot(3,2,2),plot(0:x-1,X1),title('列方向像素点灰度值累计和'), xlabel('列值'),ylabel('像数');歹U方向像素点衣度值黒计环CT1OC%求的车牌的列起始位置和终止位置PX仁1;while ((X1(1,PX1)<3)&&(PX1<x))PX1= PX1+1;endPX2=x;O 2OD 400 600 800歹UfSwhile ((X1(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX仁PX1-1;PX2=PX2+1;%分割出车牌图像%dw=l(P Y1:P Y2,PX1:PX2,:);subplot(3,2,3),imshow(dw),title('定位剪切后的彩色车牌图像')定位剪切后的耘色车牌图像4.2车牌字符分割确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字符图像。
基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
车牌识别matlab实验报告

车牌识别matlab实验报告标题:基于Matlab的车牌识别实验报告摘要:车牌识别是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。
本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
实验采用了图像处理和模式识别的技术,通过对车牌图像的预处理、字符分割和字符识别等步骤,成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好。
一、引言随着交通问题的日益突出,车牌识别技术在交通管理、安防等领域得到广泛应用。
车牌识别系统的核心是对车牌图像进行处理和分析,从中提取出车牌的信息。
本实验旨在利用Matlab平台,实现一个简单的车牌识别系统,并对其性能进行评估。
二、实验方法1. 数据收集:收集包含不同角度、光照条件和车牌类型的车牌图像,并建立一个图像库。
2. 图像预处理:对采集到的车牌图像进行预处理,包括图像增强、灰度化、二值化等操作,以减小光照和噪声对后续处理的影响。
3. 车牌定位:利用边缘检测和形态学处理等方法,对预处理后的图像进行车牌定位,提取出车牌区域。
4. 字符分割:对提取到的车牌区域进行字符分割,将车牌中的字符单独切割出来,以便后续的字符识别。
5. 字符识别:利用模式识别算法,对字符进行识别。
本实验采用了支持向量机(SVM)算法进行训练和分类。
6. 性能评估:对实验结果进行评估,包括准确率、召回率和F1值等指标。
三、实验结果与讨论经过实验测试,我们的车牌识别系统在不同场景下表现出良好的性能。
在收集的测试集上,系统的准确率达到了90%,召回率为85%。
在实际应用中,我们注意到系统对于光照条件较好、车牌清晰的图像处理效果更佳,对于遮挡、模糊的车牌图像处理效果有待改进。
四、结论本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。
通过图像预处理、车牌定位、字符分割和字符识别等步骤,我们成功地实现了对车牌的自动识别。
实验结果表明,该系统在不同场景下的车牌识别效果良好,并能够较为准确地提取出车牌中的字符信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
流程图:(2)车牌字符分割 :完成车牌区域的定位后,再将车牌区域分割成单个字符,然后进行识别。
字符分割一般采用垂直投影法。
由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足车牌的字符书写格式、字符、尺寸限制和一些其他条件。
利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。
流程图:(3)车牌字符识别 :字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。
基于模板匹配算法首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,最后选最佳匹配作为结果。
基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
实际应用中,车牌识别系统的识别率与车牌质量和拍摄质量密切相关。
车牌质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、车牌被遮挡、车牌倾斜、高亮反光、多车牌、假车牌等等;实际拍摄过程也会受到环境亮度、拍摄亮度、车辆速度等等因素的影响。
这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。
为了提高识别率,除了不断的完善识别算法,还应该想办法克服各种光照条件,使采集到的图像最利于识别。
三 各模块的实现:3.1输入待处理的原始图像:clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件图3.1原始图像3.2图像的灰度化:彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。
由彩色转换为灰度的过程叫做灰度化处理。
选择的标准是经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。
%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Sgray),title('原始黑白图像');图3.2原始黑白图像3.3对原始图像进行开操作得到图像背景图像:s=strel('disk',13);%strei函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像图3.3背景图像3.4灰度图像与背景图像作减法,对图像进行增强处理:Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像图3.4黑白图像3.5取得最佳阈值,将图像二值化:二值图像是指整幅图像画面内仅黑、白二值的图像。
在实际的车牌处理系统中,进行图像二值变换的关键是要确定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。
车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。
阈值处理的操作过程是先由用户指定或通过算法生成一个阈值,如果图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为0或255,否则灰度值设置为255或0。
fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);figure,imshow(bw2);title('图像二值化');%得到二值图像图3.5二值图像3.6边缘检测:两个具有不同灰度值的相邻区域之间总存在边缘,边缘就是灰度值不连续的结果,是图像分割、纹理特征提取和形状特征提取等图像分析的基础。
为了对有意义的边缘点进行分类,与这个点相联系的灰度级必须比在这一点的背景上变换更有效,我们通过门限方法来决定一个值是否有效。
所以,如果一个点的二维一阶导数比指定的门限大,我们就定义图像中的次点是一个边缘点,一组这样的依据事先定好的连接准则相连的边缘点就定义为一条边缘。
经过一阶的导数的边缘检测,所求的一阶导数高于某个阈值,则确定该点为边缘点,这样会导致检测的边缘点太多。
可以通过求梯度局部最大值对应的点,并认定为边缘点,去除非局部最大值,可以检测出精确的边缘。
一阶导数的局部最大值对应二阶导数的零交叉点,这样通过找图像强度的二阶导数的零交叉点就能找到精确边缘点。
grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘图3.6像边缘提取3.7对得到图像作开操作进行滤波:数学形态非线性滤波,可以用于抑制噪声,进行特征提取、边缘检测、图像分割等图像处理问题。
腐蚀是一种消除边界点的过程,结果是使目标缩小,孔洞增大,因而可有效的消除孤立噪声点;膨胀是将与目标物体接触的所有背景点合并到物体中的过程,结果是使目标增大,孔洞缩小,可填补目标物体中的空洞,形成连通域。
先腐蚀后膨胀的过程称为开运算,它具有消除细小物体,并在纤细处分离物体和平滑较大物体边界的作用;先膨胀后腐蚀的过程称为闭运算,具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。
对图像做了开运算和闭运算,闭运算可以使图像的轮廓线更为光滑,它通常用来消掉狭窄的间断和长细的鸿沟,消除小的孔洞,并弥补轮廓线中的断裂。
bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像图3.7.1闭运算的图像图3.7.2开运算的图像图3.7.3开运算的图像3.8对二值图像进行区域提取,并计算区域特征参数。
进行区域特征参数比较,提取车牌区域:a.对图像每个区域进行标记,然后计算每个区域的图像特征参数:区域中心位置、最小包含矩形、面积。
[L,num] = bwlabel(bg2,8);%标注二进制图像中已连接的部分Feastats = imfeature(L,'basic');%计算图像区域的特征尺寸Area=[Feastats.Area];%区域面积BoundingBox=[Feastats.BoundingBox];%[x y width height]车牌的框架大小RGB = label2rgb(L, 'spring', 'k', 'shuffle'); %标志图像向RGB图像转换figure,imshow(RGB);title('图像彩色标记');%输出框架的彩色图像图3.8.1彩色图像b. 计算出包含所标记的区域的最小宽和高,并根据先验知识,比较谁的宽高比更接近实际车牌宽高比,将更接近的提取并显示出来。
计算矩形的宽度计算矩形的高度框架的宽度和高度的范围车牌的开始列车牌的开始行计算车牌长宽比获取车牌二值子程序流程图图3.8.2灰度子图和二值子图3.9对水平投影进行峰谷分析:对水平投影进行峰谷分析,计算出车牌上边框、车牌字符投影、车牌下边框的波形峰上升点、峰下降点、峰宽、谷宽、峰间距离、峰中心位置参数。
histcol1=sum(sbw1); %计算垂直投影histrow=sum(sbw1'); %计算水平投影figure,subplot(2,1,1),bar(histcol1);title('垂直投影(含边框)');%输出垂直投影subplot(2,1,2),bar(histrow); title('水平投影(含边框)');%输出水平投影图3.9.1垂直投影和水平投影figure,subplot(2,1,1),bar(histrow); title('水平投影(含边框)');%输出水平投影subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出二值图对水平投影进行峰谷分析:图3.9.2水平投影和二值图程序流程图3.10计算车牌旋转角度:a.车牌倾斜的原因导致投影效果峰股谷不明显,在这里需要做车牌矫正处理。