基于Matlab的车牌识别算法

合集下载

(完整版)基于matlab的车牌识别(含子程序)

(完整版)基于matlab的车牌识别(含子程序)

基于 matlab 的车牌鉴别系统一、对车辆图像进行预办理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg',文件 (*.jpg)'});'JPEG if(filename == 0), return, endglobal FILENAME % 定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title(' 原图像 ');% 将车牌的原图显示出来结果以下:2.将彩图变换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图变换为灰度图figure(2),subplot(1,2,1),imshow(I1);title(' 灰度图像');figure(2),subplot(1,2,2),imhist(I1);title(' 灰度图直方图');% 绘制灰度图的直方图结果以下所示:3.用 roberts 算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');% 选择阈值,用 roberts 算子进行边缘检测figure(3),imshow(I2);title('roberts算子边缘检测图像');结果以下:4.图像推行腐化操作:se=[1;1;1];I3=imerode(I2,se);% 对图像推行腐化操作,即膨胀的反操作figure(4),imshow(I3);title('腐化后图像');5.圆滑图像se=strel('rectangle',[25,25]);% 构造构造元素以正方形构造一个seI4=imclose(I3,se);%图像聚类、填充图像figure(5),imshow(I4);title('圆滑图像');结果以下所示:6.删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于 2000 的部分figure(6),imshow(I5);title(' 从对象中移除小的对象 ');结果以下所示:二、车牌定位[y,x,z]=size(I5);%返回 I5 各维的尺寸,储藏在x,y,z中myI=double(I5);% 将 I5 变换成双精度tic%tic表示计时的开始,toc 表示计时的结束Blue_y=zeros(y,1);%产生一个y*1 的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)% 若是myI(i,j,1) 即myI 的图像中坐标为(i,j) 的点值为1,即该点为车牌背景颜色蓝色% 则Blue_y(i,1) 的值加 1Blue_y(i,1)= Blue_y(i,1)+1;% 蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌地域确定%temp 为向量 white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x 方向车牌地域确定%%%%%%方X向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x 方向的车牌地域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌地域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理地域');% 行方向车牌地域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域以下所示:三、字符切割及办理1.车牌的进一步办理对切割出的彩色车牌图像进行灰度变换、二值化、均值滤波、腐化膨胀以及字符切割以从车牌图像中分别出组成车牌号码的单个字符图像,对切割出来的字符进行预办理(二值化、归一化),此后解析提取,对切割出的字符图像进行鉴别给出文本形式的车牌号码。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能交通系统的快速发展,车牌识别技术已成为智能交通系统的重要组成部分。

车牌识别技术能够有效地对车辆进行身份识别、交通监控、违法查处等,对于提高交通管理效率和保障交通安全具有重要意义。

本文将基于MATLAB平台,对车牌识别系统进行深入研究。

二、车牌识别系统概述车牌识别系统主要由图像采集、预处理、特征提取和识别四个部分组成。

首先通过摄像头等设备采集包含车牌的图像,然后对图像进行预处理,包括去噪、二值化、边缘检测等操作,使车牌图像更加清晰。

接着,通过特征提取算法提取出车牌上的字符特征,最后通过识别算法对字符进行识别,实现车牌号码的识别。

三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能,非常适合用于车牌识别系统的研究和开发。

在车牌识别系统中,MATLAB可以用于图像预处理、特征提取和识别等各个环节。

1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种函数对车牌图像进行预处理。

例如,可以使用imread函数读取图像,使用imnoise函数添加噪声模拟实际环境中的干扰,使用gray2ind 函数进行图像二值化等。

此外,MATLAB还提供了许多滤波器和边缘检测算法,如Sobel算子和Canny算子等,可以用于去除图像中的噪声和增强边缘信息。

2. 特征提取特征提取是车牌识别系统中的关键环节。

在MATLAB中,可以使用各种算法对车牌图像进行特征提取。

例如,可以使用投影法、连通域法等算法对车牌字符进行分割和定位,然后使用模板匹配、神经网络等算法对字符进行特征提取和分类。

此外,MATLAB还提供了许多机器学习算法,如支持向量机、决策树等,可以用于训练和优化车牌识别模型。

3. 识别算法在特征提取后,需要使用识别算法对字符进行识别。

在MATLAB中,可以使用各种分类器对字符进行识别。

例如,可以使用最近邻分类器、贝叶斯分类器等基于统计的分类器,也可以使用神经网络、支持向量机等基于机器学习的分类器。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。

基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。

本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。

二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。

基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。

1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。

MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。

2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。

在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。

3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。

在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。

首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。

4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。

在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。

模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。

神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。

三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。

首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计

基于MATLAB的车牌智能识别设计摘要:车牌智能识别技术是智能交通系统中的重要组成部分,能够提高交通管理效率和安全性。

本文基于MATLAB平台,设计了一种车牌智能识别系统,通过图像处理和模式识别技术实现车牌号码的准确识别。

该系统能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,具有较高的准确性和稳定性,可以有效应用于停车场管理、交通违法抓拍等领域。

关键词:车牌智能识别;MATLAB;图像处理;模式识别一、引言随着汽车数量的快速增长,交通拥堵和交通管理成为社会发展中的一大难题。

为了提高交通管理效率和安全性,智能交通系统得到了广泛的关注和应用。

车牌智能识别技术作为智能交通系统中的重要组成部分,能够实现对车辆行驶过程中的车牌信息进行实时提取和识别,为交通管理和监控提供了重要的支持。

二、相关技术及方法1. 图像处理技术图像处理技术是车牌智能识别系统中的核心技术之一,主要包括灰度化、二值化、边缘检测、形态学处理等操作。

灰度化是将彩色图像转换为灰度图像,简化了图像信息的处理;二值化将灰度图像转换为二值图像,方便进行特征提取和分割操作;边缘检测可以准确提取车牌的轮廓信息;形态学处理可以用于去除图像中的噪声点和填充孔洞,提高字符的连通性。

2. 字符分割与特征提取字符分割是指将车牌图像中的字符分离出来,是车牌识别的关键步骤之一。

在字符分割后,需要进行字符的特征提取,包括字符的大小、形状、像素点分布等特征。

这些特征可以用于字符的识别和分类,提高识别的准确性和鲁棒性。

3. 模式识别算法模式识别算法是车牌智能识别系统中的另一个核心技术,主要包括基于模板匹配的模式识别、基于统计学习的模式识别、基于深度学习的模式识别等方法。

这些算法能够对字符进行准确的识别和分类,为车牌智能识别系统提供了强大的分析和识别能力。

三、车牌智能识别系统设计基于MATLAB平台,设计的车牌智能识别系统主要包括图像预处理、字符分割与特征提取、模式识别和结果输出四个主要模块。

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别(完整版)

基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。

本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。

并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。

一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。

车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。

其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。

某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。

一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。

当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。

车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。

二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。

车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。

(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。

首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。

车牌识别matlab实验报告

车牌识别matlab实验报告

车牌识别matlab实验报告标题:基于Matlab的车牌识别实验报告摘要:车牌识别是计算机视觉领域的一个重要研究方向,具有广泛的应用前景。

本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。

实验采用了图像处理和模式识别的技术,通过对车牌图像的预处理、字符分割和字符识别等步骤,成功地实现了对车牌的自动识别。

实验结果表明,该系统在不同场景下的车牌识别效果良好。

一、引言随着交通问题的日益突出,车牌识别技术在交通管理、安防等领域得到广泛应用。

车牌识别系统的核心是对车牌图像进行处理和分析,从中提取出车牌的信息。

本实验旨在利用Matlab平台,实现一个简单的车牌识别系统,并对其性能进行评估。

二、实验方法1. 数据收集:收集包含不同角度、光照条件和车牌类型的车牌图像,并建立一个图像库。

2. 图像预处理:对采集到的车牌图像进行预处理,包括图像增强、灰度化、二值化等操作,以减小光照和噪声对后续处理的影响。

3. 车牌定位:利用边缘检测和形态学处理等方法,对预处理后的图像进行车牌定位,提取出车牌区域。

4. 字符分割:对提取到的车牌区域进行字符分割,将车牌中的字符单独切割出来,以便后续的字符识别。

5. 字符识别:利用模式识别算法,对字符进行识别。

本实验采用了支持向量机(SVM)算法进行训练和分类。

6. 性能评估:对实验结果进行评估,包括准确率、召回率和F1值等指标。

三、实验结果与讨论经过实验测试,我们的车牌识别系统在不同场景下表现出良好的性能。

在收集的测试集上,系统的准确率达到了90%,召回率为85%。

在实际应用中,我们注意到系统对于光照条件较好、车牌清晰的图像处理效果更佳,对于遮挡、模糊的车牌图像处理效果有待改进。

四、结论本实验基于Matlab平台,设计并实现了一个简单的车牌识别系统。

通过图像预处理、车牌定位、字符分割和字符识别等步骤,我们成功地实现了对车牌的自动识别。

实验结果表明,该系统在不同场景下的车牌识别效果良好,并能够较为准确地提取出车牌中的字符信息。

基于matlab的车牌识别算法

基于matlab的车牌识别算法

基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。

车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。

其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。

目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。

本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。

此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。

但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。

关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢............................................... 错误!未定义书签。

《2024年基于MATLAB的车牌识别系统研究》范文

《2024年基于MATLAB的车牌识别系统研究》范文

《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展和智能化水平的提升,车牌识别系统在智能交通系统中扮演着越来越重要的角色。

车牌识别技术作为计算机视觉和人工智能领域的一个重要应用,在交通安全、车辆管理、车辆监控等方面有着广泛的应用。

本文将介绍一种基于MATLAB 的车牌识别系统研究,该系统旨在通过图像处理和机器学习算法实现高效、准确的车牌识别。

二、车牌识别系统的原理与架构基于MATLAB的车牌识别系统主要包括以下几个步骤:图像预处理、车牌定位、字符分割和字符识别。

首先,系统将获取的图像进行预处理,包括灰度化、二值化等操作,以提高图像的对比度和清晰度。

然后,通过边缘检测和形态学操作等方法,定位出图像中的车牌区域。

接着,对车牌区域进行字符分割,将每个字符分割出来。

最后,利用机器学习算法对每个字符进行识别,得到车牌号码。

三、图像预处理图像预处理是车牌识别系统的重要步骤之一。

在MATLAB 中,我们首先对获取的图像进行灰度化和二值化处理。

灰度化操作可以将彩色图像转换为灰度图像,减少计算量。

二值化操作可以将灰度图像转换为二值图像,提高图像的对比度和清晰度。

此外,还可以通过滤波、去噪等操作进一步优化图像质量。

四、车牌定位车牌定位是车牌识别系统的关键步骤之一。

在MATLAB中,我们可以通过边缘检测和形态学操作等方法实现车牌定位。

具体而言,我们首先对预处理后的图像进行边缘检测,提取出图像中的边缘信息。

然后,利用形态学操作对边缘信息进行填充、腐蚀等处理,得到车牌区域的轮廓信息。

最后,通过轮廓检测和面积筛选等方法,定位出图像中的车牌区域。

五、字符分割与识别字符分割与识别是车牌识别系统的核心步骤。

在MATLAB 中,我们可以通过投影法或连通域法等方法实现字符分割。

具体而言,我们首先对车牌区域进行投影分析,根据字符在投影图上的特点进行分割。

然后,对每个字符进行归一化处理,使其大小和位置一致。

最后,利用机器学习算法对每个字符进行识别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。

车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。

其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。

目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。

本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。

此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。

但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。

关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢................................................ 错误!未定义书签。

1 前言1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。

微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。

作为信息来源的自动检测、图像识别技术越来越受到人们的重视。

近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。

汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。

关于车牌识别技术及定位系统研究,在我国已经有了十几年的发展历程,目前系统的应用还处于起步阶段,大规模投入使用的成熟系统还没有出现,汽车牌照识别系统作为改进交通管理的有效工具,技术水平仍需完善。

国内外学者对此已经有了较多工作,但实际效果并不理想,尤其是对车牌自适应性强、速度快、准确率高的高速车牌定位方法还有待进一步研究。

另外,对辅助光源要求高,也很难有效解决复杂背景下多车牌移动识别的技术难题,如:车牌图像的倾斜、车牌表面污秽或磨损、光线干扰等都会影响定位的准确性。

传统车牌识别一般仅支持单一车辆,背景比较简单。

而当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好的适应多变的环境,所以对车牌识别技术的研究依然是目前高科技领域的热门课题之一。

车牌识别系统的成功设计、开发和应用具有相当大的社会效益、经济效益和学术意义。

车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。

2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。

3)牌照多样性。

其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。

而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。

我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。

4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。

5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。

使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。

目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。

因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。

1.2 车牌号识别技术研究现状和趋势1.2.1国内外车牌识别技术情况及我国车牌特点目前,一些发达国家车牌识剐系统在实际交通系统中已经成功应用,而我国的开发应用进展缓慢,基本停留在实验室阶段。

这是因为我国的实际情况与国外有所区别。

国外车牌比较规范统一,而我国车牌规范不够,较为多样化。

不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且字符位数不统一,对处理造成了一定的困难。

虽然很多研究人员已对车牌识别进行了较为深入的研究,但目前在车牌定位和字符分割这两个关键环节还存在着有待解决的难题。

一是当车牌图像的对比度较小、光照不均匀、车牌磨损褪色以及有类似车牌纹理特征的干扰时,有效定位率下降;其次在车牌字符分割时,光照不均、对比度较小、倾斜、污迹、字符粘连和断裂等严重退化的车牌图像的字符分割效果也不理想。

而对于车牌字符的识别来说,其识别的准确率很大程度上依赖于车牌定位和字符分割是否成功。

车牌字符的识别作为最终对车牌图像的理解,可以借鉴光学字符识别的宝贵经验,相对于车牌定位和字符分割来说反而比较容易实现。

国内外有大量关于车牌识别方面的研究报道。

国外在这方面的研究工作开展较早。

在上世纪70 年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。

同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。

发展到今日,国外对车牌检测的研究已经取得了一些令人瞩目的成就,识别率都在80%以上,甚至有高于90%。

并且已经实现了产品化,并在实际的交通系统中得到了广泛的应用。

目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。

相关文档
最新文档