2020年乐山市初三数学上期末一模试题及答案

合集下载

乐山市市中区九年级上期末数学考试题

乐山市市中区九年级上期末数学考试题

乐山市市中区2020—2021学年度上期期末调研考试九年级数学试题 2021.1本试题卷分第一部分(选择题)和第二部分(非选择题),共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第一部分 选择题(共30分)注意事项:1. 选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上.2. 在每小题给出的四个选项中,只有一个选项符合题目要求.一、选择题:本大题共10题,每题3分,共30分. 1.计算9的结果等于(A )3(B )±3 (C (D )2.方程2(1)0x -=的解是(A )12=11x x =-, (B )12=12x x =-,(C )121x x == (D )121x x ==- 3. 线段a 、b 有25=-b a a ,则a ∶b 为 (A )2∶3 (B )3∶2 (C )3∶5 (D )5∶34. 某商品经过连续两次降价,价格由121元降到81元,已知两次降价的百分率相同. 设每次降价百分率为x ,根据题意列方程为(A )()1211812=+x (B )()1211812=-x(C )()8111212=+x (D )()8111212=-x5. 将抛物线22y x =向左平移1个单位,再向下平移2个单位,得到的抛物线为 (A )22(1)2y x =-+ (B )22(1)2y x =-- (C )22(1)2y x =++ (D )22(1)2y x =+- 6. 在Rt △ABC 中,∠C =90 º,若AB =30,sin A =23,则AC = (A )15 (B )215 (C )315 (D )330 7. 已知一次函数3)2(-+-=n x m y (m 、n 为常数)的图象如图1所示,化简代数式22)4(96-+--+-m n m n n 的结果是(A )1 (B )n 21- (C )7 (D )m 27-8. 已知x 1、x 2是关于x 的方程022=+-a x x 的两个实数根,且82221=-x x ,则a =(A )3 (B )3- (C )4 (D )4- 9. 如图2,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =41CD ,下列结 论:①∠BAE =30°;②△ABE ∽△AEF ;③AE ⊥EF ; ④EF 2=CF ·AF .其中正确结论的个数为 (A )1 (B )2(C )3 (D )410. 如图3,在平面直角坐标系中,长为2的线段CD (点D 在点C 的右侧)在x 轴上移动,A (0,2),B (0,4),连接AC 、BD , 则AC +BD 的最小值为 (A) (B)(C) (D)图2FE DCAB图3第二部分 非选择题(共120分)注意事项:1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效.2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤. 4.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分. 11x 的取值范围是 ▲ .14. 如图5,在△ABC 中,已知D 、E 分别是边BC 、AB 的中点,若△ADE 的面积是2,则△ABC 的面积为 ▲ .15. 如图6,在等腰Rt △ABC 中,∠ACB =90°,AD 是BC 边上的中线, CE ⊥AD 于F ,交AB 于E .则AEEB的值为 ▲ .16.已知二次函数62++-=x x y 及一次函数m x y +-=数在x 轴上方的部分图象沿x 轴翻折到x 分不变,得到一个新的函数(如图7所示).当直线m x y +-= 与新图象有4个交点时,m 的取值范围是 ▲ .ED CBA图5F E D CBA图6图7三、(本大题共3题.每题9分,共27分) 17. 计算:︒-⨯+-45cos 68421.18.解方程:x x x -=-4)2(.19.如图8,△ABC 的顶点坐标分别为(-3,0)、(-1,0)、(-2,2),将△ABC 沿x 轴向右平移3个单位,得到△111C B A ;然后再以原点O 为位似中心,将△111C B A 的图形放大到原来的2倍得 到△222C B A .请画出△111C B A 和△222C B A 的图形,并 写出△222C B A 的三个顶点的坐标.四、(本大题共3题.每题10分,共30分)20.如图9,在△ABC 中,D 为BC 边上一点,∠BAD =∠C . (1)求证:△ABD ∽△CBA ; (2)若AB =6,BD =3,求CD 的长.22. 为了了解疫情期间学生网络学习的学习效果,某中学随机抽取了部分学生进行调查.要求每位学生从“优秀”、“良好”、“一般”、“不合格”四个等次中,选择一项作为自我评DCBA图9图10图8价网络学习的效果.现将调查结果绘制成如图两幅不完整的统计图(如图11所示).请你结合图中所给信息解答下列问题: (1)这次调查共抽查了 ▲ 人;(2)将条形统计图补充完整,并计算出扇形统计图中,学习效果为“一般”的学生人数所在扇形的圆心角的度数;(3)张老师在他所在班上随机抽取了4名学生,其中学习效果“优秀”的1人,“良好”的2人,“一般”的1人.若再从这4人中随机抽取2人,请用画树状图的方法,求 出抽取到的2人学习效果全是“良好”的概率.五、(本大题共2题.每题10分,共20分)23. 如图12,抛物线c bx x y ++=2与x 轴交于A 、B 两点,与y 轴交于C 点,D 是抛物线的顶点,直线m kx y +=经过B 、C 两点.若抛物线的对称轴为直线1=x ,且点A 的坐标为(1-,0).(1)求抛物线的解析式及顶点D 的坐标;(2)根据图象,写出不等式c bx x ++2>m kx +的解集; (3)求点D 到直线BC 的距离.24. 已知关于x 的方程022)1(2=++-kx x k . (1)求证:无论常数k 为何值,方程总有实数根; (2)若方程的两个实数根分别为1x 、2x ,且1212110x x x x ++⋅=.求k 的值. 图11不合格一般优秀40%良好学习效果图12六、(本大题共2题.25题12分,26题13分,共25分)25. 我国互联网的发展已经走到了世界的前列,尤其是电子商务.据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y (件)与销售单价x (元)之间 (温馨提示:若0≤ab ,则⎩⎨⎧≤≥00b a 或⎩⎨⎧≥≤00b a )26.如图,已知点O 是△ABC 中BC 边上一动点(不含端点),且OCk OB=(0k ≠,k 为常数),过点O 的直线分别交直线AB 、AC 于点M 、N ,设AB m AM =,ACn AN=. (1)如图14—1所示,当1=k ,即O 是BC 的中点时,求n m +的值; (2)如图14—2所示,当1≠k 时,试探究m 与n 之间的关系; (3)在(2)的条件下,求mn 的最大值.图14-1 图14-2NMOCBAAB COMNy。

【初三数学】乐山市九年级数学上期末考试单元检测试题(含答案解析)

【初三数学】乐山市九年级数学上期末考试单元检测试题(含答案解析)

人教版九年级数学上册期末考试试题【答案】一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.66.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.77.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.二次函数y=ax2+4x+a的最大值是3,则a的值是.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC 的长为,CD的长.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD 与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO 绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标.2018-2019学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据相似三角形的性质解答即可.【解答】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.【点评】此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.【点评】此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【分析】根据相似三角形的判定和性质列比例式即可得到结论.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【分析】利用弧长公式可得.【解答】解:=.故选:D.【点评】此题主要是利用弧长公式进行计算,学生要牢记公式.8.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【解答】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,﹣6<﹣2<0<2,∴x2<x1<x3,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【分析】本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20﹣x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.【解答】解:设一条直角边为x,则另一条为(20﹣x),∴S=x(20﹣x)=﹣(x﹣10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.11.【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.【点评】本题主要考查切线的性质及直角三角形的勾股定理.12.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选:B.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.二、填空题(本大题共名小题,每小题3分,共18分)13.【分析】根据反比例函数的一般式是(k≠0)或y=kx﹣1(k≠0),即可求解.【解答】解:∵y=x m﹣1是反比例函数,∴m﹣1=﹣1,解得m=0.故答案为:0.【点评】本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【解答】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点评】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.【分析】根据二次函数的最大值公式列出方程计算即可得解.【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.【分析】根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH为等腰直角三角形得到BH=CH=BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.20.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.【分析】(Ⅰ)依据一次函数,求得B(﹣2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=﹣5;当x=5时,y=﹣2,即可得到函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.【解答】解:(Ⅰ)在y=﹣2x+1中,令y=5,则x=﹣2,∴B(﹣2,5),代入反比例函数y=,可得k=﹣2×5=﹣10,∴反比例函数的解析式为,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=﹣5;当x=5时,y=﹣2,∴函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)当x=0时,y=﹣2x+1=1,∴A(0,1),∴OA=1,∴S=OA•|x B|=×1×2=1.△AOB【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.【分析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.【解答】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点评】本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.【分析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.【解答】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB﹣∠BAC=15°,∵∠ABE=∠ADE,∴∠ADE=15°,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC﹣∠DAO=45°,且∠C=60°∴∠ADC=75°【点评】本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AA′K=60°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【分析】(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣ a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y =﹣x 2+mx +n 经过A (﹣1,0),C (0,2). 解得:,∴抛物线的解析式为:y =﹣x 2+x +2;(2)∵y =﹣x 2+x +2,∴y =﹣(x ﹣)2+,∴抛物线的对称轴是x =.∴OD =.∵C (0,2),∴OC =2.在Rt △OCD 中,由勾股定理,得CD =.∵△CDP 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD .作CM ⊥x 对称轴于M ,∴MP 1=MD =2,∴DP 1=4.∴P 1(,4),P 2(,),P 3(,﹣);(3)当y =0时,0=﹣x 2+x +2∴x 1=﹣1,x 2=4,∴B (4,0).设直线BC 的解析式为y =kx +b ,由图象,得,解得:,∴直线BC 的解析式为:y =﹣x +2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣ a +2),F (a ,﹣ a 2+a +2), ∴EF =﹣a 2+a +2﹣(﹣a +2)=﹣a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD •OC +EF •CM +EF •BN ,=+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a +(0≤a ≤4).=﹣(a ﹣2)2+∴a =2时,S 四边形CDBF 的面积最大=, ∴E (2,1).【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的人教版九年级数学上册期末考试试题【答案】一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.66.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.77.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.二次函数y=ax2+4x+a的最大值是3,则a的值是.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC 的长为,CD的长.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD 与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO 绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标.2018-2019学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据相似三角形的性质解答即可.【解答】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.【点评】此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.【点评】此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【分析】根据相似三角形的判定和性质列比例式即可得到结论.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【分析】利用弧长公式可得.【解答】解:=.故选:D.【点评】此题主要是利用弧长公式进行计算,学生要牢记公式.8.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【解答】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,。

2020年九年级数学上期末一模试卷及答案

2020年九年级数学上期末一模试卷及答案
11.A
解析:A 【解析】 【分析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概 率: 【详解】 列表如下:
23.如图,平面直角坐标系中,每个小正方形边长是 1.
(1)画出△ABC 关于原点中心对称的得到△A1B1C1; (2)画出△ABC 关于 C 点顺时针旋转 90°的△A2B2C2; (3)在(2)的条件下,求出 B 点旋转后所形成的弧线长. 24.如图,将△ABC 绕点 C 顺时针旋转得到△DEC,使点 A 的对应点 D 恰好落在边 AB 上,点 B 的对应点为 E,连接 BE. (Ⅰ)求证:∠A=∠EBC; (Ⅱ)若已知旋转角为 50°,∠ACE=130°,求∠CED 和∠BDE 的度数.
A. 3 10
B. 9 25
C. 9 20
12.已知二次函数 y=ax2+bx+c 中,y 与 x 的部分对应值如下:
D. 3 5
x
1.1 1.2 1.3 1.4 1.5 1.6
﹣﹣﹣﹣
y
0.25 0.76
1.59 1.16 0.71 0.24
则一元二次方程 ax2+bx+c=0 的一个解 x 满足条件( )
即﹣ b =﹣1,解得 b=2a,即 2a﹣b=0, 2a
所以②错误; ③∵抛物线 y=ax2+bx+c 经过点(1,0),且对称轴为直线 x=﹣1, ∴抛物线与 x 轴的另一个交点为(﹣3,0), 当 a=﹣3 时,y=0,即 9a﹣3b+c=0, 所以③正确; ∵m>n>0, ∴m﹣1>n﹣1>﹣1, 由 x>﹣1 时,y 随 x 的增大而减小知 x=m﹣1 时的函数值小于 x=n﹣1 时的函数值,故④ 正确; 故选:D. 【点睛】 本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及 点的坐标特征.

2022-2023学年四川省乐山市数学九年级第一学期期末检测试题含解析

2022-2023学年四川省乐山市数学九年级第一学期期末检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x ,那么下面列出的方程正确的是( )A .180(1+x )=300B .180(1+x )2=300C .180(1﹣x )=300D .180(1﹣x )2=3002.方程230x x +-=的两根分别是12x x 、,则12x x +等于 ( )A .1B .-1C .3D .-33.下列事件为必然事件的是( )A .打开电视机,正在播放新闻B .任意画一个三角形,其内角和是180︒C .买一张电影票,座位号是奇数号D .掷一枚质地均匀的硬币,正面朝上4.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为( )A .3B .5C .7D .95.已知关于x 的分式方程23(3)(6)36mx x x x x +=----无解,关于y 的不等式组21(42)44y y y m ≥⎧⎪⎨--<⎪⎩的整数解之和恰好为10,则符合条件的所有m 的和为( )A .92B .72C .52D .326.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 27.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .128.我们把宽与长的比等于黄金比512⎛⎫- ⎪ ⎪⎝⎭的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB <)BC 中,ABC ∠的平分线交AD 边于点E ,EF BC ⊥于点F ,则下列结论错误..的是( )A .AE BE AD AE =B .CF BF BF BC = C .AE BE BE BC =D .DE AB EF BC= 9.由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )A .B .C .D .10.如图,平行四边形OABC 的顶点O ,B 在y 轴上,顶点A 在()110k y k x =<上,顶点C 在()220k y k x=>上,则平行四边形OABC 的面积是( )A .12k -B .22kC .12k k +D .21k k -二、填空题(每小题3分,共24分)11.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 1.12.设x 1,x 2是方程x 2+3x ﹣1=0的两个根,则x 1+x 2=_____.13.抛物线y =﹣12x 2向上平移1个单位长度得到抛物线的解析式为_____. 14.如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 上的一动点,连接PC ,过点P 作PE ⊥PC 交AB 于点E .以CE 为直径作⊙O ,当点P 从点A 移动到点D 时,对应点O 也随之运动,则点O 运动的路程长度为_____.15.如图,正方形ABCD 中,E 是AD 的中点,BM ⊥CE ,AB=6,则BM=_____________.16.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.17.如图,以等边△ABC 的一边AB 为直径的半圆O 交AC 于点D ,交BC 于点E ,若AB =4,则阴影部分的面积是______.18.如图所示,已知ABC 中,12BC =,BC 边上的高6h =,D 为BC 上一点,EF BC ∥,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则DEF 的面积y 关于x 的函数图象大致为__________.三、解答题(共66分)19.(10分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.20.(6分)某土特产专卖店销售甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售).试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y=﹣10x+1.若现在以每千克x元销售时,每天销售甲种干果可盈利w元.(盈利=售价﹣进价).(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元.21.(6分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.(1)求证:∠BAC=∠AED;(2)在边AC取一点F,如果∠AFE=∠D,求证:AD AF BC AC.22.(8分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.23.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE(Ⅰ)求证:AE是⊙O的切线;(Ⅱ)若∠DBC=30°,DE=1 cm,求BD的长.24.(8分)如图,点D是∠AOB的平分线OC上任意一点,过D作DE⊥OB于E,以DE为半径作⊙D,①判断⊙D与OA的位置关系,并证明你的结论.②通过上述证明,你还能得出哪些等量关系?25.(10分)小明想要测量一棵树DE的高度,他在A处测得树顶端E的仰角为30°,他走下台阶到达C处,测得树的顶端E的仰角是60°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.求树DE的高度;26.(10分)随机抽取某小吃店一周的营业额(单位: 元)如下表:星期一星期二星期三星期四星期五星期六星期日合计54068064064078011101070(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月(按30天计算)的营业额,星期一到星期五营业额相差不大,用这5天的平均数估算合适么?简要说明理由.参考答案一、选择题(每小题3分,共30分)1、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.2、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵230x x +-=的两根分别是12x x 、, ∴12111x x +=-=-,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.3、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】∵A ,C ,D 选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B ,任意画一个三角形,其内角和是180︒,是必然事件,符合题意.故选B .【点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【详解】解:把x =﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B .【点睛】此题考查代数式求值,解题关键在于掌握运算法则.5、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m 的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m 的范围,进而求出符合条件的所有m 的和即可. 【详解】解:23(3)(6)36mx x x x x +=----, 分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=31m -,由分式方程无解,得到:331m =-或361m =-, 解得:m=2或m=32, 不等式组整理得:072y y m ≥⎧⎪⎨<+⎪⎩, 即0≤x <72m +, 由整数解之和恰好为10,得到整数解为0,1,2,3,4, 可得4<72m +≤5, 即1322m <≤, 则符合题意m 的值为1和32,之和为52. 故选:C .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6、D【分析】抛物线的形状只是与a 有关,a 相等,形状就相同.【详解】y =1(x ﹣1)1+3中,a =1.故选D .【点睛】本题考查了抛物线的形状与a 的关系,比较简单.7、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P (大于3)=3162=. 故选D .点睛:本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.8、C 【分析】设()51AB a =-,则2AD a =,根据黄金矩形的概念结合图形计算,据此判断即可. 【详解】因为矩形ABCD 宽与长的比等于黄金比512-, 因此,设()51AB a =-,则2AD a =, 则选项A.512AE DE AD AE -==,B.512CF BF BF BC -==,D.512DE AB EF BC -==正确, C.选项中等式22AE BE =,1022BE BC -= , ∴AE BE BE BC≠; 故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为512-是解题的关键. 9、A【解析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.10、D【分析】先过点A 作AE ⊥y 轴于点E ,过点C 作CD ⊥y 轴于点D ,再根据反比例函数系数k 的几何意义,求得△ABE的面积=△COD 的面积相等=12|k 2|,△AOE 的面积=△CBD 的面积相等=12|k 1|,最后计算平行四边形OABC 的面积. 【详解】解:过点A 作AE ⊥y 轴于点E ,过点C 作CD ⊥y 轴于点D ,根据∠AEB=∠CDO=90°,∠ABE=∠COD ,AB=CO 可得:△ABE ≌△COD (AAS ),∴S △ABE 与S △COD 相等,又∵点C 在()220k y k x=>的图象上, ∴S △ABE =S △COD =12|k 2|, 同理可得:S △AOE =S △CBD =12|k 1|, ∴平行四边形OABC 的面积=2(12|k 2|+12|k 1|)=|k 2|+|k 1|=k 2-k 1, 故选D .【点睛】本题主要考查了反比例函数系数k 的几何意义,在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.二、填空题(每小题3分,共24分)11、60π【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC 222268OB OC ++10(cm ),∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 1). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.12、﹣1.【分析】直接根据一元二次方程根与系数的关系求解即可.【详解】解:∵x 1,x 2是方程x 2+1x ﹣1=0的两个根,∴x 1+x 2=﹣1.故答案为﹣1.【点睛】本题考查了根与系数的关系: x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=- b a ,x 1x 2=c a . 13、y =﹣212x +1 【分析】直接根据平移规律作答即可. 【详解】解:抛物线y =﹣12x 2向上平移1个单位长度得到抛物线的解析式为y =﹣12x 2+1, 故答案为:y =﹣12x 2+1. 【点睛】本题考查了函数图像的平移. 要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.14、98. 【分析】连接AC ,取AC 的中点K ,连接OK .设AP =x ,AE =y ,求出AE 的最大值,求出OK 的最大值,由题意点O 的运动路径的长为2OK ,由此即可解决问题. 【详解】解:连接AC ,取AC 的中点K ,连接OK .设AP =x ,AE =y ,∵PE ⊥CP∴∠APE +∠CPD =90°,且∠AEP +∠APE =90°∴∠AEP =∠CPD ,且∠EAP =∠CDP =90°∵△APE ∽△DCP∴AP AE DC DP, 即x (3﹣x )=2y ,∴y =12x (3﹣x )=﹣12x 2+32x =﹣GXdjs4436236(x ﹣32)2+98, ∴当x =32时,y 的最大值为98,∴AE的最大值=98,∵AK=KC,EO=OC,∴OK=12AE=916,∴OK的最大值为916,由题意点O的运动路径的长为2OK=98,故答案为:98.【点睛】考查了轨迹、矩形的性质、三角形的中位线定理和二次函数的应用等知识,解题的关键是学会构建二次函数解决最值问题.15、125 5【分析】根据正方形的性质,可证△BCM∽△CED,可得CD CEBM BC=,即可求BM的长【详解】解:正方形ABCD中,AB=6,E是AD的中点,故ED=3;CE=35,∵BM⊥CE,∴△BCM∽△CED,根据相似三角形的性质,可得CD CE BM BC=,解得:BM=1255.【点睛】主要考查了正方形的性质和相似三角形的判定和性质.充分利用正方形的特殊性质来找到相似的条件从而判定相似后利用相似三角形的性质解题.一般情况下求线段的长度常用相似中的比例线段求解.16、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:261.62x+=,解得:x=6.1.故答案为6.1.17、3 【分析】作辅助线证明△AOD ≌△DOE ≌△EOB ≌△CDE,且都为等边三角形,利用等边三角形面积公式S=23a 4即可解题.【详解】解:连接DE,OD,OE,在圆中,OA=OD=OE=OB,∵△ABC 是等边三角形,∴∠A=60°,∴△AOD ≌△DOE ≌△EOB ≌△CDE,且都为等边三角形,∵AB =4,即OA=OD=OE=OB=2,易证阴影部分面积=S △CDE =1232⨯⨯=3.【点睛】本题考查了圆的性质,等边三角形的判定和面积公式,属于简单题,作辅助线证明等边三角形是解题关键.18、抛物线y =-x 2+6x .(0<x <6)的部分.【分析】可过点A 向BC 作AH ⊥BC 于点H ,所以根据相似三角形的性质可求出EF ,进而求出函数关系式,由此即可求出答案.【详解】解:过点A 向BC 作AH ⊥BC 于点H ,∵EF BC ∥∴△AEF ∽△ABC∴EF h x BC h -=即6126y x -=, ∴y=12×2(6-x )x=-x 2+6x .(0<x <6) ∴该函数图象是抛物线y =-x 2+6x .(0<x <6)的部分.故答案为:抛物线y =-x2+6x.(0<x<6)的部分.【点睛】此题考查相似三角形的判定和性质,根据几何图形的性质确定函数的图象能力.要能根据函数解析式及其自变量的取值范围分析得出所对应的函数图像的类型和所需要的条件,结合实际意义分析得解.三、解答题(共66分)19、(1)y=;(1);(3)点E的坐标为(3,1).【解析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(1)利用配方法可求出点M的坐标,利用二次函数图象上点的坐标特征可求出点C的坐标,过点M作MH⊥y轴,垂足为点H,利用分割图形求面积法可得出△AMC的面积;(3)连接OB,过点B作BG⊥x轴,垂足为点G,则△BGA,△OCB是等腰直角三角形,进而可得出∠BAO=∠DBO,由∠DOB+∠BOE=45°,∠BOE+∠EOA=45°可得出∠EOA=∠DOB,进而可证出△AOE∽△BOD,利用相似三角形的性质结合抛物线的对称轴为直线x=1可求出AE的长,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,根据等腰直角三角形的性质可得出AF、EF的长,进而可得出点E的坐标.【详解】解:(1)将A(4,0),B(1,1)代入y=ax1+bx+1,得:,解得:,∴抛物线的表达式为y=﹣x1+x+1.(1)∵y=﹣x1+x+1=﹣(x﹣1)1+,∴顶点M的坐标为(1,).当x=0时,y=﹣x1+x+1=1,∴点C的坐标为(0,1).过点M作MH⊥y轴,垂足为点H,如图1所示.∴S△AMC=S梯形AOHM﹣S△AOC﹣S△CHM,=(HM+AO)•OH﹣AO•OC﹣CH•MH,=×(1+4)×﹣×4×1﹣×(﹣1)×1,=.(3)连接OB,过点B作BG⊥x轴,垂足为点G,如图1所示.∵点B的坐标为(1,1),点A的坐标为(4,0),∴BG=1,GA=1,∴△BGA是等腰直角三角形,∴∠BAO=45°.同理,可得:∠BOA=45°.∵点C的坐标为(1,0),∴BC=1,OC=1,∴△OCB是等腰直角三角形,∴∠DBO=45°,BO=1,∴∠BAO=∠DBO.∵∠DOE=45°,∴∠DOB+∠BOE=45°.∵∠BOE+∠EOA=45°,∴∠EOA=∠DOB,∴△AOE∽△BOD,∴.∵抛物线y=﹣x1+x+1的对称轴是直线x=1,∴点D的坐标为(1,1),∴BD=1,∴,∴AE=,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,∴EF=AF=1,∴点E的坐标为(3,1).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、三角形(梯形)的面积、相似三角形的判定与性质以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(1)利用分割图形求面积法结合三角形、梯形的面积公式,求出△AMC的面积;(3)通过构造相似三角形,利用相似三角形的性质求出AE的长度.20、(1)w=﹣10x2+1100x﹣28000,(40≤x≤60);(2)单价为每千克55元时,日销售利润最高,最高为2250元;(3)售价应定为每千克54元.【分析】(1)根据盈利=每千克利润×销量,列函数关系式即可;(2)根据二次函数的性质即可得到结论;(3)根据每天获利2240元列出方程,然后取较小值即可.【详解】解:(1)根据题意得,w=(x﹣40)•y=(x﹣40)•(﹣10x+1)=﹣10x2+1100x﹣28000,(40≤x≤60);(2)由(1)可知w=﹣10x2+1100x﹣28000,配方得:w=﹣10(x﹣55)2+2250,∴单价为每千克55元时,日销售利润最高,最高为2250元;(3)由(1)可知w=﹣10x2+1100x﹣28000,∴2240=﹣10x2+1100x﹣28000,解得:x1=54,x2=56,由题意可知x2=56(舍去),∴x=54,答:售价应定为每千克54元.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出w与x之间的关系是解题关键.21、见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得AD DEBC AC=,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴AB BC AE AD=,∴△CBA∽△DAE,∴∠BAC=∠AE D.(2)由(1)得△DAE∽△CBA∴∠D=∠C,AD DE BC AC=,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴AD AF BC AC=.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出CG EGAH EH=,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【详解】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴CG EG AH EH=即:CD EF FD AH FD BD-=+∴3 1.62215 AH-=+∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.23、(Ⅰ)见解析;(Ⅱ)4.【详解】(Ⅰ)证明:连结OA,∵DA 平分∠BDE ,∴∠ADE =∠ADO ,∵OA=OD ,∴∠OAD =∠ADO ,∴∠ADE =∠OAD ,∴OA ∥CE ,∵AE ⊥CD ,∴AE ⊥OA ,∴AE 是⊙O 的切线;(Ⅱ)∵BD 是⊙O 的直径,∴∠BCD =90°,∵∠DBC=30°,∴∠BDE =120°,∵DA 平分∠BDE ,∴∠ADE =∠ADO=60°,∵OA=OD ,∴△OAD 是等边三角形,∴AD=OD=12BD , 在Rt △AED 中,DE=1,∠ADE=60°,∴AD=cos 60DE = 2, ∴BD=4.24、(1)⊙D 与OA 的位置关系是相切 ,证明详见解析;(2)∠DOA=∠DOE, OE=OF.【分析】①首先过点D 作DF ⊥OA 于F ,由点D 是∠AOB 的平分线OC 上任意一点,DE ⊥OB ,根据角平分线的性质,即可得DF=DE,则可得D到直线OA的距离等于⊙D的半径DE,则可证得⊙D与OA相切.②根据切线的性质解答即可.【详解】解:①⊙D与OA的位置关系是相切,证明:过D作DF⊥OA于F,∵点D是∠AOB的平分线OC上任意一点,DE⊥OB,∴DF=DE,即D到直线OA的距离等于⊙D的半径DE,∴⊙D与OA相切.②∠DOA=∠DOE,OE=OF.25、树DE的高度为6米.【分析】先根据∠ACB=30°求出AC=1米,再求出∠EAC=60°,解Rt△ACE得EC的长,依据∠DCE=60°,解Rt△CDE 得的长.【详解】∵∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=1.又∵∠DCE=60°,∴∠ACE=90°.∵AF∥BD,∴∠CAF=∠ACB=30°,∴∠EAC=60°.在Rt△ACE中,∵EC tan EACAC∠=,∴43 EC=在Rt△DCE中∵∠DCE=60°,DE sin DCECE∠=,∴3436 DE==.答:树DE的高度为6米.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.26、(1)780,680,640;(2)不合适,理由见解析【分析】(1)根据平均数、中位数、众数的定义,即可得解;(2)根据数值和平均数之间的差距即可判定.【详解】(1)这组数据的平均数是540+680+640+640+780+1110+10707807元,从小到大排列为:540、640、640、680、780、1070、1110,则其中位数是680元,众数是640元.(2)不合适理由:星期一到星期五的日平均营业额相差不大,但是与周六和周日差距较大,平均数受极端值影响较大,所以不合适.【点睛】此题主要考查统计的相关概念,数据波动以及离散程度的相关知识,熟练掌握,即可解题.。

四川省乐山市2020版九年级上学期数学期末考试试卷D卷

四川省乐山市2020版九年级上学期数学期末考试试卷D卷

四川省乐山市2020版九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)(2020·安徽模拟) 在Rt△ABC中,如果,那么表示的()A . 正弦B . 正切C . 余弦D . 余切2. (2分)如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A . EG=4GCB . EG=3GCC . EG= GCD . EG=2GC3. (2分) (2020九上·新昌期末) 已知⊙O的半径为3,直线l与⊙O相交,则圆心O到直线l的距离d的取值范围是()A . d=3B . d>3C . 0≤d<3D . d<34. (2分) (2017九上·东丽期末) 抛物线的顶点坐标是()A .B .C .D .5. (2分)如图,△ABC中,点D在线段BC上,且△ABC∽△DBA ,则下列结论一定正确的是()A . AB2=AC·DCB . AB2=AC·BDC . AB·AD=BC·BDD .AB·AC=AD·BC6. (2分) (2016九下·赣县期中) 如图.已知A、B、C三点在⊙O上,点C在劣弧AB上,且∠AOB=130°,则∠ACB的度数为()A . 130°B . 125°C . 120°D . 115°7. (2分)若m<-1,则下列函数:①y=,②y=-mx+1,③y=m(x+1)2 ,④y=(m+1)x2(x<0)中,y的值随x的值增大而增大的函数共有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2018九上·青海期中) 如图,,,是上的三点,且,则的度数是()A .B .C .D . 或9. (2分)如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数为()A . 90°B . 60°C . 45°D . 30°二、填空题 (共5题;共5分)10. (1分)(2019·紫金模拟) 计算:·cos45°=________.11. (1分)将等式3x﹣2y=7变形成用y的代数式表示x=________.12. (1分)(2019·徽县模拟) 如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为________cm2.13. (1分)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为________14. (1分)直线y=3x+b与y轴交点(0,-2),则这条直线不经过第________象限.三、解答题 (共11题;共100分)15. (1分)如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为________cm.16. (10分)计算:(1) |﹣ |+(﹣)﹣1﹣2sin45°+()0(2)(a﹣)÷ .17. (10分)(2017·安徽模拟) 若两个二次函数图象的顶点相同,开口大小相同,但开口方向相反,则称这两个二次函数为“对称二次函数”.(1)请写出二次函数y=2(x﹣2)2+1的“对称二次函数”;(2)已知关于x的二次函数y1=x2﹣3x+1和y2=ax2+bx+c,若y1﹣y2与y1互为“对称二次函数”,求函数y2的表达式,并求出当﹣3≤x≤3时,y2的最大值.18. (10分)(2013·绍兴) 若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD 中,BC=2AB,则称ABCD为方形.(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1,B2C2,B3C3,B4C4的对边分别在B2C2,B3C3,B4C4,BC上,如图2所示.①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比.19. (10分)(2018·富阳模拟) 直线经过原点,若反比例函数的图象与直线相交于点,且点的纵坐标是3.(1)求的值.(2)结合图象求不等式的解集.20. (5分)(2018·河南模拟) 如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)21. (10分) (2018九上·罗湖期末) 如图,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.(1)求证:△APD≌△CPD.(2)当菱形ABCD变为正方形,且PC=2,tan∠PFA= 时,求正方形ABCD的边长.22. (11分)有这样一个问题:探究函数y= x2+ 的图象与性质,小东根据学习函数的经验,对函数y= x2+ 的图象与性质进行了探究,下面是小东的探究过程,请补充完整:(1)下表是y与x的几组对应值.x…﹣3﹣2﹣1123…m…y…﹣(2)在如图所示的平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并画出该函数的大致图象;(3)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应方程 x2+ =0有________个实数根;②方程 x2+ =2有________个实数根;③结合函数的图象,写出该函数的一条性质________.23. (10分)(2020·金华模拟) 如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF,AD.(1)求证:FE是⊙O的切线;(2)若⊙O的半径为3,∠B=30°,求F点到直线AD的距离.24. (17分)(2018九上·衢州期中) 对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(-1,n),请完成下列任务:(1)(尝试)当t=2时,抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标为________;(2)判断点A是否在抛物线L上;(3)求n的值.(4)(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为________.(5)(应用)二次函数y=-3x2+5x+2是二次函数y=x23x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.25. (6分)(2020·北京模拟) 在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是________.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共5题;共5分)10-1、11-1、12-1、13-1、14-1、三、解答题 (共11题;共100分)15-1、16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、24-4、24-5、25-1、25-2、。

四川省乐山市九年级上学期数学期末试卷

四川省乐山市九年级上学期数学期末试卷

四川省乐山市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020七下·淮阳期末) 如图所示,已知△ABC与△CDA关于点O对称,过O作EF分别交AD,BC 于点E,F,下面的结论:①点E和点F,点B和点D是关于点O的对应点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的有()A . 1个B . 2个C . 3个D . 5个2. (2分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积之比为()A . 4:3B . 3:4C . 16:9D . 9:163. (2分)(2017·承德模拟) 如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A .B . 2C . 3D . 34. (2分)(2018·通辽) 已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A . 30°B . 60°C . 30°或150°D . 60°或120°5. (2分)(2019·哈尔滨) 点(-1,4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是().A . (4,-1)B . (,1)C . (-4,-1)D . (,2)6. (2分)(2013·宁波) 如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A . abc<0B . 2a+b<0C . a﹣b+c<0D . 4ac﹣b2<0二、填空题 (共8题;共10分)7. (1分) (2018九上·罗湖期末) 有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为________.8. (1分)(2020·武汉模拟) 关于抛物线(为常数),下来结论一定正确的是________(填序号即可).①开口向上;②顶点不可能在第三,四象限;③点,是抛物线上的两点,则;④ 取任意实数,顶点所在的曲线为 .9. (1分) (2016九上·安陆期中) 如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b 的值为________.10. (1分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=________.11. (2分) (2016九上·鄞州期末) 如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.12. (1分) (2016九上·吴中期末) 如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.13. (1分) (2018九上·拱墅期末) 如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB为4.2米,则该隧道最高点距离地面________米.14. (2分)(2019·泰兴模拟) 如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.三、解答题 (共12题;共85分)15. (5分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?16. (2分) (2019八上·秀洲期末) 如图,在△ABC中,AB=2AC,AD平分∠BAC且AD=BD.求证:CD⊥AC17. (2分) (2016九上·济宁期中) 小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率.(2)你认为这个游戏公平吗?请说明理由.18. (5分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ 的解集.19. (7分)(2019·朝阳) 有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为________.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.20. (5分) (2020九下·黄石月考) 如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交⊙D于M,BE 交AD于N.求证:△BND∽△ABD.21. (10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数y= 的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).(1)求k的值;(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.22. (11分)(2017·路北模拟) 如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.(1)填空:A点坐标为(________,________),D点坐标为(________,________);(2)若抛物线y= x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)23. (10分) (2017九下·台州期中) 如图,在矩形ABCD中,AD>AB , AE是∠BAC的平分线交BC于点E ,以AC上一点O为圆心作圆,使⊙O经过A , E两点,⊙O交AC于点F ,(1)求证:BC是⊙O的切线;(2)若AB=3,∠BAC=60°,试求图中阴影部分的面积.24. (10分)(2013·丽水) 如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.25. (2分)(2016·大兴模拟) 如图,已知AB是⊙O的直径,点H在⊙O上,E是的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;(2)若FB=2,tan∠CAE= ,求OF的长.26. (16分)(2019·徐州) 如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为 .求证:(1);(2) .参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共85分)15-1、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

乐山市2020初三数学九年级上册期末试题和答案

乐山市2020初三数学九年级上册期末试题和答案

乐山市2020初三数学九年级上册期末试题和答案一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定3.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定5.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=6.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .227.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤8.一元二次方程x 2-x =0的根是( ) A .x =1 B .x =0 C .x 1=0,x 2=1 D .x 1=0,x 2=-1 9.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定10.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限11.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>12.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1913.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=600二、填空题16.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.17.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.18.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____. 19.抛物线y=(x﹣2)2﹣3的顶点坐标是____.20.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;21.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.22.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.23.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.24.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.25.方程290x的解为________.26.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大. 32.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 33.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.34.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).35.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.四、压轴题36.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 38.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.39.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.40.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n 时y 取最大值,即2n=﹣(n ﹣1)2+5, 解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n 时,当x=m 时y 取最小值,即2m=﹣(m ﹣1)2+5, 解得:m=﹣2.当x=1时y 取最大值,即2n=﹣(1﹣1)2+5, 解得:n=52, 或x=n 时y 取最小值,x=1时y 取最大值, 2m=-(n-1)2+5,n=52, ∴m=118, ∵m <0,∴此种情形不合题意, 所以m+n=﹣2+52=12. 2.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.B解析:B 【解析】 【分析】利用概率的意义直接得出答案. 【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B . 【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.5.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.6.C解析:C 【解析】 【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长. 【详解】 如图,连接BD ,∵四边形ABCD 是正方形,边长为2, ∴BC=CD=2,∠BCD=90°, ∴,∵正方形ABCD 是⊙O 的内接四边形,∴BD 是⊙O 的直径,∴⊙O 的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD 是直径是解题关键.7.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a ,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.8.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.9.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a ﹣1≠0,∴a≠1,∴a 的值为﹣1.故选:C .【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.10.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B . 11.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.12.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.13.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.14.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.17.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键. 19.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.20.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.25.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.26.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.27.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 =,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.28..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.29.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】 (1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10 故甲组中位数:(8+9)÷2=8.5 乙组平均分:(9+6+8+10+7+8)÷6=8 填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.30.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.三、解答题31.(1)7;(2)日最低气温波动大. 【解析】 【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案 (2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可. 【详解】 解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃ (2)最高气温的平均数:5768465x ++++==高最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出,最低气温的平均数:0x =低 最低气温的方差为:23.6S =低∵22S S 低高 ∴日最低气温波动大. 【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.32.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b 【解析】 【分析】(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方法二:化简得y =x 2+4x -m 2-4m ,令y =0,可得b 2-4ac ≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a 与b 的大小. 【详解】 (1)方法一:令y =0,(x -m )(x +m +4)=0,解得x 1=m ;x 2=-m -4.当m =-m -4,即m =-2,方程有两个相等的实数根,故二次函数与x 轴有一个公共点;当m ≠-m -4,即m ≠-2,方程有两个不相等的实数根,故二次函数与x 轴有两个公共点.综上不论m 为何值,该二次函数的图像与x 轴有公共点. 方法二:化简得y =x 2+4x -m 2-4m .令y =0,b 2-4ac =4m 2+16m +16=4(m +2)2≥0,方程有两个实数根. ∴不论m 为何值,该二次函数的图像与x 轴有公共点. (2)由题意知,函数的图像的对称轴为直线x =-2 ①当n =-3时,a =b ; ②当-3<n <-1时,a >b ③当n <-3或n >-1时,a <b 【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,并且注意分情况讨论. 33.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析 【解析】 【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可; (2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可. 【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键. 34.(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);。

乐山市2020初三数学九年级上册期末试题和答案

乐山市2020初三数学九年级上册期末试题和答案

乐山市2020初三数学九年级上册期末试题和答案一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定3.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=4.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是( ) A .小于12B .等于12C .大于12D .无法确定5.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=6.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C .2D .227.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤8.一元二次方程x 2-x =0的根是( ) A .x =1 B .x =0 C .x 1=0,x 2=1 D .x 1=0,x 2=-1 9.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定10.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限11.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >=C .123y y y >>D .123y y y =>12.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1913.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=600二、填空题16.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.17.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.18.关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,则m满足的条件是_____. 19.抛物线y=(x﹣2)2﹣3的顶点坐标是____.20.在△ABC中,∠C=90°,若AC=6,BC=8,则△ABC外接圆半径为________;21.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.22.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.23.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.24.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.25.方程290x的解为________.26.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.下表是某地连续5天的天气情况(单位:C ︒): 日期 1月1日 1月2日 1月3日 1月4日 1月5日 最高气温 5 7 6 8 4 最低气温-2-213(1)1月1日当天的日温差为______C ︒(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大. 32.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 33.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.34.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).35.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.四、压轴题36.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.37.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 38.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.39.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.40.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n 时y 取最大值,即2n=﹣(n ﹣1)2+5, 解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n 时,当x=m 时y 取最小值,即2m=﹣(m ﹣1)2+5, 解得:m=﹣2.当x=1时y 取最大值,即2n=﹣(1﹣1)2+5, 解得:n=52, 或x=n 时y 取最小值,x=1时y 取最大值, 2m=-(n-1)2+5,n=52, ∴m=118, ∵m <0,∴此种情形不合题意, 所以m+n=﹣2+52=12. 2.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.4.B解析:B 【解析】 【分析】利用概率的意义直接得出答案. 【详解】解:抛掷一枚质地均匀的硬币,正面朝上概率等于12, 前6次的结果都是正面朝上,不影响下一次抛掷正面朝上概率,则第7次抛掷这枚硬币,正面朝上的概率为:12, 故选:B . 【点睛】此题主要考查了概率的意义,正确把握概率的定义是解题关键.5.D解析:D 【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AEAB AC =, ∴21()4ADE ABCS DE SBC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误. 故选D.6.C解析:C 【解析】 【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长. 【详解】 如图,连接BD ,∵四边形ABCD 是正方形,边长为2, ∴BC=CD=2,∠BCD=90°, ∴,∵正方形ABCD 是⊙O 的内接四边形,∴BD 是⊙O 的直径,∴⊙O 的半径是1222⨯=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD 是直径是解题关键.7.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x = ∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a ,⑤正确;故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.8.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.9.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a ﹣1≠0,∴a≠1,∴a 的值为﹣1.故选:C .【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.10.B解析:B【解析】【分析】【详解】解:将点(m ,3m )代入反比例函数k y x=得, k=m•3m=3m 2>0;故函数在第一、三象限,故选B . 11.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.12.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.13.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.14.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.17.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.18.【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠m解析:2【解析】【分析】根据一元二次方程的定义ax2+bx+c=0(a≠0),列含m的不等式求解即可.【详解】解:∵关于x的方程(m﹣2)x2﹣2x+1=0是一元二次方程,∴m-2≠0,∴m≠2.故答案为:m≠2.【点睛】本题考查了一元二次方程的概念,满足二次项系数不为0是解答此题的关键. 19.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.20.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB=90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.24.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.25.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这解析:3x=±【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为3x=±.本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.26.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.27.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 =,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.28..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.29.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【解析】 【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】 (1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10 故甲组中位数:(8+9)÷2=8.5 乙组平均分:(9+6+8+10+7+8)÷6=8 填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定. 【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.30.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣x =1,解得:x =故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.三、解答题31.(1)7;(2)日最低气温波动大. 【解析】 【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案 (2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可. 【详解】 解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃ (2)最高气温的平均数:5768465x ++++==高最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出,最低气温的平均数:0x =低 最低气温的方差为:23.6S =低∵22S S 低高 ∴日最低气温波动大. 【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.32.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b 【解析】 【分析】(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方法二:化简得y =x 2+4x -m 2-4m ,令y =0,可得b 2-4ac ≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a 与b 的大小. 【详解】 (1)方法一:令y =0,(x -m )(x +m +4)=0,解得x 1=m ;x 2=-m -4.当m =-m -4,即m =-2,方程有两个相等的实数根,故二次函数与x 轴有一个公共点;当m ≠-m -4,即m ≠-2,方程有两个不相等的实数根,故二次函数与x 轴有两个公共点.综上不论m 为何值,该二次函数的图像与x 轴有公共点. 方法二:化简得y =x 2+4x -m 2-4m .令y =0,b 2-4ac =4m 2+16m +16=4(m +2)2≥0,方程有两个实数根. ∴不论m 为何值,该二次函数的图像与x 轴有公共点. (2)由题意知,函数的图像的对称轴为直线x =-2 ①当n =-3时,a =b ; ②当-3<n <-1时,a >b ③当n <-3或n >-1时,a <b 【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,并且注意分情况讨论. 33.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析 【解析】 【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可; (2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可. 【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键. 34.(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.已知 、 是方程 的两根,且 ,则 的值等于
A. B. C. D.
5.抛物线 经过点(1,0),且对称轴为直线 ,其部分图象如图所示.对于此抛物线有如下四个结论:① <0;② ;③9a-3b+c=0;④若 ,则 时的函数值小于 时的函数值.其中正确结论的序号是()
A.①③B.②④C.②③D.③④
x(x﹣4)=0,
x﹣4=0,x=0,
x1=4,x2=0,
故选B.
【点睛】
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
8.A
解析:A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
11.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )
A. B. 或 C.2或 D.2或 或
12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
二、填空题
13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.
详解:设方程的另一个根为m,
根据题意得:1+m=3,
解得:m=2.
故答案为2.
点睛:本题考查了根与系数的关系,牢记两根之和等于- 是解题的关键.
17.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式
解析:
【解析】
试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P= .
一、选择题
1.C
解析:C
【解析】
【分析】
根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线 在二、四象限.
【详解】
根据二次函数y=ax2+bx+c(a≠0)的图象,
可得a<0,b>0,c<0,
∴y=ax+b过一、二、四象限,
19.如图,点A是抛物线 对称轴上的一点,连接OA,以A为旋转中心将AO逆时针旋转90°得到AO′,当O′恰好落在抛物线上时,点A的坐标为______________.
20.如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A=___________°.
三、解答题
21.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△DCE∽△DBC;
(2)若CE= ,CD=2,求直径BC的长.
22.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是弧AmB上的一点.
①求∠AQB的度数;
②若OA=18,求弧AmB的长.
23.如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
9.C
解析:C
∵两次降价后的价格为16元,∴25(1﹣x)2=16.故选C.
4.C
解析:C
【解析】
试题解析:∵m,n是方程x2﹣2x﹣1=0的两根
∴m2﹣2m=1,n2﹣2n=1
∴7m2﹣14m=7(m2﹣2m)=7,3n2﹣6n=3(n2﹣2n)=3
∵(7m2﹣14m+a)(3n2﹣6n﹣7)=8
∴(7+a)×(﹣4)=8
解析:4
【解析】
【分析】
由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.
【详解】
令y=0,则:x=±1,令x=0,则y=2,
则:OB=1,BD=2,OB=2,
S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.
故:答案为4.
【点睛】
本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.
16.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
17.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为.
18.如图,AB是⊙O的直径,∠AOE=78°,点C、D是弧BE的三等分点,则∠COE=_____.
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC= .
故答案是: .
【点睛】
考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能
16.2【解析】分析:设方程的另一个根为m根据两根之和等于-即可得出关于m的一元一次方程解之即可得出结论详解:设方程的另一个根为m根据题意得:1+m=3解得:m=2故答案为2点睛:本题考查了根与系数的关系
解析:2
【解析】
分析:设方程的另一个根为m,根据两根之和等于- ,即可得出关于m的一元一次方程,解之即可得出结论.
14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).
15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.
6.以 为根的一元二次方程可能是( )
A. B. C. D.
7.方程x2=4x的解是( )
A.x=0B.x1=4,x2=0C.x=4D.x=2
8.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根B.有两个相等实数根
C.有且只有一个实数根D.没有实数根
9.若 (b≠0),则 =( )
【解析】
【分析】
【详解】
解:∵ ,
∴a(a-b)=0,
∴a=0,b=a.
当a=0时,原式=0;
当b=a时,原式=
故选C
10.C
解析:C
【解析】
【分析】
仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.
【详解】
解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.
解析:不可能
【解析】
根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.
15.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=
2020年乐山Байду номын сангаас初三数学上期末一模试题及答案
一、选择题
1.已知 的图象如图,则 和 的图象为()
A. B. C. D.
2.一元二次方程 的根是()
A. B. C. D.
3.一种药品原价每盒25元,经过两次降价后每盒16元,设两次降价的百分率都为x,则x满足等式( )
A.16(1+2x)=25B.25(1-2x)=16C.25(1-x)²=16D.16(1+x)²=25
所以③正确;
∵m>n>0,
∴m﹣1>n﹣1>﹣1,
由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,故④正确;
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.
6.A
解析:A
【解析】
【分析】
根据一元二次方程根与系数的关系求解即可.
ax2+bx+c=0的一个解x的取值范围为1.4<x<1.5.
故选C.
【点睛】
本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.
11.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.
【详解】
二次函数的对称轴为直线x=m,
①m<﹣2时,x=﹣2时二次函数有最大值,
∴a=﹣9.
故选C.
5.D
解析:D
【解析】
【分析】
①根据抛物线开口方向、对称轴、与y轴的交点即可判断;
②根据抛物线的对称轴方程即可判断;
③根据抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1可得抛物线与x轴的另一个交点坐标为(﹣3,0),即可判断;
④根据m>n>0,得出m﹣1和n﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断.
此时﹣(﹣2﹣m)2+m2+1=4,
解得m= ,与m<﹣2矛盾,故m值不存在;
相关文档
最新文档