信息论与编码知识点总结
(完整版)信息论与编码概念总结

第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
信息论与编码公式总结

第一章绪论第二章信源与信息熵离散信源的信息量自信息量条件自信息量联合自信息量单符号离散信源熵熵的性质1.非负性2.对称性3.确定性4.扩展性5.连续性二元联合信源的共熵与条件熵二元联合信源的共熵二元联合信源的条件熵独立熵、联合熵与条件熵的关系独立熵、联合熵与条件熵的物理意义离散无记忆信源N次扩展信源离散信道的平均交互信息量离散信道三种描述方法1.概率空间描述2.转移矩阵描述3.图示法描述离散信道的互信息量互信息量性质1.互易性-对称性2.3.互信息量可正可负4.任何两个事件之间的互信息不可能大于其中任何一个事件的自信息量5.离散信道的平均互信息量平均互信息量与联合熵、独立熵的关系一般关系X 和Y 相互独立时X 和Y 一一对应时数据处理定理信息不增性连续信源的熵连续信源均匀分布:高斯分布:指数分布:连续信源的最大熵定理输出峰值受限时的最大熵(瞬时功率受限/幅度受限):当概率密度分布为均匀分布时,信源具有最大熵输出平均功率受限时的最大熵:当其概率密度函数为高斯分布时,具有最大熵均值受限时的最大熵:其输出信号幅度呈指数分布时连续信源X 具有最大熵值信源的剩余度/多余度/冗余度离散信源的剩余度/多余度/冗余度:连续信源的剩余度/多余度/:第三章信道容量离散无噪声信道的熵速率和信道容量熵速率:信道容量:几种离散无噪声信道举例:1、具有一一对应关系的无噪信道2、具有扩展性能的无噪信道3、具有归并性能的无噪信道离散有噪声信道的熵速率和信道容量接收熵速率:信道容量:连续信道中的熵速率与信道容量连续无噪声信道的熵速率和信道容量熵速率信道容量连续有噪声信道熵速率信道容量第四章信源编码编码的定义1、二元码/多元码2、同价码3、等长码4、变长码5、非奇异码/非奇异码6、单义码(单义码)7、非续长码(瞬时可译码/即时码)/续长码(非瞬时可译码/非即时码)单义码存在定理(克劳夫特Kraft 不等式)码树图平均码字长度编码定理定长编码定理:变长编码定理:离散无记忆平稳信道的编码定理(香农第二定理):最佳变长编码一、香农编码二、范诺(费诺)编码(1) 把原始信源的符号按概率从大到小重新排列。
信息论与编码总结

信息论与编码1. 通信系统模型信源—信源编码—加密—信道编码—信道—信道解码—解密—信源解码—信宿 | | |(加密密钥) 干扰源、窃听者 (解密秘钥)信源:向通信系统提供消息的人或机器信宿:接受消息的人或机器信道:传递消息的通道,也是传送物理信号的设施干扰源:整个系统中各个干扰的集中反映,表示消息在信道中传输受干扰情况 信源编码:编码器:把信源发出的消息变换成代码组,同时压缩信源的冗余度,提高通信的有效性 (代码组 = 基带信号;无失真用于离散信源,限失真用于连续信源)译码器:把信道译码器输出的代码组变换成信宿所需要的消息形式基本途径:一是使各个符号尽可能互相独立,即解除相关性;二是使各个符号出现的概率尽可能相等,即概率均匀化信道编码:编码器:在信源编码器输出的代码组上增加监督码元,使之具有纠错或检错的能力,提高通信的可靠性译码器:将落在纠检错范围内的错传码元检出或纠正基本途径:增大码率或频带,即增大所需的信道容量2. 自信息:()log ()X i i I x P x =-,或()log ()I x P x =-表示随机事件的不确定度,或随机事件发生后给予观察者的信息量。
条件自信息://(/)log (/)X Y i j X Y i j I x y P x y =-联合自信息:(,)log ()XY i j XY i j I x y P x y =-3. 互信息:;(/)()(;)log log ()()()i j i j X Y i j i i j P x y P x y I x y P x P x P y ==信源的先验概率与信宿收到符号消息后计算信源各消息的后验概率的比值,表示由事件y 发生所得到的关于事件x 的信息量。
4. 信息熵:()()log ()i iiH X p x p x =-∑ 表示信源的平均不确定度,或信源输出的每个信源符号提供的平均信息量,或解除信源不确定度所需的信息量。
Information theory(信息论与编码)

信息论与编码总结1.关于率失真函数的几点总结原理(需要解决什么问题?或者是受什么的启发,能达到什么目的)。
与无失真信源编码相比,限失真信源编码的原理是什么?我们知道无失真信源编码是要求使信源的所发送的信息量完全无损的传输到信宿,我们常见的编码方式有哈夫曼编码、费诺编码和香农编码。
他们的中心思想是使序列的中0和1出现的概率相等。
也就是说长的码字对应的信源符号出现的概率较小,而短的码字对应的信源符号出现的概率较大,这样就能实现等概。
若编码能实现完全的等概,则就能达到无失真的传输。
此时传输的信息量是最大的,和信源的信息量相等,此时传输的信息速率达到信道容量的值。
(其实这是编码的思想,与之对应的为限失真编码的思想。
香农本人并没有提出明确的编码方法,但是给出指导意义)与无失真的信道相比,如信道存在一定的损耗,即表明有传递概率。
此时我们换一个角度。
我们使信源概率分布固定不变,因为平均交互信息量I(X;Y)是信道传递概率P(Y/X)的下凸函数,因此我们设想一种信道,该信道的传递概率P(Y/X)能使平均交互信息达到最小。
注意,此时的传递概率P(Y/X)就相当于“允许一定的失真度”,此时我们能这样理解:即在允许的失真度的条件下,能使平均交互信息量达到最小,就表明我们传输的信息可以达到最小,原来的信息量还是那么大。
现在只需传输较小信息,表明压缩的空间是非常大的。
无失真压缩和限失真压缩其实是数学上的对偶问题。
即无失真压缩是由平均相互信息量的上凸性,调整信源概率分布,使传输的信息量达到最大值C,这个值就是信道容量。
(信道容量是不随信源概率分布而改变的,是一种客观存在的东西,我们只是借助信源来描述这个物理量,事实上也肯定存在另外一种描述方式。
)限失真压缩则是相反,他考虑的是信源概率分布固定不变,是调节信道转移概率的大小,使平均交互信息量达到最小。
此时信道容量还是相同,只是我们要传输的信息量变小了,(时效性)有效性得到提高。
信息论与编码复习重点整理(1页版)

1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。
2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。
3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。
三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。
3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。
信息论与编码基础12

例1
I( X;Y )
1 0.8
0.6
0.4
0.2
0 1
0.5
I (X ;Y ) H ( p p) H ( p)
✓ 当信源固定后,选择不同 的信道来传输同一信源符 号时,在信道的输出端获 得关于信源的信息量是不 同的。
✓ 对每一种信源都存在一种
✓ 当固定某信道时,选择不同 的信源与信道连接,在信道 输出端接收到每个符号后获 得的信息量是不同的。
✓ 对于每一个固定信道,一定
存在有一种信源,使输出端
00
1
0.8 0.6 0.4 0.2
获得的平均信息量最大。
平均互信息的性质
一、凸函数性
5
定理 在输入信源概率分布 P(x)给定的条件下,平均互信息
1 1
1-H(p)
0
0.5 1
平均互信息的性质
一、凸函数性
4
定理
在信道转移概率 P( y | x) 给定的条件下,平均互信息
I (X ;Y )是输入信源概率分布 P(x) 的 型凸函数。
例1
I( X;Y )
1 0.8 0.6 0.4 0.2
0 1
0.5
I (X ;Y ) H ( p p) H ( p)
平均互信息的性质
思考与探究
有两个硬币,一个 是正常的硬币(一面是 国徽,一面是面值), 另一个是不正常的硬币 (两面都是面值)。现 随机抽取一枚硬币,抛 掷2次。问出现面值的次 数对于硬币的识别提供 多少信息量?
平均互信息的性质
小结
13
本课小结:
• 凸函数性
• 内涵拓展 调节自己、适应环境 适合自己的才是最好的
信息论与编码(伴随式译码)

最佳编码定理是信息论中的重要定理 之一,它为信源编码提供了理论指导 。在实际应用中,可以通过哈夫曼编 码、算术编码等算法实现最佳编码。
03 信道编码
信道编码的分类
线性编码
线性编码是一种简单的编码方式,它将输入信息映射到一个线性空间中的码字。 线性编码具有较低的编码复杂度和较好的解码性能,但可能存在较高的误码率。
熵的概念及其性质
总结词
熵是系统不确定性的度量,具有非负性、对称性、可加性等 性质。
详细描述
熵是系统不确定性的度量,其值越大,系统的不确பைடு நூலகம்性越高 。熵具有非负性,即熵永远为非负值;对称性,即等概率事 件组成的系统的熵相同;可加性,即两个独立系统的熵可以 相加。
互信息与条件互信息
总结词
互信息是两个随机变量之间的相关性度量,条件互信息是给定第三个随机变量条件下两个随机变量之间的相关性 度量。
信息论与编码(伴随式译码)
目录
• 信息论基础 • 信源编码 • 信道编码 • 伴随式译码 • 编码在实际通信系统中的应用
01 信息论基础
信息量的定义与性质
总结词
信息量是衡量信息不确定性的量,具有非负性、对称性、可加性等性质。
详细描述
信息量用于度量信息的不确定性,其值越大,信息的不确定性越小。信息量具 有非负性,即信息量永远为非负值;对称性,即两个等概率事件的信息量相同; 可加性,即两个独立事件的信息量可以相加。
详细描述
互信息用于度量两个随机变量之间的相关性,其值越大,两个随机变量的相关性越强。条件互信息是在给定第三 个随机变量条件下度量两个随机变量之间的相关性,其值越大,在给定条件下两个随机变量的相关性越强。互信 息和条件互信息在信息论中广泛应用于信号处理、数据压缩等领域。
信息论与编码总复习

VS
奇偶校验位
奇偶校验位是添加到数据中的一个额外位 ,用于检测数据中的错误。根据数据的二 进制位数,可以选择奇校验或偶校验。
05
编码的应用
数据压缩
1 2 3
数据压缩
数据压缩是编码技术的重要应用之一,通过去除 数据中的冗余信息,减少数据的存储空间和传输 时间,提高数据传输效率。
压缩算法
常用的数据压缩算法包括哈夫曼编码、算术编码、 LZ77和LZ78等,这些算法通过不同的方式实现 数据的压缩和解压缩。
互信息与条件互信息
互信息的定义
互信息是两个随机变量之间的相关性度量。对于两个随机变量$X$和$Y$,其互信息定义为$I(X;Y) = sum_{x,y} P(X=x,Y=y) log_2 frac{P(X=x,Y=y)}{P(X=x)P(Y=y)}$。
条件互信息的定义
条件互信息是给定一个随机变量条件下,另一个随机变量的不确定性减少的量度。对于两个随机变量$X$ 和$Y$以及第三个随机变量$Z$,其条件互信息定义为$I(X;Y|Z) = sum_{x,y,z} P(X=x,Y=y,Z=z) log_2 frac{P(X=x,Y=y|Z=z)}{P(X=x|Z=z)P(Y=y|Z=z)}$。
压缩比与效率
数据压缩比和压缩效率是衡量数据压缩算法性能 的重要指标,不同的应用场景需要选择合适的压 缩算法以满足需求。
加密通信
加密通信
编码技术在加密通信中发挥着重要作用,通过将明文转换为密文, 保护数据的机密性和完整性。
加密算法
常见的加密算法包括对称加密和公钥加密,这些算法利用数学函数 和密钥对数据进行加密和解密。
纠错码与检错码
纠错码不仅能够检测错误,还能够纠 正错误,而检错码只能检测错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码知识点总结
信息论与编码
随着计算机技术的发展,人类对信息的传输、存储、处理、交换和检索等的研究已经形成一门独立的学科,这门学科叫做信息论与编码。
我们来看一下信息论与编码知识点总结。
二、决定编码方式的三个主要因素
1。
信源—信息的源头。
对于任何信息而言,它所包含的信息都是由原始信号的某些特征决定的。
2。
信道—信息的载体。
不同的信息必须有不同的载体。
3。
编码—信息的传递。
为了便于信息在信道中的传输和解码,就需要对信息进行编码。
三、信源编码(上) 1。
模拟信号编码这种编码方式是将信息序列变换为电信号序列的过程,它能以较小的代价完成信息传送的功能。
如录音机,就是一种典型的模拟信号编码。
2。
数字信号编码由0和1表示的数字信号叫做数字信号。
在现实生活中,数字信号处处可见,像电话号码、门牌号码、邮政编码等都是数字信号。
例如电话号码,如果它用“ 11111”作为开头,那么这串数字就叫做“ 11”位的二进制数字信号。
数字信号的基本元素是0和1,它们组成二进制数,其中每一个数码都是由两个或更多的比特构成的。
例如电话号码就是十一位的二进制数。
我们平常使用的编码方法有: A、首部-----表明发送者的一些特征,如发送者的单位、地址、性别、职务等等B、信源-----表明信息要发送的内容C、信道-----信息要通过的媒介D、信宿-----最后表明接受者的一些特征E、加密码----对信息进行加密保护F、均
匀量化----对信息进行量化G、单边带----信号只在一边带宽被传输H、调制----将信息调制到信号载波的某一特定频率上I、检错----
信息流中若发生差错,则输出重发请求消息
,比如表达公式时,可写成“ H=k+m-p+x”其中H=“ X+m-P-k”+“ y+z-p-x”+“ 0-w-k-x”,这样通过不断积累,就会发现:用无
限长字符可以表达任意长度的字符串;用不可再分割的字符串表达字符串,且各字符之间没有空格等等,这些都表明用无限长字符串表达字符串具有很大的优越性,它的许多优点是有限长字符串不能取代的。
同样的,在无线传输中也应采用无限长字符串作为无线数据帧的一个字符。
用有限长字符串表达字符串,可提高信息存储容量,减少通信系统中数据传输的带宽,减少频谱占用的面积。