信息论与编码课程总结
信息论与编码课程报告

信息论与编码课程报告
信息论与编码是一门重要的课程,在计算机科学与技术,通信工程,信号处理
等专业中发挥着重要的作用。
信息论涉及到信息的量化、源编码、信息隐藏,噪声抑制以及信息协议的分析等诸多方面。
而编码中的许多领域如信号处理、视频编码、图像处理等又建立在信息论的基础之上。
在这门课程中,学生可以学习如何把信息量化,以及不同的编码方法和算法,明白信息和音频的处理,还可以学习复杂格式的音频、视频编码。
此外,学习中还会涉及到模拟和数字信号,熵、信道容量与噪讲,数字信号处理,数字信号编码等多种多样的知识点,其中还包括噪讲模型、噪讲容量等多种不同概念。
整个信息论和编码领域有着丰富的应用,为听力、视觉等智能分析技术的实现
提供了理论支撑。
基于信息论的研究发明了压缩编码技术,它可以用来压缩数据,提高传输速率和储存空间,同时编码技术可以使数据免于传输过程中的损耗,有效地实现了音频、视频等多种数据的传输。
此外,信息论和编码在模式识别与多媒体通信、卫星通信、生物医学等多个领域都有着重要的应用。
综上所述,信息论与编码课程是个重要的学科,在计算机科学与技术,通信工程,算法,信号处理,多媒体通信,生物医学等领域中有着广泛的应用。
该课程主要是以学习源编码,熵、信道容量,噪讲,数字信号处理,数字信号编码,噪讲模型,压缩编码等多种专业概念为基础,因此有深入研习的必要,以获得多方面的知识和理解,为日后的技能应用打实基础。
信息论与编码知识点总结

信息论与编码知识点总结信息论与编码随着计算机技术的发展,人类对信息的传输、存储、处理、交换和检索等的研究已经形成一门独立的学科,这门学科叫做信息论与编码。
我们来看一下信息论与编码知识点总结。
二、决定编码方式的三个主要因素1。
信源—信息的源头。
对于任何信息而言,它所包含的信息都是由原始信号的某些特征决定的。
2。
信道—信息的载体。
不同的信息必须有不同的载体。
3。
编码—信息的传递。
为了便于信息在信道中的传输和解码,就需要对信息进行编码。
三、信源编码(上) 1。
模拟信号编码这种编码方式是将信息序列变换为电信号序列的过程,它能以较小的代价完成信息传送的功能。
如录音机,就是一种典型的模拟信号编码。
2。
数字信号编码由0和1表示的数字信号叫做数字信号。
在现实生活中,数字信号处处可见,像电话号码、门牌号码、邮政编码等都是数字信号。
例如电话号码,如果它用“ 11111”作为开头,那么这串数字就叫做“ 11”位的二进制数字信号。
数字信号的基本元素是0和1,它们组成二进制数,其中每一个数码都是由两个或更多的比特构成的。
例如电话号码就是十一位的二进制数。
我们平常使用的编码方法有: A、首部-----表明发送者的一些特征,如发送者的单位、地址、性别、职务等等B、信源-----表明信息要发送的内容C、信道-----信息要通过的媒介D、信宿-----最后表明接受者的一些特征E、加密码----对信息进行加密保护F、均匀量化----对信息进行量化G、单边带----信号只在一边带宽被传输H、调制----将信息调制到信号载波的某一特定频率上I、检错----信息流中若发生差错,则输出重发请求消息,比如表达公式时,可写成“ H=k+m-p+x”其中H=“ X+m-P-k”+“ y+z-p-x”+“ 0-w-k-x”,这样通过不断积累,就会发现:用无限长字符可以表达任意长度的字符串;用不可再分割的字符串表达字符串,且各字符之间没有空格等等,这些都表明用无限长字符串表达字符串具有很大的优越性,它的许多优点是有限长字符串不能取代的。
(完整版)信息论与编码概念总结

第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
信息论与编码原理期末大总结

信息论与编码原理期末大总结信息论与编码原理是一门研究信息传输和存储的学科,它的研究对象是信息的度量、编码和解码,是现代通信和计算机科学的重要基础理论之一、本学期学习信息论与编码原理课程,我对信息的压缩、编码和传输有了更深入的了解。
首先,信息的度量是信息论与编码原理的核心概念之一、通过信息的度量,我们可以衡量信息的多少和质量。
常用的度量方法是信息熵,它描述的是一个随机变量的不确定度。
熵越大,表示不确定度越高,信息量越大。
通过计算信息熵,我们可以对信息进行评估和优化,为信息的编码和传输提供指导。
其次,信息的压缩是信息论与编码原理的重要研究方向之一、在信息论中,有两种常用的压缩方法:有损压缩和无损压缩。
有损压缩是通过舍弃一些信息的方式来减少数据的大小,例如在图像和音频压缩中,我们可以通过减少图像的像素点或者音频的采样率来实现压缩。
无损压缩则是通过编码的方式来减少数据的大小,例如哈夫曼编码和阿贝尔编码等。
了解了不同的压缩方法,可以帮助我们在实际应用中选择合适的压缩算法。
再次,编码是信息论与编码原理的重要概念之一、编码是将信息转换为特定的符号序列的过程,它是实现信息传输和存储的关键技术。
在编码中,最常用的编码方法是短编码和长编码。
短编码通过将常用的符号映射到短的编码序列,来实现信息的高效传输。
例如ASCII编码就是一种常用的短编码方法。
相反,长编码通过将每个符号映射到相对较长的编码序列,来实现无歧义的解码。
例如哈夫曼编码就是一种常用的无损长编码方法。
最后,信道编码是信息论与编码原理中重要的研究方向之一、在通信中,信号会受到不同的干扰,如噪声和失真等。
为了减少信号传输时的误码率,可以使用信道编码来提升信号的可靠性。
常用的信道编码方法有奇偶校验码、海明码和卷积码等。
信道编码通过在信号中引入冗余信息,以检测和纠正信道传输中的错误,提高了通信的可靠性和稳定性。
总结起来,信息论与编码原理是研究信息传输和存储的重要学科,通过学习这门课程,我们可以了解信息的度量、压缩、编码和传输等基本原理和方法。
信息论与编码公式总结

第一章绪论第二章信源与信息熵离散信源的信息量自信息量条件自信息量联合自信息量单符号离散信源熵熵的性质1.非负性2.对称性3.确定性4.扩展性5.连续性二元联合信源的共熵与条件熵二元联合信源的共熵二元联合信源的条件熵独立熵、联合熵与条件熵的关系独立熵、联合熵与条件熵的物理意义离散无记忆信源N次扩展信源离散信道的平均交互信息量离散信道三种描述方法1.概率空间描述2.转移矩阵描述3.图示法描述离散信道的互信息量互信息量性质1.互易性-对称性2.3.互信息量可正可负4.任何两个事件之间的互信息不可能大于其中任何一个事件的自信息量5.离散信道的平均互信息量平均互信息量与联合熵、独立熵的关系一般关系X 和Y 相互独立时X 和Y 一一对应时数据处理定理信息不增性连续信源的熵连续信源均匀分布:高斯分布:指数分布:连续信源的最大熵定理输出峰值受限时的最大熵(瞬时功率受限/幅度受限):当概率密度分布为均匀分布时,信源具有最大熵输出平均功率受限时的最大熵:当其概率密度函数为高斯分布时,具有最大熵均值受限时的最大熵:其输出信号幅度呈指数分布时连续信源X 具有最大熵值信源的剩余度/多余度/冗余度离散信源的剩余度/多余度/冗余度:连续信源的剩余度/多余度/:第三章信道容量离散无噪声信道的熵速率和信道容量熵速率:信道容量:几种离散无噪声信道举例:1、具有一一对应关系的无噪信道2、具有扩展性能的无噪信道3、具有归并性能的无噪信道离散有噪声信道的熵速率和信道容量接收熵速率:信道容量:连续信道中的熵速率与信道容量连续无噪声信道的熵速率和信道容量熵速率信道容量连续有噪声信道熵速率信道容量第四章信源编码编码的定义1、二元码/多元码2、同价码3、等长码4、变长码5、非奇异码/非奇异码6、单义码(单义码)7、非续长码(瞬时可译码/即时码)/续长码(非瞬时可译码/非即时码)单义码存在定理(克劳夫特Kraft 不等式)码树图平均码字长度编码定理定长编码定理:变长编码定理:离散无记忆平稳信道的编码定理(香农第二定理):最佳变长编码一、香农编码二、范诺(费诺)编码(1) 把原始信源的符号按概率从大到小重新排列。
信息论与编码概念总结

信息论与编码概念总结信息论最初由克劳德·香农在1948年提出,被称为“信息论的父亲”。
它主要研究的是如何最大化信息传输的效率,并对信息传输的性能进行量化。
信息论的核心概念是信息熵,它描述了在一个信息源中包含的信息量的平均值。
信息熵越高,信息量越大,反之亦然。
具体来说,如果一个信源生成的信息是等可能的,那么它的信息熵达到最大值,可以通过二进制对数函数计算。
此外,信息论还提出了联合熵、条件熵、相对熵等概念,用于分析复杂的信息源与信道。
除了信息熵,信息论对信道容量的定义也是非常重要的。
信道容量指的是信道可以传输的最大信息速率,单位是bit/s。
在信息论中,最为典型的信道是噪声信道,它在传输数据过程中会引入随机噪声,从而降低传输的可靠性。
通过信道编码,可以在一定程度上提高信号的可靠性。
信息论提出了香农编码定理,它给出了当信道容量足够大时,存在一种信道编码方式,可以使误码率趋近于零,实现可靠的数据传输。
信息论不仅可以应用于通信领域,还可以应用于数据压缩。
数据压缩主要有无损压缩和有损压缩两种方式。
无损压缩的目标是保持数据的原始信息完整性,最常见的压缩方式是霍夫曼编码。
它通过统计原始数据中的频率分布,将高频率的符号用较短的编码表示,从而减小数据的存储空间。
有损压缩则是在保证一定的视觉质量、音频质量或其他质量指标的前提下,对数据进行压缩。
有损压缩的目标是尽可能减小数据的存储空间和传输带宽。
常见的有损压缩方法包括JPEG、MP3等。
编码是信息论的应用之一,它是实现信息传输与处理的关键技术。
编码主要分为源编码和信道编码两个方面。
源编码是将源信号进行编码,以减小信号的冗余,并且保持重构信号与原信号的接近程度。
常见的源编码方法有霍夫曼编码、香农-费诺编码等。
信道编码则是在信道传输中引入冗余信息,以便在传输过程中检测和修复错误。
常见的信道编码方法有海明码、卷积码、LDPC码等。
这些编码方法可以通过增加冗余信息的方式来提高传输的可靠性和纠错能力。
学习信息论与编码心得范文三篇

学习信息论与编码心得范文三篇学习信息论与编码心得范文三篇学习信息论与编码心得1作为就业培训,项目的好坏对培训质量的影响十分大,常常是决定性的作用。
关于在学习java软件开发时练习项目的总结,简单总结为以下几点:1、项目一定要全新的项目,不能是以前做过的2、项目一定要企业真实项目,不能是精简以后的,不能脱离实际应用系统3、在开发时要和企业的开发保持一致4、在做项目的时候不应该有参考代码长话短说就是以上几点,如果你想要更多的了解,可以继续往后看。
一:项目的地位因为参加就业培训的学员很多都是有一定的计算机基础,大部分都具备一定的编程基础,尤其是在校或者是刚毕业的学生,多少都有一些基础。
他们欠缺的主要是两点:(1)不能全面系统的、深入的掌握某种技术,也就是会的挺多,但都是皮毛,不能满足就业的需要。
(2)没有任何实际的开发经验,完全是想象中学习,考试还行,一到实际开发和应用就歇菜了。
解决的方法就是通过项目练习,对所学知识进行深化,然后通过项目来获取实际开发的经验,从而弥补这些不足,尽快达到企业的实际要求。
二:如何选择项目项目既然那么重要,肯定不能随随便便找项目,那么究竟如何来选择呢?根据java的研究和实践经验总结,选择项目的时候要注意以下方面:1:项目不能太大,也不能太小这个要根据项目练习的阶段,练习的时间,练习的目标来判断。
不能太大,太大了做不完,也不能太小,太小了没有意义,达不到练习的目的。
2:项目不能脱离实际应用系统项目应该是实际的系统,或者是实际系统的简化和抽象,不能够是没有实战意义的教学性或者是纯练习性的项目。
因为培训的时间有限,必须让学员尽快地融入到实际项目的开发当中去。
任何人接受和掌握一个东西都需要时间去适应,需要重复几次才能够真正掌握,所以每个项目都必须跟实际应用挂钩。
3:项目应能覆盖所学的主要知识点学以致用,学完的知识点需要到应用中使用,才能够真正理解和掌握,再说了,软件开发是一个动手能力要求很高的行业,什么算会了,那就是能够做出来,写出代码来,把问题解决了,你就算会了。
信息论与编码总结

信息论与编码1. 通信系统模型信源—信源编码—加密—信道编码—信道—信道解码—解密—信源解码—信宿 | | |(加密密钥) 干扰源、窃听者 (解密秘钥)信源:向通信系统提供消息的人或机器信宿:接受消息的人或机器信道:传递消息的通道,也是传送物理信号的设施干扰源:整个系统中各个干扰的集中反映,表示消息在信道中传输受干扰情况 信源编码:编码器:把信源发出的消息变换成代码组,同时压缩信源的冗余度,提高通信的有效性 (代码组 = 基带信号;无失真用于离散信源,限失真用于连续信源)译码器:把信道译码器输出的代码组变换成信宿所需要的消息形式基本途径:一是使各个符号尽可能互相独立,即解除相关性;二是使各个符号出现的概率尽可能相等,即概率均匀化信道编码:编码器:在信源编码器输出的代码组上增加监督码元,使之具有纠错或检错的能力,提高通信的可靠性译码器:将落在纠检错范围内的错传码元检出或纠正基本途径:增大码率或频带,即增大所需的信道容量2. 自信息:()log ()X i i I x P x =-,或()log ()I x P x =-表示随机事件的不确定度,或随机事件发生后给予观察者的信息量。
条件自信息://(/)log (/)X Y i j X Y i j I x y P x y =-联合自信息:(,)log ()XY i j XY i j I x y P x y =-3. 互信息:;(/)()(;)log log ()()()i j i j X Y i j i i j P x y P x y I x y P x P x P y ==信源的先验概率与信宿收到符号消息后计算信源各消息的后验概率的比值,表示由事件y 发生所得到的关于事件x 的信息量。
4. 信息熵:()()log ()i iiH X p x p x =-∑ 表示信源的平均不确定度,或信源输出的每个信源符号提供的平均信息量,或解除信源不确定度所需的信息量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息论与编码
《信息论与编码》这门课程给我带了很深刻的感受。
信息论是人类在通信工程实践之中总结发展而来的,它主要由通信技术、概率论、随机过程、数理统计等相结合而形成。
它主要研究如何提高信息系统的可靠性、有效性、保密性和认证性,以使信息系统最优化。
学习这门课程之后,我学到了很多知识,总结之后,主要有以下几个方面:
首先是基本概念。
信息是指各个事物运动的状态及状态变化的方式。
消息是指包括信息的语言、文字和图像等。
信号是消息的物理体现,为了在信道上传输消息,就必须把消息加载到具有某种物理特性的信号上去。
信号是信息的载荷子或载体。
信息的基本概念在于它的不确定性,任何已确定的事物都不含有信息。
信息的特征:(1)接收者在收到信息之前,对其内容是未知的。
(2)信息是能使认识主体对某一事物的未知性或不确定性减少的有用知识。
(3)信息可以产生,也可以消失,同时信息可以被携带、存储及处理。
(4)信息是可以量度的,信息量有多少的差别。
编码问题可分解为3类:信源编码、信道编
码、加密编码。
=
理论上传输的最少信息量
编码效率实际需要的信息量。
接下来,学习信源,重点研究信源的统计特性和数学模型,以及各类离散信源的信息测度
—熵及其性质,从而引入信息理论的一些基本概念和重要结论。
本章内容是香农信息论的基础。
重点要掌握离散信源的自信息,信息熵(平均自信息量),条件熵,联合熵的的概念和求法及其它们之间的关系,离散无记忆的扩展信源的信息熵。
另外要记住信源的数学模型。
通过学习信源与信息熵的基本概念,了解了什么是无记忆信源。
信源发出的序列的统计性质与时间的推移无关,是平稳的随机序列。
当信源的记忆长度为m+1时,该时刻发出的符号与前m 个符号有关联性,而与更前面的符号无关,这种有记忆信源叫做m 阶马尔可夫信源。
若上述条件概率与时间起点无关,则信源输出的符号序列可看成齐次马尔可夫链,这样的信源叫做齐次马尔可夫信源。
之后学习了信息熵有关的计算,定义具有概率为
()
i p x 的符号i x 的自信息量为:()log ()i i I x p x =-。
自信息量具有下列特性:(1)
()1,()0i i p x I x ==(2)()0,()i i p x I x ==∞(3)非负性(4)单调递减性(5)可加
性。
信源熵是在平均意义上来表征信源的总体特征,它是信源X 的 函数,一般写成H (X )。
信源熵:()()log ()i i i
H X p x p x =-∑,条件熵:(|)(,)log (|)
i j i j ij
H X
Y p x y p x y =-∑联合
熵(|)(,)log (,)i j i j ij
H X
Y p x y p x y =-∑,联合熵
H(X,Y)与熵H(X)及条件熵H(Y|X)的关系:
(,)()(|)()(|)H X Y H X H Y X H X H X Y =+=+。
互信息:
,(|)(|)(;)(,)log
()(|)log
()
()
j i j i i j i j i ij
i j
j j p y x p y x I X Y p x y p x p y x p y p y =
=
∑
∑。
熵的性质:非负性,对称性,确定
性,极值性。
接下来接触到信道,知道了信道的分类,根据用户数可以分为,单用户和多用户;根
据输入端和输出端可以分为无反馈和反馈信道;根据信道参数与时间可以分为固定参数和时变参数;根据信道受噪声种类分为随机差错信道和突发差错信道根据输入输出信号的特点分为离散信道,连续信道,半离散半连续,波形信道。
学习了信道容量的相关计算,信道容量C=()
m ax (;)i p a I X Y 含义,表征信道能传输的最大信息量,或者信道的最大传输能力。
以上是信息论部分的知识,下面就进入到编码的部分,我们首先接触到时是信源编码的相关概念。
分组码:将信源消息分成若干组,即符号序列i x ,1
2
(,,,,,)l
L
i i i i i x x x x x = ,
序列中的每个符号取自符号集A ,123{,,,,,}l
i i n x a a a a a ∈ 。
而每个符号序列
i
x 依照固
定的码表映射一个码字
i
y ,这样的码称为分组码,也叫快码。
码可以分为固定长度码和变
长码; 分组码又分为奇异码和非奇异码;若信源符号和码字是一一对应的,该码为非奇异码,反之为奇异码。
非奇异码又分为非唯一可译码和唯一可译码;任意有限长的码元序列,只能被唯一分割成一个个码字,称唯一可译码;值得注意的是奇异码不是唯一可译码,而非奇异码中有唯一可译码和非唯一可译码。
唯一可译码又分为非即时码和即时码;接收端收到一个完整的码字后,不能立即译码,还需等下一个码字开始接受后才能判断是否可以译码,称为非即时码,即时码又称非延时码,任意一个码字都不是其他码字的前缀部分,叫异前缀码。
唯一可译码的充要条件:1
1i
n
K i m -=≤∑。
定长编码定理:由L 个符号组
成的、每个符号的熵为()L H X 的无记忆平稳信源符号序列(12,,,,,l L X X X X ),可用
L
K 个符号12,,,,,L
k K Y Y Y Y (每个符号有m 种可能值)进行定长编码。
对任意
0,0,log m (X )+L L K H L
εδε>>≥只要
,则当L 足够大时,必可使译码差错小于δ;当
log m (X )-2L L K H L
ε≤时,译码差错一定是有限值。
当L 足够大时,译码几乎必定出错。
然后学习了如何计算编码效率,编码效率:(X )log m
L L H K L η=,其中(X )L H 为平均符号熵。
最
佳编码效率:(X ),>0(X )+L L H H ηεε
=,单个符号变长编码定理:若离散无记忆信源的符号熵为
(X)H ,每个信源符号用m 进制码元进行变长编码,一定存在一种无失真编码方法,其码字
平均长度K 满足下列不等式
(X)(X)+1logm
logm
H H K ≤≤
.平均输出信息率为log L K K m L
=。
码
字平均长度:1
n
i i i k p k ==
∑
10码字平均长度:1
n
L i i i K p k ==
∑
及 信源符号的平均码长:
log L K K m L
=。
然后了解了集中常见的编码方法。
费诺编码:平均码长1
()n
i i i K p a K ==∑
,i K 为码长;
信息传输速率:()H X R K
=。
哈夫曼编码:把信源符号i x (i=1,2,…,m)出现的概率i p 按
由大到小的顺序排列;(2)对两个概率最小的符号分别标“0”和“1”,然后把这两个概率相加作为一个新的辅助符号的概率;(3)将这个新的辅助符号与其他符号一起重新按概率大小顺序排列;(4)跳到第2步,直到出现概率相加为1为止;(5)用线将符号连接起来,得到一个码树,树的m 个端点对应m 个信源符号;6)从最后一个概率为1的节点开始,沿着码树分别到达每个信源符号,将一路遇到的“0”和“1”顺序排列起来,就是对应端点的信源符号的码字。
最后学习了信道的纠错编码,纠错码分类:从功能角度,分为检错码和纠错码;从对信息序列的处理方法,分为分组码和卷积码;从码元与原始信息的关系,分为线性码和非线性码。
噪声均化的三种方法:增加码长N ,卷积,交错。
基底不是唯一的,生成矩阵也就不是唯一的。
非系统码的生产矩阵可以通过运算转变为系统形式,此过程叫系统化。
与任何一个(n,k )分组线性码的码空间C 相对应,一定存在一个对偶空间D.空间的n-k 个基底排列起来可构成一个(n-k )⨯n 矩阵,将这个矩阵称为码空间C 的校验矩阵H.。
线性码的任意码字c 一定正交于其对偶码的任意一个码字,也必定正交于校验矩阵H 的任意一个行矢量,即0T cH =,0为零矩阵,若0T cH =,则c 为码字,反之,则不是码字。
校验矩阵的定义[]T
n k H P I -=- 。
信息论与编码是一门比较有难度的课程,接触的知识点比较广,比较全,先行课程也比较多。
通过学习这门课程,我加深了对基本概念的理解,在学习新概念时要经常与已学概念进行对比,分析与已有概念间的区别与联系,深刻探讨其物理意义的差别,避免知识点之间的混淆。
提升了数学推导与证明能力。
虽然学起来有点吃力,但是经过一定时间的复习,目前对知识的掌握更深了一个层次,对知识的理解也更加深了一步。