矩阵的广义逆的定义与性质
第4章 矩阵的广义逆

例题1 设W是C n 的子空间,证明 存在到W的投影 变换, 使R()=W。
3、正交投影的性质
定理4.16(P . 104)设W是C n的子空间,x0C n, x 0 W,如果是空间C n向空间W的正交投影, 则
( x0 ) x0 y x0
y W
含义:点(x0)是空间 W 中与点x 0距离最近的点。
讨论:对任何满足式( ¤) 的左逆B,X=Bb都是方程组的
解,如何解释方程组的解是惟一的?
§ 4. 2 广义逆矩阵
思想:用公理来定义广义逆。 一、减号广义逆 定义4 . 2 (P . 95) A C m n ,如果,G C n m使得,
AGA=A,则矩阵G为的A减号广义逆。或{1}逆。A的 减号逆集合A{1}={A1–1,A2–1, , Ak–1} 例题1 A C nn可逆,则A–1 A{1}; A单侧可逆,则A –1LA{1};A–1RA{1}。 减号逆的求法:定理4.5(P . 95) 减号逆的性质:定理4.6 (P . 96)
• 设A满秩分解A=BC, 则A + =CH (CCH )–1(BH B)–1BH 。 • (定理4.9)设A奇异值分解 :
H A U V ,则 0 0
1 0 H A V U 0 0
例题1 求下列特殊矩阵的广义逆;
零矩阵0; 1阶矩阵( 数) a; a1 对角矩阵
4、A + A与AA +的性质 定理4.15(P . 104)
A + A的性质:
• (A + A)2 = A + A,(A + A)H = A + A • C n =R(A + ) N(A) • R (A + )= N(A)
第4章 矩阵的广义逆

定义 3 设 A 为一个 m n 复矩阵,若有一个 n m 复矩阵 G 存在, 使( 1 )成立,即 AGA A ,则称 G 为 A 的一个 {1}-广义逆,记为
G A{1} 或 G A{1} ,也称 G 为 A 的一个减号广义逆,记为 G A , 即有 AA A A . (5)
A为列满秩
7
推论 设 A C mn , 则
(1) A左可逆的充要条件是 N ( A) {0};
( 2) A右可逆的充要条件是 R( A) C m .
证 充分性:N ( A) {0}
rank ( A) n
必要性: A左可逆
Ax 0只有零解
A为列满秩
1 ALபைடு நூலகம்A En
x N ( A)
由于 M-P 的 4 个方程都各有一定的解释,并且应用起来各有方 便之处,所以出于不同的目的,常常考虑满足部分方程的 G ,总之, 按照定义 2 可推得,满足 1 个,2 个,3 个,4 个 M-P 方程的广义逆 矩阵共有 15 类,即
1 2 3 4 C4 C4 C4 C4 15 .
使得
AGb b ( b R( A))
m n
则称G为A的广义逆矩阵 , 记为G A .
定理1设 A C
, 则A 存在广义逆矩阵A 的
充要条件是存在 G C nm , 使其满足AGA A
14
定理1 设 A C
m n
, 则A 存在广义逆矩阵A 的
nm
充要条件是存在 G C
15
由AGA A可得: AGAx0 Ax0 b 即,AGb b, 说明x Gb是方程 Ax b 的解. G是A的减号逆 , G A . m n nm 设 A C , 且 A C 是A的一个广义 推论 1 逆矩阵A , 则
矩阵论广义逆

矩阵论广义逆矩阵是线性代数中的重要概念,广义逆是矩阵论中的一个关键概念。
在矩阵论中,广义逆用于解决矩阵方程的求解问题。
本文将介绍矩阵论中的广义逆以及其应用。
1. 广义逆的定义在矩阵论中,矩阵的广义逆是指对于任意矩阵A,存在一个矩阵X,满足以下条件:1) AXA=A2) XAX=X3) (AX)^T=AX4) (XA)^T=XA广义逆的存在性和唯一性是矩阵论中的一个重要问题,对于满足以上条件的矩阵X,我们称其为A的广义逆,记作A⁺。
2. 广义逆的性质广义逆具有以下性质:1) AA⁺A=A2) A⁺AA⁺=A⁺3) (A⁺)^T=A⁺4) (AA⁺)^T=AA⁺广义逆的性质使得它在矩阵方程的求解中具有重要作用。
3. 广义逆的应用广义逆在矩阵方程的求解中有广泛的应用,下面介绍其中几个常见的应用:3.1 线性方程组的求解对于线性方程组Ax=b,如果A的广义逆A⁺存在,那么方程的解可以表示为x=A⁺b。
广义逆的存在性保证了线性方程组的解的存在性,并且通过广义逆的计算,可以得到解的一个特解。
3.2 最小二乘问题的求解最小二乘问题是指在给定线性方程组Ax=b无解时,求解使得||Ax-b||^2最小的x。
如果A的广义逆A⁺存在,那么最小二乘问题的解可以表示为x=A⁺b。
广义逆的计算可以通过奇异值分解等方法来实现。
3.3 线性回归分析线性回归分析是统计学中的一种重要方法,用于建立自变量与因变量之间的线性关系。
在线性回归分析中,广义逆可以用于求解回归系数,得到最佳拟合直线,并用于预测和推断。
4. 广义逆的计算方法广义逆的计算方法有多种,常见的包括伪逆法、奇异值分解法等。
伪逆法是通过对矩阵A进行分解或变换,得到A的伪逆矩阵。
奇异值分解法则是通过对矩阵A进行奇异值分解,得到A的伪逆矩阵。
这些计算方法都是基于矩阵的特征和性质进行推导和求解的。
5. 广义逆的应用举例以线性方程组的求解为例,假设有如下线性方程组:2x+y=3x+3y=9将其转化为矩阵形式为:A=[2 1; 1 3]b=[3; 9]求解线性方程组的解可以通过计算广义逆来实现。
矩阵的广义逆

矩阵的广义逆矩阵的广义逆,也称为矩阵的伪逆或摩尔-彭若斯广义逆,是指对于任意一个矩阵A,存在一个矩阵A+,使得满足AA+A = A和A+AA+ = A+。
有时也会写作A†来表示矩阵A的广义逆。
对于一个非方阵矩阵,它的伪逆可以分为两种情况:1. 如果矩阵 A 的行数小于列数,那么 A 的伪逆定义为满足 A A+ A = A 的矩阵 A+。
而对于方阵矩阵,它的伪逆和逆矩阵可以等价。
即 A A-1 A = A。
矩阵的广义逆具有以下的性质:1. A+ 也是广义逆矩阵。
即 A++ = A+。
2. A+ 的列空间就是 A 的列空间的伪逆。
即Col(A+) = Col(A)⊥。
其中⊥ 表示正交补。
6. 若 A 是满秩的,则其广义逆 A+ 就是其逆 A-1。
广义逆的应用相当广泛,其中一个典型的例子就是矩阵最小二乘问题。
在最小二乘问题中,我们需要求解一个线性方程组 Ax = b,其中矩阵 A 不一定满秩。
在这种情况下,我们可以使用广义逆来求解这个问题。
具体方法是通过求解矩阵 (ATA)+ ATb 来得到线性方程组的近似解。
由于经过广义逆变换后的矩阵 A+ 可以在秩不足的情况下仍然存在,因此我们可以使用广义逆来获得一个较好的近似解。
同时,广义逆还可以用于求解线性回归、广义线性回归和主成分分析等问题。
总之,矩阵的广义逆是线性代数中一个非常常用的概念,具有广泛应用和重要的数学意义。
通过理解和掌握广义逆的性质和应用,可以帮助我们更好地处理线性方程组等问题,从而有效提高数据分析和科学计算的效率和准确性。
高等工程数学--矩阵的广义逆

FGG H (GGH )1 ( F H F )1 F H FG
FG A
研究生MOOC课程
9/66
第18讲 矩阵的广义逆及其应用
高等工程数学
一、广义逆的定义与性质
A AA G F FGG F
GH (GG H )1 ( F H F )1 F H FGG H (GG H )1 ( F H F )1 F H G (GG ) ( F F ) F A
Ir O GA O O
研究生MOOC课程
24/66
第18讲 矩阵的广义逆及其应用
高等工程数学
二、广义逆的求解
Ir O AG GA O O
所以有 1) AGA A;
2) GAG G;
3) (AG)H AG; 4) (GA)H GA. 即G是A的广义逆
高等工程数学
一、广义逆的定义与性质
m n 设 ,则 A的加号逆 A存在且唯 定理1 A
证明
一 由例 3 知,对任意矩阵 A 都存在广义逆A . 下证唯一性. 假设 F 与 G 都是 A的广义逆,则由广义逆的定义有:
ቤተ መጻሕፍቲ ባይዱ
F FAF F(AF)H FFHAH
FFH(AGA)H
H H H H 1 1
AA FGG F
FGG (GG ) ( F F ) F
H H H 1 1 H
F ( F H F )1 F H
所以有
研究生MOOC课程
( AA )H AA
10/66
第18讲 矩阵的广义逆及其应用
高等工程数学
一、广义逆的定义与性质
A A G F FG
广义逆矩阵

广义逆矩阵
广义逆矩阵是指一个非奇异的复矩阵的逆矩阵,这种逆矩阵可以使得不同的矩阵进行运算。
广义逆矩阵可以分为两类:一类是经典矩阵,即特定的正交矩阵;另一类是非正交矩阵,即一般矩阵。
经典矩阵的广义逆矩阵可以用某种特殊的正交矩阵表示,这种正交矩阵是矩阵的逆,可以使任意矩阵进行运算。
此外,经典矩阵的广义逆矩阵也满足下列几个性质:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
非正交矩阵的广义逆矩阵也有一些和经典矩阵相似的特点:(1)它是一个对称矩阵;(2)它是一个非奇异矩阵;(3)它的转置是它的逆;(4)它的乘法是广义乘法的结果;(5)它的乘积满足基本乘法定理。
然而,经典矩阵和非正交矩阵的广义逆矩阵也有一些不同之处。
例如,非正交矩阵的广义逆矩阵可以使不可逆的矩阵变成可逆的矩阵,而经典矩阵的广义逆矩阵不能实现这一点。
此外,非正交矩阵的广义逆矩阵还具有长时间计算性质,而经典矩阵的广义逆矩阵则不具备这种性质。
上述介绍了广义逆矩阵的定义和特性。
可以看出,广义逆矩阵是一种可以使任意矩阵进行运算的矩阵,它具有很多性质,特别是可以使不可逆的矩阵变成可逆的矩阵,并具有长时间计算性质,所以广义逆矩阵在矩阵数学的应用中非常重要。
总的来说,广义逆矩阵是一种重要的矩阵,它可以使任何类型的矩阵进行计算,具有非常重要的应用价值。
如果我们能够更好地理解它的性质,也许我们就能更好地利用它来解决数学问题。
线性代数中的广义逆

线性代数中的广义逆线性代数中的广义逆是一种特殊的矩阵运算,它在解决线性方程组、最小二乘问题以及矩阵逆的计算中具有重要作用。
本文将详细介绍广义逆的定义、性质和应用,以加深对该概念的理解。
一、广义逆的定义与性质广义逆是针对非方阵而言的。
对于一个m×n的矩阵A,在矩阵A的扩展实数域中,若存在一个n×m的矩阵B,使得AB和BA均为投影矩阵,则称B为A的广义逆,记作A^+。
广义逆具有以下性质:1. 幂等性:(A^+)^+ = A^+2. 逆性:(AB)^+ = B^+A^+3. 秩性:(A^+)A和A(A^+)的秩相等4. 唯一性:若A^+和B^+都是A的广义逆,则A^+ = B^+二、广义逆的应用广义逆在线性方程组的求解中扮演着重要角色。
对于一个m×n的线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b为已知向量。
若A的行秩等于列秩,则该方程组有唯一解。
然而,在实际问题中,方程组常常出现行秩小于列秩的情况,此时无法直接求解。
利用广义逆的概念,我们可以构造最小二乘解。
最小二乘解是指使得||Ax-b||^2(欧氏范数下的二范数)最小的解。
通过广义逆的求解方法,可以找到最接近方程组Ax=b的解x*,即使得||Ax*-b||^2取得最小值。
特别地,当A的列秩等于n(A是满秩列)时,最小二乘解与精确解重合。
广义逆还在矩阵逆的计算中起到重要作用。
当方阵A不可逆时,可以使用广义逆来近似计算逆矩阵。
通过广义逆的逆性质,我们可以得到A的近似逆矩阵A^+的逼近解析表达式。
三、广义逆的计算方法1. 伪逆法:通过奇异值分解(SVD)求解广义逆,即A^+=VΣ^+U^T,其中U、Σ、V分别是A的左奇异向量矩阵、对角奇异值矩阵和右奇异向量矩阵。
2. 矩阵分块法:将矩阵A分块,利用分块矩阵性质求解广义逆。
3. Moore-Penrose逆矩阵:Moore-Penrose逆矩阵是一种特殊的广义逆矩阵,是广义逆的一种常用表示形式。
广义逆矩阵

广义逆矩阵许多书籍和期刊文章都提到了广义逆矩阵,或者称之为广义反矩阵。
它是一种强大而又具有广泛应用的数学工具,用于解决复杂的方程组。
广义逆矩阵概念最初源自20世纪30年代,最初是由美国数学家和物理学家约翰芬奇发明的。
他称其为“广义反矩阵”,它和传统的逆矩阵有很多共同点,但也有很多不同之处。
广义逆矩阵是指一个任意维数的方阵,该方阵乘以之前的方阵可以得到一个对角矩阵,称作对角矩阵的逆矩阵。
它也可以描述为一个方阵,该方阵乘以另一个方阵给出一个单位矩阵,称作单位矩阵的逆矩阵。
表达式一般可以写作A^-1=B,其中A是一个任意维数的方阵,B是A的广义逆矩阵。
广义逆矩阵有许多应用,它可以用于求解方程组,而无需解析解的方法。
也可以用于信号处理和图像处理,以及几何建模。
此外,它还可以用于机器学习,深度学习和神经网络。
许多学术期刊上的文章都着重讨论了广义逆矩阵的特性、表示形式和应用。
其中包括《The Journal of Mathematical Analysis and Applications》中的《An Efficient Algorithm for Computing Generalized Inverse Matrices》,该文章探讨了一种计算广义逆矩阵的有效算法;《 Linear Algebra and Its Applications》中的《On Computing the Generalized Inverse Matrix》,则讨论了计算广义逆矩阵的一些经典算法;《Journal of Computational and Applied Mathematics》中的《A Generalized Inverse Matrix Algorithm andIts Application in Image Processing》则探讨了广义逆矩阵在图像处理中的应用。
总之,广义逆矩阵是一种强大的数学工具,它可以用于求解复杂的方程组,可以应用于信号处理、图像处理、机器学习和神经网络等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵的广义逆的定义与性质矩阵的广义逆是矩阵理论中的一个重要概念。
在实际应用中,经常遇到矩阵求逆运算的情况,但并不是所有的矩阵都存在逆矩阵。
广义逆的引入扩展了矩阵逆的概念,使得更多的矩阵问题得以解决。
1. 广义逆的定义
对于任意一个矩阵A,如果存在一个矩阵X,使得AXA=A,那么称X是A的一个广义逆。
通常用符号A+表示矩阵A的广义逆。
注意到,当A存在逆矩阵时,A的广义逆即为它的逆矩阵。
但当A不存在逆矩阵时,仍然可以存在广义逆,用来解决求逆运算的问题。
2. 广义逆的性质
(1)广义逆的基本性质
如果X是矩阵A的一个广义逆,则满足以下性质:
① XAX=X;
② (AX)T=AX;
③ (XA)T=XA;
④ X和A的秩分别为r和k,则XAX和AXA的秩均为r。
(2)广义逆的存在性与唯一性
矩阵A的广义逆存在的充要条件是A的列秩等于A的行秩。
此时A的广义逆是唯一的。
上述条件的证明比较复杂,可以简单地介绍一下:
假设矩阵A的列秩为r,行秩为k,不失一般性地假设r<=k。
设A的一个秩为r的列子矩阵为B,满秩列子矩阵为C,则有
C=BQ,其中Q为r*k的满秩子矩阵。
因为C的列向量线性无关,所以存在一个r*k矩阵Y,满足CY=I。
对于任意一个矩阵X,我们可以分解成两部分:
X=XBC+X(1-BC),其中X(1-BC)表示X中不在B和C的列向量。
由于C=BQ,我们有:
XA=XBCA+X(1-BC)A,AX=AXB+AX(1-B)。
由于BCA和XB线性无关,所以XBCA+XB=0的充要条件是XBCA+XB=0。
同理可得AX(1-B)=0的充要条件是AX(1-B)=0。
因此,矩阵A的广义逆可以表示为:
A+=C((BTA-1B)-1BT)+M,其中M是任意r*(n-r)矩阵。
(3)广义逆的计算
求矩阵A的广义逆,一种简单的方法是使用Moore-Penrose广义逆公式:
A+=(ATA)-1AT。
该公式的正确性可以通过验证性质①得到,即有XAX=X,因此X=(ATA)-1AT满足广义逆定义。
3. 广义逆的应用
广义逆在实际应用中有很多用处,例如:
(1)解决超定方程组问题。
当线性方程组的系数矩阵A不是方阵时,通常不存在逆矩阵。
但如果A的列秩等于行秩,就可以使用广义逆求解该方程组。
(2)最小二乘问题。
当数据存在误差时,最小二乘解一般不能通过解一个线性方程组来求得。
此时可以使用广义逆,求得一个最优解。
(3)控制理论中的伪逆。
控制理论中经常用到伪逆(即广义逆),例如用伪逆来求解最小二乘滤波器和低通滤波器的阻抗。
4. 总结
广义逆是矩阵论中的一个重要概念,扩展了矩阵逆的概念,使得计算更多的矩阵求逆问题成为可能。
通过介绍广义逆的定义、性质和应用,可以看出广义逆在实际中的广泛应用价值。