2017-2018学年内蒙古包头市青山区八年级第一学期期末数学试卷带答案
内蒙古初二初中数学期末考试带答案解析

内蒙古初二初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△ABD≌△CDB,你补充的条件是()A、AO=COB、DO=BOC、AB=CDD、∠A=∠C2.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个B.2个C.3个D.4个3.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是()A.等腰三角形B.直角三角形C.正三角形D.等腰直角三角形4.如图,AB=AC,BD=BC,若∠A=40°,则∠ABD的度数是()A.20°B.30°C.35°D.40°5.下列各组数中互为相反数的是()A.B.C.D.6.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()7.的平方根是()A.4B.±4C.±2D.28.下列运算正确的是()A.x6÷x2=x3B.x6-x2=x4C.x2•x3=x5D.(x3)2=x59.如果一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是()A.k>0B.k<0C.0<k<1D.k>110.+mxy+16是一个完全平方式,则m的值是()A.4B.8C.±4D.±8二、填空题1.已知△ABC≌△DEF,且AB=3,BC=4,AC=5,则EF= 。
2.点P关于x轴对称的点是(3,-4),则点P的坐标是。
3.如图:Rt△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,且CD=5,则AD的长为。
4.如图,AB=AC,AB的垂直平分线MN交AC于点D,AB=6cm,BC=3cm,则△DBC的周长是 cm。
八年级2017-2018学年第一学期数学期末测试题及答案

18.如图所示,把一个长方形纸片沿 EF 折叠后,点 D,C 分别落在 D′,C′的位置.
若∠EFB=65°,则∠AED′等于
度.
A
E
D
D′
B
19. 如 图 , 在 Rt△ ABC 中 , ∠ CAB=90° , ∠ B=30 °,
FC C′
A
AD⊥CB 于 D,CD=2,则 CB=
得分 评卷人
26.(本题 10 分)
(1)已知△ABC 为正三角形,点 M 是 BC 上一点,点 N 是 AC 上一点,AM、 BN 相交于点 Q,BM = C N,证明△ABM≌△BCN,并求出∠BQM 的度数.
(2)将(1)中的“正△ABC”分别改为正方形 ABCD、正五边形 ABCDE、正
六边形 ABCDEF、正 n 边形 ABCD…,“点 N 是 AC 上一点”改为点 N 是 CD 上
A.4 对 B.3 对 C. 2 对 D.1 对
C
(请注意:以下选择题每题 3 分)
A
E
B
D
7.下列计算正确的是 (
)
A. 31 3 B. 32 35 310 C. (33)5 38 D.( 3 2)2 36 .
8. 下列式子正确的是(
)
A. 1 1 1 a b ab
A.25 海里 B.30 海里 C. 32 海里 D.34 海里
南
14.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都
乘以 1,纵坐标不变,并把得到的顶点依次连接,那么得到
的封闭图形与原来图形相比位置上(
)
A.向左平移了 1 个单位 B.关于 y 轴对称
C.关于 x 轴对称
内蒙古包头市八年级上学期末数学试卷

内蒙古包头市八年级上学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分)下面几条线段能构成三角形的是()A . 3,1,5B . 5,12,14C . 7,2,4D . 1,2,32. (2分)轴对称图形的对称轴是()A . 直线B . 线段C . 射线D . 以上都有可能3. (2分)下列运算错误的是()A . =1B . x2+x2=2x4C . |a|=|-a|D . =4. (2分)计算(﹣3)2n+1+(﹣3)2n的正确结果是()A . 2×32nB . ﹣2×32nC . 32nD . ﹣32n5. (2分)函数中自变量x的取值范围是()A . x≠3B . x>3C . x>3且x≠-2D . x≥36. (2分)(2018·武汉) 计算(a﹣2)(a+3)的结果是()A . a2﹣6B . a2+a﹣6C . a2+6D . a2﹣a+67. (2分)下列运算中正确的是()A . 3a+2a=5a2B . (2a2)3=8a6C . 2a2•a3=2a6D . (2a+b)2=4a2+b28. (2分)下列从左到右的变形中是因式分解的有()①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;②x3+x=x(x2+1);③(x﹣y)2=x2﹣2xy+y2;④x2﹣9y2=(x+3y)(x﹣3y).A . 1个B . 2个C . 3个D . 4个9. (2分)(2017·百色) 下列命题中是真命题的是()A . 如果a2=b2 ,那么a=bB . 对角线互相垂直的四边形是菱形C . 线段垂直平分线上的点到这条线段的两个端点的距离相等D . 对应角相等的两个三角形全等10. (2分)(2019·三门模拟) 正八边形的每-个内角的度数为()A . 120°B . 60°C . 135°D . 45°11. (2分)如果关于x的二次三项式x2﹣mx+16是一个完全平方式,那么m的值是()A . 8或-8B . 8C . -8D . 无法确定12. (2分) (2019八上·孝感月考) 在边长为a的正方形中挖去一个边长为b的小正方形()(如图甲),把余下的部分剪拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A .B .C .D .13. (2分) (2019八上·涧西月考) 有下列四种说法:①两个三角形全等,则它们成轴对称;②等腰三角形的对称轴是底边上的中线;③若点A、B关于直线MN对称,则AB垂直平分MN;④到角两边距离相等的点在这个角的平分线上.其中正确的说法有()A . 0个B . 1个C . 2个D . 3个14. (2分)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依次规律,图⑩中黑色正方形的个数是()A . 32B . 29C . 28D . 26二、填空题 (共6题;共6分)15. (1分)已知a2﹣6a+9与|b﹣1|互为相反数,计算a3b3+2a2b2+ab的结果是________16. (1分)计算:()0+3﹣1=________ .17. (1分) (2020八下·凤县月考) 如图,AB=AC,AD=AE,AF⊥BC于F,则图中全等的直角三角形有________对.18. (1分) (2020七上·黄浦期末) 某手机芯片采用16纳米工艺(1纳米= 米),其中16纳米用科学记数法表示为________米.19. (1分) (2018九上·耒阳期中) 已知:,则y=________。
内蒙古包头市八年级上学期期末数学试卷

内蒙古包头市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(±4)2的算术平方根是()A . 16B . ±4C . 4D . -42. (2分)下列实数,,0.1,﹣0.010010001…,0. ,其中无理数有()A . 2个B . 3个C . 4个D . 5个3. (2分) (2018八上·郓城期中) 点P(-2,1)关于y轴的对称点的坐标为()A . (2,1)B . (-2,-1)C . (2,-1)D . (1,-2)4. (2分)函数y=﹣2x+3的图象大致位置应是下图中的()A .B .C .D .5. (2分) (2019八下·温州期中) 下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A . 甲队员成绩的平均数比乙队员的大B . 乙队员成绩的平均数比甲队员的大C . 甲队员成绩的中位数比乙队员的大D . 甲队员成绩的方差比乙队员的大6. (2分)直线y=kx+b(k<0)上有两点A(x1 , y1),B(x2 , y2),且x1>x2 ,则y1与y2的大小关系是()A . y1>y2B . y1=y2C . y1<y2D . 无法确定7. (2分) (2017九上·滕州期末) 下列性质中,菱形具有矩形不一定具有的是()A . 对角线相等B . 对角线互相平分C . 邻边互相垂直D . 对角线互相垂直8. (2分)平行四边形的对角线长为x、y,一边长为12,则x、y的值可能是()A . 8和14B . 10和14C . 18和20D . 10和349. (2分)某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x、y的是()A .B .C .D .10. (2分)(2019·张掖模拟) 如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为()A . x<﹣2B . ﹣2<x<﹣1C . x<﹣1D . x>﹣1二、填空题 (共9题;共11分)11. (2分) (2019七下·广安期中) 的绝对值是________,的平方根是________.12. (1分) (2019八下·海门期中) 已知A(-1,1),B(1,1),在直线y = - x+4上找一点P,使PA+PB 最小,则点P坐标为________.13. (1分)(2017·昆都仑模拟) 如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为________cm2 .14. (1分)(2019·鄂尔多斯) 一组数据﹣1,0,1,2,3的方差是________.15. (1分)二元一次方程组的解是________16. (2分)①方程的根是________;②方程的根是________.17. (1分) (2017九下·江阴期中) 一组数据1,2,a,4,5的平均数是3,则这组数据的方差为________.18. (1分) (2017八下·重庆期中) 一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B处,则小虫所爬的最短路径长是(π取3)________.19. (1分)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是________cm.三、计算题 (共2题;共16分)20. (11分) (2020八下·淮安期中) 观察下面等式:;(1)仿照上面化简过程化去下列各式分母中的根号:,(2)猜想: =________(n为正整数);(3)利用上面的规律计算:21. (5分)解方程组:.四、解答题 (共7题;共60分)22. (5分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?23. (15分)(2020·安源模拟) 如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.24. (10分) (2016八上·锡山期末) 我市某草莓种植农户喜获丰收,共收获草莓2000kg.经市场调查,可采用批发、零售两种销售方式,这两种销售方式每kg草莓的利润如下表:销售方式批发零售利润(元/kg)612设按计划全部售出后的总利润为y元,其中批发量为xkg.(1)求y与x之间的函数关系式;(2)若零售量不超过批发量的4倍,求该农户按计划全部售完后获得的最大利润.25. (7分)如图,过四边形ABCD的四个顶点分别作对角线AC,BD的平行线,所围成的四边形EFGH显然是平行四边形.(1)当四边形ABCD分别是菱形、矩形、平行四边形时,相应的四边形EFGH一定是“平行四边形、菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:四边形ABCD菱形矩形平行四边形四边形EFGH(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?当________时,四边形EFGH是矩形;当________时四边形EFGH是菱形.26. (8分)(2017·如皋模拟) 一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究.解读信息:(1)甲,乙两地之间的距离为________ km;(2)线段AB的解析式为________;线段OC的解析式为________;(3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数图象.27. (10分)(2017·遵义) 如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O 交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.28. (5分) (2019九下·广州月考) 已知矩形中,米,米,为中点,动点以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求与间的函数关系式.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、计算题 (共2题;共16分)20-1、答案:略20-2、20-3、答案:略21-1、四、解答题 (共7题;共60分) 22-1、答案:略23-1、答案:略23-2、23-3、答案:略24-1、24-2、答案:略25-1、25-2、26-1、26-2、26-3、答案:略27-1、答案:略27-2、答案:略28-1、答案:略。
每日一学:内蒙古自治区包头市青山区内蒙古2017-2018学年八年级上学期数学期末考试试卷_压轴题解答

每日一学:内蒙古自治区包头市青山区内蒙古2017-2018学年八年级上学期数学期末考试试卷_压轴题解答答案内蒙古自治区包头市青山区内蒙古2017-2018学年八年级上学期数学期末考试试卷_压轴题~~ 第1题 ~~(2018青山.八上期末) 如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA相交于点A (4,2),动点M 在线段OA 和射线AC 上运动.(1) 求直线AB 的解析式.(2) 求△OAC 的面积.(3) 是否存在点M ,使△OMC 的面积是△OAC 的面积的 ?若存在求出此时点M 的坐标;若不存在,说明理由.考点: 一次函数的性质;待定系数法求一次函数解析式;~~ 第2题 ~~(2018青山.八上期末) 如图,长方形ABCD 中,AB=5,AD=3,点P 从点A 出发,沿长方形ABCD 的边逆时针运动,设点P运动的距离为x ;△APC 的面积为y ,如果5<x <8,那么y 关于x 的函数关系式为________.~~ 第3题 ~~(2019吉州.八上期末) 甲、乙两人以相同路线前往距离单位10km 的培训中心参加学习.图中l 、l 分别表示甲、乙两人前往目的地所走的路程S (km )随时间t (分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲.其中正确的有( )A . 4个B . 3个C . 2个D . 1个内蒙古自治区包头市青山区内蒙古2017-2018学年八年级上学期数学期末考试试卷_压轴题解答~~ 第1题 ~~答案:甲乙解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:B解析:。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
内蒙古包头市八年级上学期期末数学试卷

内蒙古包头市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八上·上城期中) 下列交通标志图案是轴对称图形的是().A .B .C .D .2. (2分) (2019八上·朝阳期中) 下列邮票中的多边形中,内角和等于的是()A .B .C .D .3. (2分) (2016八上·江宁期中) 如图,已知点B、E、C、F在同一直线上,且BE=CF,∠ABC=∠DEF,那么添加一个条件后.仍无法判定△ABC≌△DEF的是()A . AC=DFD . ∠A=∠D4. (2分) (2020八下·郑州月考) 把因式分解,结果正确的是()A .B .C .D .5. (2分)化简:=()A . 0B . 1C . xD .6. (2分) (2018七上·衢州期中) 某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为()A . (a-5%)(a+9%)万元B . (a-5%+9%)万元C . a(1-5%+9%)万元D . a(1-5%)(1+9%)万元7. (2分) (2018八上·青山期中) 如图,木工师傅做完窗框后,常像图中那样钉上一条斜拉的木条,这样做的数学原理是()A . 全等三角形对应角相等B . 三角形内角和为180°C . 三角形的稳定性D . 两直线平行,内错角相等8. (2分)若十边形的每个外角都相等,则一个外角的度数为()A . 18°D . 60°9. (2分)在下列各式中能因式分解的是()A . x2+4B . x2-4C . x2-yD . x2+2x+410. (2分) (2019八上·江阴期中) 以下命题中正确的是()A . 三角形的外角大于它的内角B . 两个全等三角形一定关于某条直线轴对称C . 有两边和一角对应相等的两个三角形全等D . 有一个角是60°的等腰三角形是等边三角形二、填空题 (共6题;共6分)11. (1分) (2017九上·泰州开学考) 若关于x的分式方程 + =2有增根,则m的值为________.12. (1分) (2019八上·韶关期中) 若等腰三角形的两边长为10cm、6cm,则周长为________。
内蒙古包头市八年级上学期数学期末考试试卷

内蒙古包头市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·兴化模拟) 式子y= 中x的取值范围是()A . x≥0B . x≥0且x≠1C . 0≤x<1D . x>12. (2分) (2019八上·织金期中) 大于- 小于的整数有()A . 5个B . 4个C . 3个D . 2个3. (2分)下列化简中正确的有()① = ;② = ;③ = ;④ (a<0)=2 a.A . 1个B . 2个C . 3个D . 4个4. (2分) (2018八下·昆明期末) 下列各组线段能构成直角三角形的一组是()A . 3,4,6B . 5,9,12C . 30,40,50D . 7,12,135. (2分) (2016九下·苏州期中) 二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A .B .C .D .6. (2分) (2018八上·合肥期中) 为了鼓励居民节约用水,某市决定实行两级收费制度,水费y(元)与用水量x(吨)之间的函数关系如图所示.若每月用水量不超过20吨(含20吨),按政府优惠价收费;若每月用水量超过20吨,超过部分按市场价4元/吨收费,那么政府优惠价是()A . 元吨B . 元吨C . 元吨D . 元吨7. (2分)以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形()A . 只能画出一个B . 能画出2个C . 能画出无数个D . 不能画出8. (2分)(2019七上·潼南月考) 观察下列的排列规律,其中(●是实心球,○是空心球)●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2011个球上,共有实心球()A . 602个B . 604个C . 605个D . 606个9. (2分) (2019九上·罗湖期中) 如图,在矩形ABCD中,AB=12,BC=16,将矩形ABCD沿EF折叠,使点B与点D重合,则折痕EF的长为()A . 14B .C .D . 1510. (2分) (2020八下·长沙期中) 如图,在一个内角为60°的菱形 ABCD中,AB=2,点P以每秒1cm的速度从点A出发,沿AD→DC的路径运动,到点C停止,过点P 作PQ⊥BD,PQ 与边AD(或边CD)交于点Q,△ABQ 的面积y(cm2)与点P 的运动时间x(秒)的函数图象大致是()A .B .C .D .二、填空题 (共6题;共7分)11. (2分) (2017八上·永定期末) 已知y与x成正比例,且当x=1时,y=2,则当x=4时,y=________.12. (1分)(2020·哈尔滨模拟) 函数: . 的自变量x的取值范围是________.13. (1分)(2017·南岗模拟) 计算﹣的结果是________.14. (1分)如图,长方体的底面是边长为1cm的正方形,高为3cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,请利用侧面展开图计算所用细线最短需要多少________cm.15. (1分) (2019七下·南岗期末) 如图,,且 .点是上的两点,.若,则的长为________.16. (1分) (2019八上·全椒期中) 如图:、两地相距,甲、乙两人从两地出发相向而行,甲先出发,图中,表示两人离地的距离与时间的关系,则甲出发后________小时,两人恰好相距 .三、解答题 (共8题;共58分)17. (5分)计算:(﹣1)2016+sin45°+( +2)(﹣2).18. (10分)已知y与x+1成正比例,且当x=3时,y=2.(1)求y与x之间的函数关系式.(2)当y=﹣1时,求x的值.19. (5分) (2018八上·汉滨期中) 如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.20. (5分)如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.(1)求证:AB•AF=CB•CD;(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为ycm2 .①求y关于x的函数关系式.②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.21. (6分)(2017·承德模拟) 如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将沿着CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,链接PC.(1)求CD的长;(2)求证:PC是⊙O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交于点F(F与B、C不重合).问GE▪GF是否为定值?如果是,求出该定值;如果不是,请说明理由.22. (10分)(2020·武汉模拟) 如图,AB是 ⊙O的直径,点C是 ⊙O上一点,AC平分∠DAB,直线DC 与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交 ⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.23. (6分)(2020·黔东南州) 如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD 的长.24. (11分) (2019九下·未央月考) 如图(1)问题发现:如图①,点A和点B均在⊙O上,且∠AOB=90°,点P和点Q均在射线AM上,若∠APB=45°,则点P与⊙O的位置关系是________;若∠AQB<45°,则点Q与Oo的位置关系是________(2)问题解决:如图②所示,四边形ABCD中,AB⊥BC,AD⊥DC,∠DAB=135°,且AB=1,AD=2 ,点P是BC边上任意一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年内蒙古包头市青山区初二(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=72.(3分)下列计算正确的是()A.=±3B.=﹣2C.=﹣3D.+= 3.(3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A.5,5,6B.9,5,5C.5,5,5D.2,6,5 4.(3分)点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)5.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°6.(3分)如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A.B.C.D.7.(3分)若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=39.(3分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°10.(3分)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图l1,l2分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象,以下说法①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是(填“甲”或“乙”)12.(3分)已知一个正数的平方根是3x﹣2和5x﹣6,则这个数是.13.(3分)要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有种换法.14.(3分)如果将一副三角板按如图方式叠放,那么∠1=.15.(3分)已知,则.16.(3分)小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.17.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.18.(3分)如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为.三、解答题19.(8分)计算(1)﹣+(2)(5+)(5﹣2)20.(8分)解方程组(1)(2).21.(7分)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.22.(7分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?23.(8分)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.24.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.2017-2018学年内蒙古包头市青山区初二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下列四组数中,不是勾股数的一组数是()A.a=15,b=8,c=17B.a=9,b=12,c=15C.a=7,b=24,c=25D.a=3,b=5,c=7【解答】解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.2.(3分)下列计算正确的是()A.=±3B.=﹣2C.=﹣3D.+=【解答】解:(A)原式=3,故A错误;(B)原式=﹣2,故B正确;(C)原式==﹣3,故C错误;(D)与不是同类二次根式,故D错误;故选:B.3.(3分)一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()A.5,5,6B.9,5,5C.5,5,5D.2,6,5【解答】解:众数是5,中位数:5,平均数:=5,故选:C.4.(3分)点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【解答】解:P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选:C.5.(3分)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选:C.6.(3分)如图中的两直线l1、l2的交点坐标可以看作哪个方程组的解()A.B.C.D.【解答】解:由于直线l1经过点(0,﹣1),(3,﹣2);因此直线l1的解析式为y=﹣x﹣1;同理可求得直线l2的解析式为y=﹣2x+4;因此直线l1,l2的交点坐标可以看作方程组的解.故选:A.7.(3分)若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.【解答】解:由题意可知:可知k>0,b>0或k<0,b<0,当k>0,b>0时,直线经过一、二、三象限,当k<0,b<0直线经过二、三、四象限,故选:A.8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2B.a=﹣3,b=2C.a=3,b=﹣1D.a=﹣1,b=3【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B 选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选:B.9.(3分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A.15°B.20°C.25°D.30°【解答】解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.故选:B.10.(3分)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习,图l1,l2分别表示甲、乙两人前往目的地所走的路程S(千米)随时间t(分)变化的函数图象,以下说法①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲,其中正确的有()A.4个B.3个C.2个D.1个【解答】解:①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①错误;②根据甲到达目的地时的路程和时间知:甲的平均速度=10÷=15(千米/时);故②正确;④设乙出发x分钟后追上甲,则有:×x=×(18+x),解得x=6,故④正确;③由④知:乙第一次遇到甲时,所走的距离为:6×=6(km),故③正确;所以正确的结论有3个,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是甲(填“甲”或“乙”)【解答】解:∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为:甲.12.(3分)已知一个正数的平方根是3x﹣2和5x﹣6,则这个数是1.【解答】解:根据题意得:3x﹣2+(5x﹣6)=0,解得:x=1,则这个数是(3x﹣2)2=12=1;故答案是:1.13.(3分)要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有6种换法.【解答】解:设需要面值2元的x张,面值1元y张,由题意,得2x+y=10,y=10﹣2x.x≥0,y≥0,且x、y为整数.∴10﹣2x≥0,∴x≤5.∴0≤x≤5,∴x=0,1,2,3,4,5,当x=0时,y=10,当x=1时,y=8,当x=2时,y=6,当x=3时,y=4,当x=4时,y=2,当x=5时,y=0.综上所述,共有6种换法.故答案为:6.14.(3分)如果将一副三角板按如图方式叠放,那么∠1=105°.【解答】解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.15.(3分)已知,则 1.01.【解答】解:∵,∴ 1.01;故答案为:1.01.16.(3分)小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为12米.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.17.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.【解答】解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.18.(3分)如图,长方形ABCD中,AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为y=﹣x+20.【解答】解:当5<x<8时,点P在线段BC上,PC=8﹣x,∴y=PC•AB=﹣x+20.故答案为:y=﹣x+20.三、解答题19.(8分)计算(1)﹣+(2)(5+)(5﹣2)【解答】解:(1)原式=3﹣4+=﹣;(2)原式=(5+)•(5﹣)=×(25﹣6)=19.20.(8分)解方程组(1)(2).【解答】解:(1)原方程组整理得,①+②,得:7x=7,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,∴方程组的解为;(2),①×2,得:4x+2y=4 ③,②+③,得:7x=14,解得:x=2,将x=2代入①,得:4+y=2,解得:y=﹣2,∴方程组的解为.21.(7分)A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.【解答】解:(1)A大学生的口试成绩为90;补充后的图如图所示:(2)A的票数为300×35%=105(张),B的票数为300×40%=120(张),C的票数为300×25%=75(张);(3)A的成绩为=92.5(分)B的成绩为=98(分)C的成绩为=84(分)故B学生成绩最高,能当选学生会主席.22.(7分)列方程组解应用题,为了保护环境,深圳某公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万汽油,求购买这批混合动力公交车需要多少万元?【解答】解:(1)根据题意得:,解得:.(2)设A型车购买x台,则B型车购买(10﹣x)台,根据题意得:2.4x+2(10﹣x)=22.4,解得:x=6,∴10﹣x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.23.(8分)如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出其度数;若不存在,请说明理由.【解答】证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,又∵∠A=∠C∴∠ADC+∠C=180°,∴AD∥BC;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBE=∠ABF+∠CBF=∠ABC=40°;(3)存在.设∠ABD=∠DBF=∠BDC=x°.∵AB∥CD,∴∠BEC=∠ABE=x°+40°;∵AB∥CD,∴∠ADC=180°﹣∠A=80°,∴∠ADB=80°﹣x°.若∠BEC=∠ADB,则x°+40°=80°﹣x°,得x°=20°.∴存在∠BEC=∠ADB=60°.24.(8分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA 相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。