沪科版七年级数学下册 第六章测试卷
沪科版七年级数学下册 第六章测试卷

沪科版七年级数学下册第六章实数测试卷一、选择题(每小题3分,共30分)1.下列语句中正确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±2.下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4± 4.下列说法中正确的是 ( ) A.无理数都是开方开不尽的数 B.无理数可以用数轴上的点来表示 C.无理数包括正无理数、零、负无理数 D.无理数是无限小数5.下列各组数中互为相反数的是 ( ) A. 2-与2)2(- B. 2-与38- C. 2-与21- D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的 ( ) A. n 倍; B. 倍2n C. n 倍 D. n 2倍. 7.实数在数轴上的位置如下图,那么化简2a b a --的结果是 ( ) A.b a -2 B.bC.b -D.b a +-28.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或09.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( ) A.22+x B 、2+x C.22-x D.22+x 10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 二、填空题(每小题3分,共21分)11.2)4(-的平方根是_______,36的算术平方根是______ ,1258-的立方根是________ .38-的相反数是______,2π-的倒数是______.12.若一个数的算术平方根与它的立方根相等,那么这个是 . 13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方根;④2)52(的平方根是52±.正确的是______________(写序号).14.3±,则317-a = .15.比较大小:516.满足52<<-x 的整数x 是 .17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ .三.解答题(共69分): 18.(每小题4分,共16分)(1)求x 的值 4)12(2=-x (2) 081)2(33=-+x(3)计算 2232+- (4)33323272)21()4()4()2(--⨯-+-⨯-19.解答题(每小题8分,共24分) (1)已知09222=-++b b a ,求b a +的值.(2)已知下面代数式有意义,求该代数式的值:______2112=-+-+-x x x .(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?A B C。
沪科版七年级下册数学第6章测试题(附答案)

沪科版七年级下册数学第6章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.和数轴上的点一一对应的数是()A. 整数B. 有理数C. 无理数D. 实数2.等于()A. aB. -aC. ±aD. 以上答案都不对3.在四个实数2,0,﹣,﹣中,最小实数的倒数是()A. 0B. ﹣2C.D. ﹣4.若,且a在两个相邻整数之间,则这两个整数是A. 1和2B. 2和3C. 3和4D. 4和55.﹣8的立方根是()A. 2B. -2C. ±2D.6.如图,数轴上的A、B、C、D四点中,与表示数﹣的点最接近的是()A. 点AB. 点BC. 点CD. 点D7.大于-0.5而小于的整数共有( )A. 6个B. 5个C. 4个D. 3个8.实数5的相反数是()A. B. - C. -5 D. 59.2的算术平方根是()A. 4B. ±4C.D.10.小马虎做了下列四道题:① = ;②2+ =2 ;③ = ﹣=5﹣3=2;④ =﹣.他拿给好朋友聪聪看,聪聪告诉他只做对了()A. 4道B. 3道C. 2道D. 1道11.若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )A. 5-3B. 3C. 3 -5D. -312.下列命题中正确的是()①0.027的立方根是0.3;② 不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A. ①③B. ②④C. ①④D. ③④二、填空题(共10题;共22分)13.的立方根是________.14.4的算术平方根是________.15.写出一个小于﹣1无理数,这个无理数可以是________.16.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,-a,-b中最大的是________。
沪科版七年级下册数学第6章 实数含答案

沪科版七年级下册数学第6章实数含答案一、单选题(共15题,共计45分)1、9的平方根是()A.±3B.3C.﹣3D.±2、计算2cos60° -sin245°+cot60°的结果是()A. B. C. D.3、实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|<|b|B.a>﹣bC.b>aD.a>﹣24、下列计算正确的是()A. B. C. D.5、的平方根是()A.±9B.3C.±3D.-36、下列计算中,正确的是()A. B. C. D.7、下列计算正确的是()A. =±2B.±=6C.D.8、在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A.1B.2C.3D.49、边长是m的正方形面积是7,如图,表示m的点在数轴上表示时,在哪两个字母之间()A.C与DB.A与BC.A与CD.B与C10、设a=20, b=(-3)2, c= ,d= ,则,,,按由小到大的顺序排列正确的是()A.c<a<d<bB.b<d<a<cC.a<c<d<bD.b<c<a<d11、把5的平方根和立方根按从小到大的顺序排列为()A. B. C. D.12、9的算术平方根是()A.81B.3C.±3D.13、在实数范围内下列判断正确的是()A.若|m|=|n|,则m=nB.若a 2>b 2,则a>bC.若,则a=bD.若,则a=b14、当x=0时,二次根式的值是( )A.4B.2C.D.015、12的算术平方根的相反数介于()A.-5与-4之间B.-4与-3之间C.-3与-2之间D.-2与-1之间二、填空题(共10题,共计30分)16、若是m的一个平方根,则m+13的平方根是________.17、已知,a <b,且a、b是两个连续的整数,则|a+b|=________.18、比较大小:________ (用“”或“”填空).19、如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1。
七年级下沪科版数学第六章实数测试卷

第六章实数测试卷(120分)一、选择题(每小题3分,共30分)1.下列语句中正确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±2.下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4± 4.下列说法中正确的是 ( ) A.无理数都是开方开不尽的数 B.无理数可以用数轴上的点来表示 C.无理数包括正无理数、零、负无理数 D.无理数是无限小数5.下列各组数中互为相反数的是 ( ) A. 2-与2)2(- B. 2-与38- C. 2-与21- D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的 ( ) A. n 倍; B. 倍2n C. n 倍 D. n 2倍. 7.实数在数轴上的位置如下图,那么化简2a b a --的结果是 ( ) A.b a -2 B.bC.b -D.b a +-28.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或09.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( ) A.22+x B 、2+x C.22-x D.22+x 10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 二、填空题(每小题3分,共21分)11.2)4(-的平方根是_______,36的算术平方根是______ ,1258-的立方根是________ .38-的相反数是______,2π-的倒数是______.12.若一个数的算术平方根与它的立方根相等,那么这个是 . 13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方根;④2)52(的平方根是52±.正确的是______________(写序号).14.3±,则317-a = .15.比较大小:516.满足52<<-x 的整数x 是 .17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ .三.解答题(共69分): 18.(每小题4分,共16分)(1) 4)12(2=-x (2) 081)2(33=-+x(3)计算 2232+- (4)33323272)21()4()4()2(--⨯-+-⨯-19.解答题(每小题8分,共24分) (1)已知09222=-++b b a ,求b a +的值.(2)已知下面代数式有意义,求该代数式的值:______2112=-+-+-x x x .(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?A B C。
沪科版七年级数学下册单元测试题:第六章 实数

第6章实数一、选择题(每小题3分,共30分)1.在下列四个数中,无理数是( )A.0 B.-3.1415…C.227D.92.下列选项正确的是( )A.9=±3B.(-2)2=-2C.-1的算术平方根是1D.3-125=-53.下列说法正确的是( )A.-4的平方根是±2B.0的平方根与算术平方根都是0C.16的平方根是±4D.(-4)2的算术平方根是-44.64的算术平方根是( )A.8 B.±8C.8 D.±85.如图6-1,数轴上的点P表示的数可能是( )图6-1A.-2.3 B.- 3C. 3 D.- 56.13-1的整数部分为( )A.1 B.2 C.3 D.47.如图6-2是一个数值转换机,若输入a的值为4,则输出的结果应为( )图6-2A.2 B.-2 C.1 D.-18.若x是(-9)2的平方根,y是64的立方根,则x+y的值为( )A.3 B.7C.3或7 D.1或79.三个数-π,-3,-3的大小关系是( )A.-3<-π<- 3 B.-π<-3<- 3C.-3<-π<-3 D.-3<-3<-π10.点A,B,C在同一条数轴上,其中点A,B表示的数分别为-3,1,若BC=2,则AC等于( )A.3-1B.3+1C.3+3或3-1D.3+3或3+1二、填空题(每小题3分,共24分)11.49的平方根是________,算术平方根是________,-8的立方根是________.12.7-5的相反数是________,绝对值是________.13.-4是a的一个平方根,则a的算术平方根是________.14.比较大小:7________50(填“>”“<”或“=”).15.若20.19≈4.493,则±2019≈________.16.若a2=64,则3a=________.17.若a-9+(b-3)2=0,则ab的平方根是________.18. 平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年3月3日,2016年4月4日,请你写出21世纪内你喜欢的一个平方根节:________________(题中所举例子除外).三、解答题(共46分)19.(4分)计算:(1)-3-0.125;(2)38+0-14.20.(4分)求下列各式中的x.(1)(3x+2)2=16;(2)12(2x-1)3=-4.21.(4分)化简:|6-2|+|2-1|-|6-3|.22.(6分)把下列各数填入相应的大括号内:3 2,-32,3-8,0.5,2π,3.14159265,-|-25|,1.3030030003…(每两个3之间依次增加一个0).(1)有理数:{ };(2)无理数:{ };(3)正实数:{ };(4)负实数:{ }.23.(6分)一个正数a的两个平方根分别是2m+1与5m-8,求a的值.24.(6分)已知x的两个平方根分别是2a-1和a-5,且3x-y-2=3,求x+y的值.25.(8分)若a-2019+(b+2020)2=0,试求代数式(a+b)2020的值.26.(8分)如图6-3,数轴上点A表示的数为2+1,点A在数轴上向左平移3个单位长度到达点B,点B表示的数为m.(1)求m的值;(2)化简:||m+1+(2-m)2.图6-3教师详解详析1.B [解析] -3.1415…是无限不循环小数,是无理数.2.D [解析]C错误;(-4)2=16,16的算术平方根是4,所以D错误.故选B.4.C5.B [解析] 点P表示的数大于-2且小于-1,而-3≈-1.732,所以点P表示的数可能是- 3.6.B [解析] 因为3<13<4,所以2<13-1<3,故13-1的整数部分是2.故选B.7.D [解析] 因为4=2,所以结果是(2-4)×0.5=-1.8.D [解析] 由题意,得x=±3,y=4,则x+y=1或7.9.B [解析] -π≈-3.14,-3≈-1.732,因为3.14>3>1.732,所以-π<-3<- 3.故选B.10.C [解析] AB=1+3,当点C在线段AB的延长线上时,AC=AB+BC=1+3+2=3+3;当点C在线段AB上时,AC=AB-BC=1+3-2=3-1.故选C.11.±7 7 -2 [解析] 因为(±7)2=49,所以49的平方根是±7,算术平方根是7;因为(-2)3=-8,所以-8的立方根是-2.12.5-7 5-713.4 [解析] 因为(-4)2=16,所以a=16.因为16的算术平方根是4,所以a的算术平方根是4.14.<[解析] 因为7=49,而49<50,所以7<50.15.±44.93 [解析] 本题考查了被开方数与算术平方根中小数点的移动规律:被开方数的小数点移动两位,算术平方根中的小数点向相同方向移动一位.16.±2 [解析] 由a2=64得a=±8.17.± 3 [解析] 由题意得:a-9=0,b-3=0,解得a=9,b=3,则ab的平方根是± 3.18.2001年1月1日(答案不唯一)[解析] 抓住年份最后两位数字是个完全平方数即可.19.解:(1)-3-0.125=-(-0.5)=0.5.(2)38+0-14=2+0-0.5=1.5.20.解:(1)开方,得3x +2=4或3x +2=-4,解得x =23或-2. (2)开立方,得2x -1=-2,解得x =-12. 21.解:|6-2|+|2-1|-|6-3|=6-2+2-1-(3-6)=6-2+2-1-3+ 6=2 6-4.22.解:(1)有理数:{-32,3-8,0.5,3.14159265,-|-25|}; (2)无理数:{32,2π,1.3030030003…(每两个3之间依次增加一个0)}; (3)正实数:{32,0.5,2π,3.14159265,1.3030030003…(每两个3之间依次增加一个0)}; (4)负实数:⎩⎨⎧⎭⎬⎫-32,3-8,-|-25|. 23.解:依题意,得2m +1=-(5m -8),解得m =1,所以2m +1与5m -8的值分别是3和-3,所以a =(±3)2=9.24.解:由题意可知2a -1+a -5=0,所以a =2,所以2a -1=3,所以x =32=9.因为3x -y -2=3,所以x -y -2=27,所以y =-20.所以x +y =-11.25.解:由题意,得⎩⎪⎨⎪⎧a -2019=0,b +2020=0,解得⎩⎪⎨⎪⎧a =2019,b =-2020, 所以(a +b )2020=(-1)2020=1.26.解:(1)m =2+1-3=2-2.(2)因为m +1=2-1>0,所以|m +1|=2-1.因为2-m =2-(2-2)=2,所以原式=2-1+22=2+3.。
沪科版七年级数学下册-第六章实数测试题

七年级数学《实数》A 卷姓名 ______________ 成绩(二卜细心填一填A . 一 0.7B . -0.7C. 0.7D . 0.496.下列语句中正确的是( )A.49的算术平方根是7B.49的平方根是-7C.-49的平方根是7D.49的算术平方根是-77.一个数的平方根等于匕的立方根, 这个数是( )A.0B.C.1D.不存在8. 卜列运算中,错误的是:_4,③ 3 - 1-31( )①1 25 =15,② O 2=11119④ ;144 1216 25 4 5 20A .1个B. 2个C. 3个D .4个9.若 a 2 = 25 , b = 3 ,则a b 的值为( )A . - 8B . ± 8C . ± 2D . ±8或土 2)5.10.实数 a , b 在数轴上的位置,如图所示,那么化简11 .在数轴上表示 -.3的点离原点的距离是,设面积为5的正方形的边长为 x ,那么x =12. 9的算术平方根是4;—的平方根是 91—的立方根是2713. 5-2的相反数是 ,卜 2-3 =14. O 23(-6)3 ;(、196)2 =15. 比较大小:■- 30.5;(填“或“<”)(一卜精心选一选 1 .有下列说法,正确的说法有():(1 )无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负无理数;(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
A . 1个 B . 2个 C. 3个 D . 4个 2 .如果一个实数的平方根与它的立方根相等,则这个数是(A .3 .能与数轴上的点 A 整数B .正整数-一对应的是( B有理数 C C. D.A.1个) 无理数D 实数3,8"2,-3.15,®—中,无理数有(3B.2个C.3个D.4个2(-0.7 )的平方根是A . 2a bB . b C. —b D . -2a b-a 2- |a b|的16. 要使、2x-6有意义,x 应满足的条件是 __________________ 17. 已知 H —1—5 = 0 ,贝U (a — b)的平方根是 _______ ;18•若,102.01 =10.1U ±・、1.0201 = _______ ;19. 一个正数x 的平方根是2a-3与5-a ,贝U a= ___________ ;20. 一个圆它的面积是半径为 3cm 的圆的面积的25倍,则这个圆的半径为 ________ . (三)、用心做一做20. 将下列各数填入相应的集合内。
沪科版七年级下第六、七章数学测试卷
沪科版七年级下第六、七章数学测试卷班级: 姓名:一、选择,每题2分。
1.下列各数中无理数有( ).,3.141,227-,π,0,4.217 ,0.1010010001 . A .2个 B .3 个 C . 4个 D .5个2的相反数是( ).A . C .3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④5的平方根.其中正确的有( ). A .0个 B .1个 C .2个 D .3个4.不等式-x+5≥0 的解集是( ).A. x ≥5B. x ≤5C. x ≤-5D. x ≥-55.三个连续自然数的和小于11,这样的自然数组共有( )组A .1B .2C .3D .4二、填空,每题4分。
6.若13是m 的一个平方根,则m 的另一个平方根为 .7.在下列说法中①0.09是0.81的平方根;②-9的平方根是±3;③2(5)-的算术平方根是-50的相反数和倒数都是02=±;⑦已知a 是实数,||a =;⑧全体实数和数轴上的点一一对应.正确的个数是 .8.比较大小2π,9.满足不等式x 的非正整数x 共有 个.10.若a 、b 都是无理数,且2a b +=,则a 、b 的值可以是 (填上一组满足条件的值).11.若实数x 、y 0=,则x 与y 的关系是 .12.-64 .13.若2(23)a += .14.一长方体的体积为1623cm ,它的长、宽、高的比为3:1:2,则它的表面积为 2cm .15= .16. 用不等式表示:a+3大于-2 :_______________.17. 用不等式表示: b 是非负数__________________.18. 如果a<b,则a+8______b+8 ;a- 1______b- 1.19. 若a<b<0,则3a _____ 3b ;a 2______ ab.20. x 的5倍在3与7之间(不包括3和7)用不等式表示:_______________.三、解方程,每题5分。
沪科版七年级下数学第6章《实数》单元测试(含答案)
《实数》单元测试一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a,=b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵P A的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
2022年沪科版七年级数学下册第6章 实数专项训练试题(含答案解析)
沪科版七年级数学下册第6章 实数专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在实数23-0、π-、0.2 ).A .1个B .2个C .3个D .4个2a a 的值不可能为( )A .2B .3C .4D .53、下列各数中不是无理数的是( )A .3π-C .0.151151115…(相邻两个5之间1的个数逐次加1) 4、下列各数中,不是无理数的是( )A B .πC D .0.808008…(相邻两个8之间0的个数逐次加1)5、若关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,则k 的值为( )A .9B .﹣3C .﹣3或3D .36、在下列各数23,3.1415926,0.213,-2π2之间依次多1个0)中无理数的个数有( )A .1个B .2个C .3个D .4个7、已知2m ﹣1和5﹣m 是a 的平方根,a 是( )A .9B .81C .9或81D .28、下列各数中,是无理数的是( )A .3.14B .πC .38 D 9、下列运算正确的是( )AB 9C 9D 810、点A 在数轴上的位置如图所示,则点A 表示的数可能是( )AB C D 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设[x )表示大于x 的最小整数,如[3)=4,[﹣1.2)=﹣1,(1)[﹣3.9)=______.(2)下列结论中正确的是______(填写所有正确结论的序号)①[0)=0;②[x )﹣x 的最小值是0;③[x )﹣x 的最大值是1;④存在实数x ,使[x )﹣x =0.5成立.2、0.064的立方根是______.3最接近的整数为______.4、在﹣(﹣12),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.5、如果3278x =-,那么x =_____. 三、解答题(5小题,每小题10分,共计50分)1、将下列各数在数轴上表示出来,并用“<”号把它们连接起来.12-,3-,2-2、已知正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,a ﹣4b 的算术平方根是4.(1)求这个正数a 以及b 的值;(2)求b 2+3a ﹣8的立方根.3、求下列各数的平方根: (1)121 (2)729(3)(-13)2 (4)3(4)-- 4、已知a 、b 互为倒数,c 、d(c +d )2+1的值.5、如果一个四位数m 满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为1m ,十位数字与个位数字之和记为2m ,记F (m )12m m =,若F (m )为整效,则称这个数为“运算数“,例如:∵F (5332)5332⨯==+3,3是整数,∴5332是“运算数”;∵F (1722)177224⨯==+,74不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s 和t 都是“运算数”,其中s =8910+11x (2≤x ≤8,且x 为整数);t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F (t )=4,规定:k ()2t F s =-,求所有k 的值.-参考答案-一、单选题1、B【分析】无限不循环小数是无理数,根据无理数的定义解答.【详解】,∴23-0π-、0.2π-,故选:B .【点睛】此题考查了无理数的定义,正确掌握定义及正确求一个数的立方根及算术平方根是解题的关键.2、D【分析】a 可能的值,判断求解即可.【详解】,a ,∴整数a 可能的值为:2,3,4,∴整数a 的值不可能为5,故选:D .【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.3、C【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:AB 、3π-,是无理数,故此选项不符合题意;C 12,是分数,是有理数,故此选项符合题意; D 、0.151151115…(相邻两个5之间1的个数逐次加1),是无理数,故此选项不符合题意. 故选:C .【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如8之间依次多1个0)等形式.4、A【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.3=,不是无理数,符合题意;π0.808008…(相邻两个8之间0的个数逐次加1)都是无理数,不符合题意;故选:A .【点睛】本题考查了无理数的定义,能熟记无理数的定义的内容是解此题的关键.5、B【分析】含有一个未知数,且未知数的最高次数是1,这样在整式方程是一元一次方程,根据定义列方程与不等式,从而可得答案.【详解】 解: 关于x 的方程(k 2﹣9)x 2+(k ﹣3)x =k +6是一元一次方程,290,30k k ①②由①得:3,k由②得:3,k ≠所以:3,k =-故选B【点睛】本题考查的是一元一次方程的应用,利用平方根的含义解方程,掌握“一元一次方程的定义”是解本题的关键.6、C根据无理数的概念求解即可.【详解】解:-22之间依次多1个0)是无理数,其它是有理数, 故无理数一共有3个,故选:C .【点睛】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.7、C【分析】分两种情况讨论求解:当2m ﹣1与5﹣m 是a 的两个不同的平方根和当2m ﹣1与5﹣m 是a 的同一个平方根.【详解】解:若2m ﹣1与5﹣m 互为相反数,则2m ﹣1+5﹣m =0,∴m =﹣4,∴5﹣m =5﹣(﹣4)=9,∴a =92=81,若2m ﹣1=5﹣m ,∴m =2,∴5﹣m =5﹣2=3,∴a =32=9,【点睛】本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.8、B【分析】根据无理数的定义,“无限不循环的小数是无理数”逐项分析即可.【详解】解:A. 3.14是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;是有理数,故该选项不符合题意;C. 38=是有理数,故该选项不符合题意;3故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9、C【分析】)a≥表示非负数a的算术平方根,其结果是一个非负数,从而可判断A,B,C a的立方根,从而可判断C,于是可得答案.【详解】=故A不符合题意;9,=故B不符合题意;9,9,=-故C符合题意;=故D不符合题意;4,故选C【点睛】本题考查的是算术平方根的含义,立方根的含义,掌握“算术平方根与立方根的定义及求解一个数的算术平方根与立方根”是解本题的关键.10、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A表示的数在4至4.5之间,A,故该选项符合题意;B<4,故该选项不符合题意;C,故该选项不符合题意;D,故该选项不符合题意;故选:A.【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.二、填空题1、-3;③④【分析】(1)利用题中的新定义判断即可.(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【详解】(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3(2)解:①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x⩽1,即最大值为1,故本项正确;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.∴正确的选项是:③④;故答案为:③④.【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.2、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵3,0.40.064∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.3、5【分析】先判断5266,再根据26251,362610,从而可得答案.【详解】解:252636,5266,26251,362610,而110,26更接近的整数是5.故答案为:5【点睛】本题考查的无理数的估算,掌握“无理数的估算方法”是解本题的关键.4、-1【分析】先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.【详解】解∵﹣(﹣12)=12,﹣1,|3﹣π|=π-3,0,∴−1<0<π-3<12,∴这四个数中,最小的数是−1.故填:−1.【点睛】本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.5、32- 【分析】本题可利用立方根的定义直接求解.【详解】 ∵3327()28-=-, ∴32x =-. 故填:32-. 【点睛】本题考查立方根的定义:如果一个数的立方等于a ,则这个数称为a 的立方根使用时和平方根定义对比记忆.三、解答题1、在数轴上表示出来见解析;1322-<-<- 【分析】先把2-化简,然后把各数在数轴上表示出来,最后根据数轴左边数小于右边数的规律进行排序.【详解】解:∵|2|2-=32, 将这些数表示在数轴上如图所示:∴1322-<-<- 【点睛】本题考查有理数的综合应用,熟练掌握绝对值和算术平方根的计算、利用数轴比较有理数大小的方法是解题关键.2、(1)36a =,5b =;(2)b 2+3a ﹣8的立方根是5【分析】(1)根据题意可得,2x ﹣2+6﹣3x =0,即可求出a =36,再根据a ﹣4b 的算术平方根是4,求出b 的值即可;(2)将(1)中所求a 、b 的值代入代数式b 2+3a ﹣8求值,再根据立方根定义计算即可求解.【详解】解:(1)∵正数a 的两个不同平方根分别是2x ﹣2和6﹣3x ,∴2x ﹣2+6﹣3x =0,∴x =4,∴2x ﹣2=6,∴a =36,∵a ﹣4b 的算术平方根是4,∴a ﹣4b =16,∴36-4b =16∴b =5;(2)当a =36,b =5时,b 2+3a ﹣8=25+36×3﹣8=125,∴b2+3a﹣85.【点睛】本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.3、(1)±11; (2)53±;(3)±13;(4)±8【分析】(1)直接根据平方根的定义求解;(2)把带分数化成假分数,再根据平方根的定义求解;(3)(4)先化简,再根据平方根的定义求解.【详解】含有乘方运算先求出它的幂,再开平方.(1)因为(±11)2=121,所以121的平方根是±11;(2)725299=,因为2525()39=±,所以729的平方根是53±;(3)(-13)2=169,因为(±13)2=169,所以(-13)2的平方根是±13;(4)-(-4)3=64,因为(±8)2=64,所以-(-4)3的平方根是±8.【点睛】本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.4、0【分析】互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.【详解】解:根据题意得:ab =1,c +d =0,(c +d )2+1的值=-1+0+1=0.【点睛】本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.5、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据28x ≤≤找出s ,设100010010(2)t a a b b =++++,其中19,17a b ≤≤≤≤,且,a b 为整数,由()4F t =,找出,a b 的值,代入()2t k F s =-中即可得解. 【详解】(1)99(9981)981F ⨯==+,9是整数,∴9981是“运算数”, 236(2314)145F ⨯==+,65不是整数,∴2314不是“运算数”; (2)891011s x =+,28x ≤≤且x 为整数,s ∴可为:8932,8943,8954,8965,8976,8987,8998, s 是“运算数”,8954s ∴=,89()854F s ⨯==+, t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为a ,个位数上的数字为b ,则千位上的数字为a ,十位上的数字为(2)b +,其中19,17a b ≤≤≤≤且,a b 为整数,100010010(2)t a a b b ∴=++++,()4F t =,2422a b ∴=+,即288a b =+, 当1b =时,4a =,其他情况不满足题意,10004100410314431t ∴=⨯+⨯+⨯+=,()4431738.5282t k F s ∴===--. 【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.。
沪科版七年级下册数学第6章《实数》单元测试卷
成芳教育内部资料之邯郸勺丸创作七年级数学(下)第6章 实数 单元测试题时间:60分钟 满分:100分 命题人:张莹莹一、你能帮我选择吗?(每题3分/共30分)1.49的平方根为( )A 7B ﹣7C ±7D ± 2.的算术平方根是( )A 3B ﹣3C ±3D 3.64的立方根是( )A 4B ±4C 8D ±84.下列说法中,正确的有( )①1的平方根是1;②﹣1的平方根是﹣1;③0的平方根是0;④1是1的平方根;⑤只有正数才有平方根A 1个B 2个C 3个D 4个5.下列各式中,正确的是( ) A. 3)3(3-=- B. 332-=- C. 3)3(2±=±± D. 332±=6.一个数的立方根是它自己,则这个数是( )A 0B 1,0C 1,﹣1D 1,﹣1或07.下列说法正确的是( )A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的立方根是2±8.下列实数:-8.6;5;9;722;38-;0.1010010001;1-π;0.76;2+3;0.5858858885…(两个5之间依次多一个8)中,无理数的个数有( )A.1个B.2个C.3个D.4个9.下列命题中,正确的是( )A.无理数包含正无理数、0和负无理数B.无理数不是实数C.无理数是带根号的数D.无理数是无限不循环小数10.已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( )A 4B 2CD ±2二、相信你能行(每题2分/共20分) 1.计算的结果是 ___.2.(﹣3)2=____;= ____. 3.整数3的平方根是 _____,0.001的立方根是 _____. 4.﹣2的相反数是 ____,的绝对值是 _____,立方等于﹣64的数是 _____.5.实数a 、b 在数轴上的位置如图所示,那么化简=-+2||a b a .6.若一个正数的平方根是2a ﹣1和﹣a+2,则a= _____,这个正数是 ______.7.如果2a ﹣18=0,那么a 的算术平方根是 _______.8.若|a ﹣2|++(c ﹣4)2=0,则a ﹣b+c= _______. 9.7,π,0,1-这四个数中,最大的数是.10.把下列各数填入相应的括号里: π,|2|-,3.4,40%,64.0,327-,23-;8;4-;37(1)整数集合:{ };(2)有理数集合:{ };(3)无理数集合:{ };(4)实数集合:{ }. 三、我是小神算(共36分) 1.(12分)求下列各式中x 的值:(1)25x 2 =64;(2)()44.122=-x ;(3)6x 3-361 =0; (4)06423=+⎪⎭⎫ ⎝⎛x . 2.(6分)计算:(1)|31|1273---;(2)3264412)4(-+-. 3.(4分)若33312--=+-x x ,求2x 的平方根. 4.(6分)已知10的整数部分为a ,小数部分为b ,求:(1)a 、b ;(2)b -10.5.(6分)a 的相反数等于它自己,b 的算术平方根是3,c 的立方根是-2,求代数式222c b a -+的值.6.(6分)要建一个底面为正方形的养鱼池,其容积为576003m ,已知该鱼池深4m ,求鱼池底面边长是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级数学下册第六章实数测试卷
一、选择题(每小题3分,共30分)
1.下列语句中正确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±
2.下列实数3
3
,
9,15.3,2,0,8
7,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4± 4.下列说法中正确的是 ( ) A.无理数都是开方开不尽的数 B.无理数可以用数轴上的点来表示 C.无理数包括正无理数、零、负无理数 D.无理数是无限小数
5.下列各组数中互为相反数的是 ( ) A. 2-与2)2(- B. 2-与38- C. 2-与2
1- D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的 ( ) A. n 倍; B. 倍2
n C. n 倍 D. n 2倍. 7.实数在数轴上的位置如下图,那么化简2a b a --的结果是 ( ) A.b a -2 B.b
C.b -
D.b a +-2
8.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或0
9.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( ) A.22+x B 、2+x C.22-x D.22+x 10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 二、填空题(每小题3分,共21分)
11.2)4(-的平方根是_______,36的算术平方根是______ ,125
8
-
的立方根是________ .38-的相反数是______,2
π-的倒数是______.
12.若一个数的算术平方根与它的立方根相等,那么这个是 . 13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的
平方根;④2)52
(的平方根是5
2±.正确的是______________(写序号).
14.3±,则317-a = .
15.比较大小:5
16.满足52<<-x 的整数x 是 .
17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→2
1,则
x 为______________ .
三.解答题(共69分): 18.(每小题4分,共16分)
(1)求x 的值 4)12(2=-x (2) 081)2(33=-+x
(3)计算 2232+- (4)33323272)2
1
()4()4()2(--⨯-+-⨯-
19.解答题(每小题8分,共24分) (1)已知09222=-++b b a ,求b a +的值.
(2)已知下面代数式有意义,求该代数式的值:
______2112
=-+-+-x x x .
(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?
20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.
21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为
27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.
22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?
A B C。