第七章真核基因表达调控
真核生物基因表达的调控

4、DNA甲基化与基因组印迹 (1)基因组印迹:来源于父母本的一对等位基因
表达不同(如X染色体失活) (2)基因组印迹的机制--DNA高度甲基化
5、DNA甲基化与X染色体的失活 X染色体DNA序列高度甲基化,基因被关闭
(1)与X染色体的失活有关的序列:
AP2
??
结合蛋白 (protein binding)
AP2 AP1
? SP1
? TF IID +
RNApol
BLE basal level element MRE metal response element AP activator protein
应答元件的特点:
1. 具有与启动子、增强子同样的一般特性. 2. 与起始点的位置不固定(多在-200以内;单个功能充分,
非洲爪蟾的卵母细胞 rDNA的拷贝数目: 500份 2×106份,可装配1012个核糖体 当胚胎期开始,增加的rDNA便失去功能并逐渐消失
二、基因丢失
有的生物在个体发育的早期在体细胞中要丢 失部分染色体,而在生殖细胞中保持全部的 基因组。
小麦瘿蚊(染色丢失了32条,只保留8条)
马蛔虫
三、基因重排(gene rearrangement)
的下游起作用。 4、与它结合的转录因子是GCN4和GAL4,识别位
点为 ATGACTCAT。
(四)绝缘子(Insulator)
阻止激活或失活效应的元件
举例:
1、当绝缘子位于增强子和启动子间时,能阻止 增强子激活启动子作用。
2、当绝缘子位于一个活化基因和异染色质之间 时,它保护基因免受由异染色质扩展造成的失 活效应影响。
Constant
分子生物学8 基因的表达与调控(下)——真核基因表达调控的一般规律

第七章基因的表达与调控(下)——真核基因表达调控的一般规律重点:1. 真核生物的基因结构与转录活性2. 真核基因的转录3. 真核基因转录调控的主要模式难点:1. 真核生物的基因结构与转录活性2. 真核基因的转录3. 反式作用因子4. 真核基因转录调控的主要模式课时分配:8学时真核生物和原核生物在基因表达调控的巨大差别是有两者基本生活方式不同所决定的。
原核生物一般为自由生活的单细胞,只要条件合适,养料供应充分,它们就能无限生长、分裂。
因此,它们的调控系统就是要在一个特定的环境中为细胞创造高速生长的基础,或使细胞在受到损伤时,尽快得到修复。
它们主要通过转录调控,以开启或关闭某些基因的表达来适应环境条件。
环境因子往往是调控的诱导物,群体中每个细胞对环境的反应都是直接和基本一致的。
真核生物主要由多细胞组成,每个真核细胞所携带的基因数量及总基因组中蕴藏的遗传信息量都大大高于原核生物。
真核生物基因组DNA中有许多重复序列,基因内部还常插入不翻译成蛋白质的序列,都影响了真核基因的表达。
真核生物的DNA还常与蛋白质(包括组蛋白和非组蛋白)结合,形成十分复杂的染色质结构。
染色质构象的变化,染色质中蛋白质的变化及染色质对DNA酶敏感程度的变化等都会对基因表达产生重要影响。
此外,真核生物染色质被包裹在细胞核内,基因的转录和翻译被核膜所隔开,核内RNA的合成与转运,细胞质中RNA的剪接和加工等无不扩大了真核生物基因调控的范围,使真核生物基因调控达到了原核生物所不可能拥有的深度和广度。
对大多数真核生物来说,基因表达调控最明显特征是能在特定的时间和特定的细胞中激活特定的基因,从而实现“预定”的、有序的、不可逆转的分化、发育过程,并使生物的组织和器官保持正常功能。
1. 真核生物基因表达调控与原核不同点在于:(1)转录激活与染色体转录区特定结构相适应(2)正性调节占主导(3)转录与翻译在空间上的分离(4)更多、更复杂的调控蛋白真核生物基因表达调控可分为两大类,第一类是瞬时调控或称为可逆性调控,它相当于原核细胞对环境条件的变化所作出的反应,包括某种底物或激素水平升降时,或细胞周期不同阶段中酶活性的调节;第二类是发育调控或称为不可逆性调控,是真核基因调控的精髓部分他决定了真核细胞生长、分化、发育的全部进程。
真核生物基因表达调控

第十章作业1. 简述真核生物基因表达调控的7个层次。
①染色体和染色质水平上的结构变化与基因活化②转录水平上的调控,包括基因的开与关,转录效率的高与低③RNA加工水平的调控,包括对出事转录产物的特异性剪接、修饰、编辑等。
④转录后加工产物在从细胞核向细胞质转运过程中所受到的调控⑤在翻译水平上的控制,即对哪一种mRNA结合核糖体进行翻译的选择以及蛋白质成量的控制⑥对蛋白质合成后选择性地被激活的控制,蛋白质和酶分子水平上的剪接等的控制⑦对mRNA选择性降解的调控2. 真核基因表达调控与原核生物相比有何异同?相同点:①与原核基因的调控一样,真核基因表达调控也有转录水平调控和转录后水平的调控,并且也以转录水平调控为最重要;②在真核结构基因的上游和下游(甚至内部)也存在着许多特异的调控成分,并依靠特异蛋白因子与这些调控成分的结合与否调控基因的转录。
不同点:①原核细胞的染色质是裸露的DNA,而真核细胞染色质则是由DNA与组蛋白紧密结合形成的核小体。
②在原核基因转录的调控中,既有激活物参与的正调控,也有阻遏物参与的负调控,二者同等重要。
③原核基因的转录和翻译通常是相互偶联的,即在转录尚未完成之前翻译便已开始。
④真核生物大都为多细胞生物,在个体发育过程中发生细胞分化后,不同细胞的功能不同,基因表达的情况也就不一样,某些基因仅特异地在某种细胞中表达,称为细胞特异性或组织特异性表达,因而具有调控这种特异性表达的机制。
3. DNA 甲基化对基因表达的调控机制。
甲基化抑制基因转录的机制:DNA甲基化会导致某些区域DNA构象改变,包括甲基化后染色质对于核酸酶或限制性内切酶的敏感度下降,更容易与组蛋白H1相结合,DNaseⅠ超敏感位点丢失,使染色质高度螺旋化, 凝缩成团, 直接影响了转录因子与启动区DNA的结合效率的结合活性,不能启始基因转录。
DNA的甲基化不利于模板与RNA聚合酶的结合,降低了转录活性。
4. 转录因子结合DNA的结构基序(结构域)有哪几类?①螺旋-转折-螺旋②锌指结构③碱性-亮氨酸拉链④碱性-螺旋-环-螺旋5. 真核基因转调控中有几种方式能够置换核小体?①占先模式:可以解释转录时染色质结构的变化。
真核生物的基因表达调控

31
• 锌指结构域The zinc finger domain
锌指结构有2种形式: C2H2 zinc finger和C4 zinc finger •C2H2 zinc finger:由12个氨基酸组成的环,通过2个半胱氨 酸(C,Cys)和2个组氨酸(H,His)残基固定,这4个残基 与Zn2+在空间上形成一个四面体结构。 一般情况下需要3个 或更多的C2H2型锌指才能与DNA结合,如在TFIIA有9个重复, 转录因子SP1有3个重复。 •C4 zinc finger: Zn2+与4个半胱氨酸(C,Cys)结合,存 在于类固醇激素受体转录因子中。
限定于结构域之内。
26
反式作用因子的结构与功能
(1)概念:为DNA结合蛋白,核内蛋白,可使邻近基因开 放(正调控)或关闭(负调控)。
(2)通用或基本转录因子—RNA聚合酶结合启动子所必需 的一组蛋白因子。如:TFⅡA、 TFⅡB、 TFⅡD、 TFⅡE 等。 (3)特异转录因子( special transcription factors)—个别 基因转录所必需的转录因子.如:OCT-2:在淋巴细胞中特 异性表达,识别Ig基因的启动子和增强子。
(2) 动态模型(dynamic model):认为转录因子与组 蛋白处于动态竞争之中,基因转录前染色质必须经 历结构上的改变,即染色质重塑。在染色质重塑过 程中,某些转录因子可以在结合DNA的同时使核小 体解体。
6
组蛋白的乙酰化-去乙酰化 蛋白的乙酰化和去乙酰化是蛋白活性调节的一种 重要的形式,通过乙酰化或去乙酰化,改变了染色质 结构或是转录因子的活性,可以调节基因转录的活性。 组蛋白的乙酰化和去乙酰化能打开或关闭某些基因, 增强或抑制某些基因的表达。 组蛋白的8个亚基上有32个潜在的乙酰化位点。组 蛋白的乙酰化过程由组蛋白乙酰转移酶催化完成。
真核生物基因表达调控

酸性激活域 (D/E-rich) 谷氨酰胺(Q)富含域 脯氨酸(P)富含域
蛋白质-蛋白质结合域 (dimerization, co-factors)
1) TF最常见的DNA binding domain
Zinc Finger
bZIP
Homeodomain
bHLH
(1) 锌指(zinc finger)
2. The pri5’ capping 3’ formation / polyA splicing
3. Mature transcripts are transported to the cytoplasm for translation
Chromatin
epigenetic control
Protein degradation RNA silencing
一般而言的基因表达调控范畴
二、基因表达的时间性及空间性
(一)时间特异性
按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。
Cys-X2-4-Cys-X3-Phe-X5-Leu-X2-His-X3-His C-terminal: α-helix binding DNA
常结合GC box
(2) 碱性亮氨酸拉链 bZIP
(3) 碱性螺旋-环-螺旋bHLH
bHLH蛋白(basic Helix-Loop-Helix)
2) TF常见的trans-activation domain
– usually expressed at high level – the level of their gene expression may vary
真核生物基因表达调控

真核生物基因表达的调控远比原核生物复杂,可以发生在DNA水平、转录水平、转录后的修饰、翻译水平和翻译后的修饰等多种不同层次。
但是,最经济、最主要的调控环节仍然是在转录水平上。
DNA水平的调控DNA水平上的调控主要指通过染色体DNA的断裂,删除,扩增,重排,修饰(如甲基化与去甲基化,乙酰化与去乙酰化等)和染色质结构变化等改变基因的数量、结构顺序和活性而控制基因的表达。
转录水平的调控转录水平的调控包括染色质的活化和基因的活化。
通过染色质改型,组蛋白乙酰化,染色质变得疏松化及DNA去甲基化以便被酶和调节蛋白作用,基因的表达受顺式作用元件包括启动子及应答元件,转座元件,增强子,抑制子的调控,同时受反式作用因子包括基本转录因子,上游转录因子和转录调节因子等的调控。
转录后调控转录后调控包括hnRNA的选择性加工运输和RNA编辑在真核生物中,蛋白质基因的转录产物统称为hn RNA,必须经过加工才能成为成熟的mRNA分子。
加工过程包括三个方面:加帽、加尾和去掉内含子。
同一初级转录产物在不同细胞中可以用不同方式剪接加工,形成不同的成熟mRNA分子,使翻译成的蛋白质都可能不同。
转录后的RNA在编码区发生碱基插入,缺失或转换的现象。
翻译水平的调控阻遏蛋白与mRNA结合,可以阻止蛋白质的翻译并使成熟的mRNA变为失活状态贮存起来。
一些调控作用的micRNAh和siRNA 还可以与mRNA作用降解mRNA,阻止其翻译此外,还可以控制mRNA的稳定性和有选择的进行翻译。
翻译后调控直接来自核糖体的线状多肽链是没有功能的,必须经过加工才具有活性。
在蛋白质翻译后的加工过程中,还有一系列的调控机制。
1.蛋白质折叠线性多肽链必须折叠成一定的空间结构,才具有生物学功能。
在细胞中,蛋白质的折叠必须有分子伴侣的作用下才能完成折叠。
2.蛋白酶切割末端切割有些膜蛋白、分泌蛋白,在氨基端具有一段疏水性强的氨基酸序列,称为信号肽,用于前体蛋白质在细胞中的定位。
分子生物学复习总结题-第七章-基因表达调控

第七章基因表达调控一、选择单选:1. 关于“基因表达”的概念叙述错误的是A. 其过程总是经历基因转录及翻译的过程B. 某些基因表达产物是蛋白质分子C. 某些基因表达经历基因转录及翻译等过程D. 某些基因表达产物是RNA分子E. 某些基因表达产物不是蛋白质分子2. 关于管家基因叙述错误的是A. 在生物个体的几乎各生长阶段持续表达B. 在生物个体的几乎所有细胞中持续表达C. 在生物个体全生命过程的几乎所有细胞中表达D. 在生物个体的某一生长阶段持续表达E. 在一个物种的几乎所有个体中持续表达3. 目前认为基因表达调控的主要环节是A. 翻译后加工B. 转录起始C. 翻译起始D. 转录后加工E. 基因活化4. 顺式作用元件是指A. 基因的5’、3’侧翼序列B. 具有转录调节功能的特异DNA序列C. 基因的5’侧翼序列D. 基因5’、3’侧翼序列以外的序列E. 基因的3’侧翼序列5. 一个操纵子(元)通常含有A. 数个启动序列和一个编码基因B. 一个启动序列和数个编码基因C. 一个启动序列和一个编码基因D. 两个启动序列和数个编码基因E. 数个启动序列和数个编码基因6. 反式作用因子是指A. 对自身基因具有激活功能的调节蛋白B. 对另一基因具有激活功能的调节蛋白C. 具有激活功能的调节蛋白D. 具有抑制功能的调节蛋白E. 对另一基因具有功能的调节蛋白7. 乳糖操纵子(元)的直接诱导剂是A. 葡萄糖B. 乳糖酶C. β一半乳糖苷酶D. 透酶E. 别乳糖8. Lac阻遏蛋白结合乳糖操纵子(元)的A. CAP结合位点B. O序列C. P序列D. Z基因E. I某因9. cAMP与CAP结合、CAP介导正性调节发生在A. 葡萄糖及cAMP浓度极高时B. 没有葡萄糖及cAMP较低时C. 没有葡萄糖及cAMP较高时D. 有葡萄糖及cAMP较低时E. 有葡萄糖及CAMP较高时10. Lac阻遏蛋白由A. Z基因编码B. Y基因编码C. A基因编码D. I互基因编码E. 以上都不是11. 色氨酸操纵子(元)调节过程涉及A. 转录水平调节B. 转录延长调节C. 转录激活调节D. 翻译水平调节E. 转录/翻译调节12.基因表达的产物不包括A.蛋白质B. mRNAC. rRNAD. SnRNAE. tRNA13.真核基因调控中最重要的环节是A. 基因重排B. 基因转录C. DNA的甲基化与去甲基化D. mRNA的衰减E. 翻译速度14.RNA聚合酶结合于操纵子的A. 结构基因起始区B. 阻遏物基因C. 诱导物D. 阻遏物E. 启动子15. cAMP对转录的调控作用是通过A. cAMP转变为CAPB. CAP转变为CampC. 形成cAMP-CAP复合物D. 葡萄糖分解活跃,使cAMP增加,促进乳糖利用来扩充能源E. cAMP是激素作用的第二信使,与转录无关16. 原核生物与DNA结合并阻止转录进行的蛋白质称为A. 正调控蛋白B. 阻遏物C. 诱导物D. 反式作用因子E. 分解代谢基因激活蛋白17.增强子A. 是特异性高的转录调控因子B. 是真核生物细胞内的组蛋白C. 原核生物的启动子在真核生物中就称为增强子D. 是增强启动子转录活性的DNA序列E. 是在结构基因的5'-端的DNA序列18.关于色氨酸操纵子的错误叙述是:A.trpR参与阻抑调控B.色氨酸阻抑结构基因转录C.前导序列参与色氨酸操纵子的衰减调控D.色氨酰tRNA参与色氨酸操纵子的衰减调控E.前导序列的序列3和序列4形成衰减子结构多选:1、基因表达调控环节包括A.DNA复制B.转录起始C.转录后加工D. mRNA降解E.翻译2、关于原核生物基因表达A.每个原核细胞的一切代谢活动都是为了适应环境而更好地生存和繁殖B.操纵子是原核生物绝大多数基因的表达单位C.原核生物基因表达的特异性由 因子决定D.原核生物基因表达既存在正调控,又存在负调控E.转录起始是原核生物基因表达主要的调控环节3、原核生物基因的调控序列包括A.启动子B.终止子C.操纵基因D.增强子E.衰减子4、原核生物基因的调控蛋白包括A.特异因子B.起始因子C.延长因子D.激活蛋白E.阻抑蛋白5、乳糖操纵子包含以下哪些结构?cZB. lacAC. lacOD. lacPE. lacI6、关于乳糖操纵子的错误叙述是:A.乳糖操纵子编码催化乳糖代谢的3种酶cI促进乳糖操纵子转录C.别乳糖促进乳糖操纵子转录D.CAP促进乳糖操纵子转录E.cAMP抑制CAP的激活效应7、色氨酸操纵子的结构A.含trpYB.含trpAC.含trpOD.含trpPE.含前导序列8、与RNA聚合酶活性调控有关的成分有A.tRNAB.核糖体C.严谨因子D.鸟苷五磷酸E.鸟苷四磷酸9、以下关于cAMP对原核基因转录的调控作用的叙述,正确的A. 葡萄糖与乳糖并存时,细菌优先利用乳糖B. cAMP-CAP复合物结合于启动子上游C. 葡萄糖充足时,cAMP水平不高D. cAMP可与CAP结合成复合物E. 葡萄糖和乳糖并存时,细菌优先利用葡萄糖10、原核生物基因表达在翻译水平上的调控与那些因素有关?A.mRNA前体后加工B. mRNA稳定性C. SD序列D.翻译阻抑E.反义RNA11、以下哪些环节存在真核生物的基因表达调控A.DNA和染色质水平B.转录水平C. 转录后加工水平D. 翻译水平E. 翻译后加工水平12、与原核生物相比,真核生物的基因表达调控的特点是A.转录的激活与转录区染色质结构的变化有关B.转录和翻译分隔进行,具有时空差别C.转录后加工更复杂D.既有瞬时调控又有发育调控E.转录调控以正调控为主13、在真核生物基因表达调控过程中,DNA水平的调控包括哪些内容A.染色质结构改变B. DNA甲基化C. 基因重排D. 基因扩增E.染色质丢失14、关于真核生物基因表达转录水平的调控A.转录水平的调控实际上是对RNA聚合酶活性的调控B.RNA聚合酶Ⅱ是转录调控的核心C.转录水平的调控主要通过RNA聚合酶、调控序列和调控蛋白的相互作用来实现D.真核生物的调控序列又称顺式作用元件E.真核生物基因表达的调控蛋白即转录因子,又称为反式作用因子15、真核生物的调控序列有哪些?A.启动子B.终止子C.增强子D.沉默子E.衰减子16、哪些属于真核生物基因表达的调控蛋白A.转录因子B.反式作用因子C.通用转录因子D. 反式激活因子E.共激活因子17、哪些是真核生物调控蛋白所含的DNA结合域A.螺旋-转角-螺旋B.锌指C.富含脯氨酸域D.亮氨酸拉链E.螺旋-环-螺旋。
真核基因转录调控

不同基因具有不同旳上游开启子元件,其位 置也不相同,这使得不同旳基因体现分别有不 同旳调控。
• 2.增强子
是一种能够提升转录效率旳顺式调控元件,最 早是在SV40病毒中发觉旳长约200bp旳一段 DNA,可使旁侧旳基因转录提升100倍,其后 在多种真核生物,甚至在原核生物中都发觉了 增强子。增强子一般占100-200bp长度,也和 开启子一样由若干组件构成,基本关键组件常 为8-12bp,能够单拷贝或多拷贝串连形式存 在。
❖ 组蛋白与DNA结合阻止DNA上基因旳转录,清除组蛋 白基因又能够转录。组蛋白是碱性蛋白质,带正电荷, 可与DNA链上带负电荷旳磷酸基相结合,从而遮蔽了 DNA分子,阻碍了转录,可能扮演了非特异性阻遏蛋 白旳作用;染色质中旳非组蛋白成份具有组织细胞特 异性,可能消除组蛋白旳阻遏,起到特异性旳去阻遏 促转录作用。
• 鸡成红细胞(erythroblast)染色质中, β-血红蛋白基因比卵清蛋白基因更轻易 被DNA酶I切割降解。
• 鸡输卵管细胞旳染色质中被DNA酶I优 先降解旳是卵清蛋白基因,而不是β-血 红蛋白基因。
• 存在于“灯刷型”染色体(lamp brush) 上旳环形构造可能与基因旳活性转录有 关。
• ③增强子要有开启子才干发挥作用,没有开启 子存在,增强子不能体现活性。但增强子对开 启子没有严格旳专一性,同一增强子能够影响 不同类型开启子旳转录。例如当具有增强子旳 病毒基因组整合入宿主细胞基因组时,能够增 强整合区附近宿主某些基因旳转录;当增强子 随某些染色体段落移位时,也能提升移到旳新 位置周围基因旳转录。使某些癌基因转录体现 增强,可能是肿瘤发生旳原因之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离很近的位点从而启动转录,这种方式称为基因重排。 例如:小鼠免疫球蛋白
免疫球蛋白由两条重链 (可变区V、连接区J、 恒定区C)和两条轻链
(V、C)组成;
V: variable C: constant
真核基因表达调控根据性质分为两种类型:
瞬时调控或称可逆性调控: 相当于原核细胞对环境变化所做出的反应。
包括:某种底物或激素水平升降时,表现出细胞内酶 或某些蛋白质合成的变化;细胞周期不同阶段中酶活 性或浓度的调节。
发育调控或称不可逆调控:
是真核基因调控的精髓部分,决定了真核细胞生 长、分化、发育的全部进程。
多基因家族,称为简单多基因。
细菌中rRNA基因家族各成员的分布与成熟过程分析
脊椎动物中rRNA基因家族各成员的分布与成熟过程分析
真核生物中rRNA基因家庭各成员的成熟过程分析
DNA 由RNA聚合酶 I 转录完成
前rRNA(45S)
甲基化
主要在核糖的2-OH甲基化
RNA酶降解
5S rRNA
18S、28S、5.8S rRNA
1、“开放型”活性染色质结构对转录的影 响 HMG(high – mobility group) 蛋白,高速泳动族蛋
白,是染色体上一类低分子量非组蛋白。
转录之前,染色质
解旋或松弛
自由DNA
结构基因暴露
HMG蛋白
结合
启动子
导致
单链区形成,启动子暴露, 产生DNaseⅠ超敏感位点
DNA 与RNA聚合酶和其它 转录调控因子结合
甲基化酶
日常型甲基化酶:在甲基化母链指导下使处于 半甲基化的DNA双链分子上与甲基胞嘧啶相对应 的胞嘧啶甲基化。
真核基因表达调控的主要步骤
第一节 真核生物的基因结构与转录活性
真核细胞和原核细胞在基因转录、翻译、DNA空 间结构方面的主要差别:
① mRNA与多肽链的数量关系; ② 基因组DNA存在的形式; ③ 基因组DNA的结构; ④ DNA片段的重排及拷贝数的增加; ⑤ 转录调节区的大小,距离转录起始位点的距离及作
外显子(exon):基因中与mRNA一致的序列, 即编码序列,称为外显子。一个基因总是以外显子 为起点和终点。
内含子(intron):基因中编码序列之间的介入 序列,在原初转录物加工为mRNA时被去除,即非 编码序列,称为内含子。
2、外显子与内含子的连接区 特点: 1)内含子两端序列不能互补;
多顺反子(polycistronic mRNA ) :编码多个 蛋白质的mRNA称为多顺反子mRNA 。
基因家族 (gene family):真核细胞中,许多功能 相关的基因成套组合,称为基因家族。
基因簇(gene cluster):同一基因家族中的成员 紧密排列在一起,称为一个基因簇。
1、简单多基因家族 家族中的成员一般以串联方式前后连接形成的
小鼠淀粉酶基因的表达具有组织特异性。
同一段DNA序列生成了两条或两条以上的mRNA链。
相同密码子、不同起始位点 产生长度不同的蛋白质
不同起始位点、不同读码顺 序产生不同蛋白质
不同外显子的使用产生不同蛋白质
三、真核生物DNA水平上的基因表达调控
在个体发育过程中,用来合成RNA的DNA模板 也会发生规律性变化,从而控制基因表达和生物的 发育。它包括了基因丢失、扩增、重排和移位等方 式,可以消除或变换某些基因并改变他们的活性。 调控方式与转录及翻译水平的调控是不同的,因为 它使基因组发生了改变。
有功能的血红蛋白基因的基本结构:三个外 显子被两个内含子隔开。
类和类珠蛋 白基因家族
人在发育过程中 的血红蛋白类型
二、真核基因的断裂结构
1、外显子与内含子
断裂基因(interrupted gene):真核生物基因除 了与mRNA相对应的编码序列外,还含有一些不编 码的序列插在编码序列之间,这些非编码序列在加 工为成熟的mRNA时被去除。这样的结构基因称为 断裂基因。
染色质转录的动力学模型
蛋白因子能够利用 ATP水解所提供的能量, 将核心组蛋白八聚体从 DNA链中置换。
DNase Ⅰhypersensitive sites in the maize Adh1 promoter.
2、基因扩增
是指基因的拷贝数专一性大量增加,使细胞在短时 间内产生大量的基因产物以满足生长发育的需要。 例如:非洲爪蟾卵母细胞中的 rRNA基因 ( rDNA )
2)连接区序列高度保守(GT-AG法则);
5,GT 左剪接位点
donor site
AG 3, 右剪接位点
acceptor site
3、外显子与内含子的可变性
组成性剪接:在高等真核生物中,内含子通常是有 序或组成性地从mRNA前体中被剪接,这种剪接方 式称为组成性剪接。 选择性剪接:又叫变位剪接,指在剪接过程中可以 有选择性地越过某些外显子或某个剪接位点进行变 位剪接,产生出不同mRNA的过程,这种剪接方式 称为变位剪接。
用的性质; ⑥ 转录和翻译过程在时间和空间上的差别; ⑦ mRNA的加工。
一、基因家族 (gene family)
原核生物中,功能相关的基因组成操纵子,以多 顺反子mRNA进行转录,整个体系在一个启动子的 控制之下。
真核生物中,DNA是以单顺反子的形式存在。 单顺反子(monocistronic mRNA) :只编码一个 蛋白质的mRNA称为单顺反子mRNA。
由RNA聚合酶III转录完成
2、复杂多基因家族 由几个相关的多基因构成,基因家族间由间隔
序列隔开,并作为独立的转录单位。
6000 bp, 重复1000次左右
3、发育调控的复杂多基因家族 血红蛋白是所有动物体内输送分子氧的主要载体,
由两条链和两条链组成的四聚体加上一个血红素 辅基(结合铁原子)后形成功能性血红蛋白。
四、DNA甲基化与基因活性的调节
DNA甲基化能关闭某些基因的活性,去甲基化则 诱导了基因的重新活化与表达。
1、DNA甲基化 DNA甲基化的主要形式
5-甲基胞嘧啶(5 – mC ) 7-甲基鸟嘌呤(7 – mG) N6 - 甲基腺嘌呤( N6 – mG)
CpG通常成串出现在DNA上,这段序列往往被 称为CpG岛。