攀枝花学院专升本考试试卷 数学
2024年成人高考专升本《数学》考卷真题及答案

2024年成人高考专升本《数学》考卷真题及答案一、选择题(每小题5分,共25分)1. 下列函数中,是奇函数的是()A. y = x^3B. y = x^2C. y = x^4D. y = x^2 + 12. 下列数列中,是等差数列的是()A. 1, 3, 5, 7,B. 1, 2, 4, 8,C. 1, 3, 9, 27,D. 1, 2, 3, 4,3. 下列不等式中,正确的是()A. 2x + 3 > 5x 1B. 3x 4 < 2x + 5C. 4x + 7 > 5x 2D. 5x 3 < 4x + 14. 下列立体图形中,是圆柱的是()A. 圆锥B. 球体C. 长方体D. 圆柱5. 下列积分中,正确的是()A. ∫(x^2 + 1)dx = (1/3)x^3 + x + CB. ∫(x^3 + 1)dx = (1/4)x^4 + x + CC. ∫(x^4 + 1)dx = (1/5)x^5 + x + CD. ∫(x^5 + 1)dx = (1/6)x^6 + x + C二、填空题(每小题5分,共25分)1. 函数y = x^2 4x + 3的顶点坐标是______。
2. 等差数列1, 3, 5, 7, 的前10项和是______。
3. 不等式3x 4 < 2x + 5的解集是______。
4. 圆柱的体积公式是______。
5. 积分∫(x^3 + 1)dx的值是______。
三、解答题(每小题10分,共50分)1. 解方程组:\[\begin{align}2x + 3y &= 8 \\4x 5y &= 10\end{align}\]2. 求函数y = x^3 6x^2 + 9x 1的极值。
3. 求证:等差数列1, 3, 5, 7, 的前n项和是n(n + 1)/2。
4. 求圆柱的表面积。
5. 计算积分∫(x^4 + 1)dx。
四、证明题(每小题10分,共20分)1. 证明:对于任意实数x,都有x^2 ≥ 0。
专升本高等数学(含答案)

高等数学一、选择题1、设的值是则a x ax x ,3)sin(lim 0=→( )A.31B.1C.2D.32、设函数(==⎩⎨⎧≥+=k ,x ,)x x )(x<ke x f x则常数处连续在00cos 10)(2 。
A. 1B.2C.0D.3 3、)(,41)()2(lim)(00000x f x f h x f h ,x x f y h '→=--=则且处可导在点已知函数等于A .-4 B. -2 C. 2 D.4 4、⎰dt t f a b,b a x f )(],[)(则上连续在闭区间设函数( )A.小于零B.等于零C.大于零D.不确定 5、若A 与B 的交是不可能事件,则A 与B 一定是( )A.对立事件B.相互独立事件C.互不相容事件D.相等事件6、甲、乙二人参加知识竞赛,共有6个选择题,8个判断题,甲、乙二人依次各抽一题,则甲抽到选择题,乙抽到判断题的概率为 A.918 B.916 C.9124 D.91147、等于应补充处连续在要使)0(0)21(1)(3f ,x x n x f x=-=( ) A.e -6 B. -6 C. -23D.0 8、等于则且处可导在已知)(,41)()2(lim)(00000x f x f h x f h ,x x f h '=--→( )A. -4B. -2C.2D.4 9、等于则设)2)((,1)()(≥=n x fnx x x f n ( )A.()()11-1--n nx !n B.nn x n !)1(-C.()()2221--=-n n x !n D.12)2()1(----n n x!n 10、则必有处取得极小值在点函数,x x x f y 0)(==( )A.0)(0<x f '' B.0)(0='x f C.0)(0)(00>x f x f ''='且 D.不存在或)(0)(00x f x f '=' 11、则下列结论不正确的是上连续在设函数,b a x f ],[)(( )A .⎰的一个原函数是)()(x f dx x f abB.⎰的一个原函数是)()(x f dt t f a x(a <x <b )C. ⎰-的一个原函数是)()(x f dt t f xb(a <x <b )D.上是可积的在].[)(b a x f12、=-+∞→43121x x imx ( )A. -41B.0C.32D.113、=-+='=→hf h f im f ,x x f h )1()1(1,3)1(1)(0则且处可导在已知( )A. 0B.1C.3D.6 14、='=y nx y 则设函数,1 ( ) A. x 1 B. —x1 C. 1n x D.e x15、x <,x x f 当处连续在设函数0)(=0时,则时当,>x f ,x >,<x f 0)(00)(''( )A.是极小值)0(fB. 是极大值)0(fC. 不是极值)0(fD. 既是极大值又是极小值)0(f 16.设函数=-=dy x y 则),1sin(2( ) A.dx x )1cos(2- B,dx x )1cos(2-- C.2dx x x )1cos(2- D.dx x x )1cos(22-- 17、=')(,)(3x f x x f 则的一个原函数为设 ( )A.23x B.441x C. 44x D.6x 18、设函数=∂∂=xzxy z 则,tan ( )A.xy y 2cos B. xy x 2cos C.xy x 2sin - D. xyy2sin - 19、设函数=∂∂∂+=yx z y x z 23,)(则 ( )A.3(x +y )B.2)3y x +(C. 6(x +y ) B.2)6y x +( 20、五人排成一行,甲乙两人必须排在一起的概率P=( ) A.51 B. 52 c. 53 D. 54二、填空题 1、=-→xx xx 2sin ·2cos 1lim0 。
专升本数学卷子试题及答案

专升本数学卷子试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2-4x+3的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C2. 已知等差数列的前三项分别为2,5,8,该数列的公差d为:A. 1B. 3C. 4D. 5答案:B3. 以下哪个选项不是三角函数的基本性质:A. 周期性B. 奇偶性C. 有界性D. 连续性答案:D4. 曲线y=x^3-6x^2+9x在点(1,2)处的切线斜率是:A. -2B. 0B. 2D. 4答案:B5. 圆的方程为(x-1)^2+(y-2)^2=9,圆心坐标是:A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2)答案:A6. 函数y=sin(x)的值域是:A. (-1,1)B. [-1,1]C. (0,1)D. [0,1]答案:B7. 已知向量a=(3,2),b=(-1,4),向量a与b的夹角θ满足:A. cosθ=1B. cosθ=0C. cosθ=-1D. cosθ=-1/2答案:D8. 矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\],矩阵A的行列式det(A)是:A. 0B. 1C. 2D. 5答案:D9. 微分方程dy/dx + 2y = 4x的通解是:A. y = 2x^2 - x + CB. y = 2x^2 + x + CC. y = 2x^2 - x - CD. y = 2x^2 + x - C答案:B10. 曲线y=x^2与直线y=4x-5的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C二、填空题(每题2分,共20分)1. 函数f(x)=x^3-3x^2+2x-1的导数f'(x)是________。
答案:3x^2-6x+22. 等比数列的前n项和公式是________。
答案:S_n = a(1-q^n)/(1-q)3. 已知函数y=2x+3,当x=2时,y的值是________。
2022年四川成人高考专升本高等数学(二)真题及答案

2022年四川成人高考专升本高等数学(二)真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数2()sin ,(),f x x g x x ==则(())f g x =( )A .是奇函数但不是周期函数B .是偶函数但不是周期函数C .既是奇函数又是周期函数D. 既是偶函数又是周期函数2. 若20(1)1lim2x ax x→+−=,则a =( ) A. 1 B. 2 C. 3 D. 43.设函数()f x 在0x =处连续,()g x 在0x =处不连续,则在0x =处( ) A. ()()f x g x 连续 B. ()()f x g x 不连续 C. ()()f x g x +连续 D. ()()f x g x +不连续4. 设arccos y x =,则'y =( )A.B. C.D.5.设ln()xy x e −=+,则'y =( )A. 1x x e x e −−++B. 1x x e x e −−−+C. 11x e −−D. 1xx e−+6.设(2)2sin n yx x −=+,则()n y =( )A. 2sin x −B. 2cos x −C. 2sin x +D. 2cos x + 7.若函数()f x 的导数'()1f x x =−+,则( ) A. ()f x 在(,)−∞+∞单调递减 B. ()f x 在(,)−∞+∞单调递增 C. ()f x 在(,1)−∞单调递增 D. ()f x 在(1,)+∞单调递增8.曲线21xy x =−的水平渐近线方程为( ) A. 0y = B. 1y = C. 2y = D. 3y = 9.设函数()arctan f x x =,则'()f x dx =⎰( )A. arctan x C +B. arctan x C −+C.211C x ++ D. 211C x−++ 10.设x yz e+=,则(1,1)dz = ( )A. dx dy +B. dx edy +C. edx dy +D. 22e dx e dy +第II 卷(非选择题,共110分)二、填空题(11-20小题,每题4分,共40分)11. lim2x x x e xe x→−∞+=− .12.当0x → 时,函数()f x 是x 的高阶无穷小量,则0()limx f x x→= . 13. 设23ln 3y x =+,则'y = .14.曲线y x x =1,2)处的法线方程为 . 15.2cos 1x xdx x ππ−=+⎰ . 16.121dx x =+⎰. 17. 设函数0()tan xf x u udu =⎰,则'4f π⎛⎫= ⎪⎝⎭. 18.设33,z x y xy =+则2zx y∂=∂∂ .19.设函数(,)z f u v =具有连续偏导数,,,u x y v xy =+=则zx∂=∂ . 20.设A ,B 为两个随机事件,且()0.5,()0.4,P A P AB ==则(|)P B A = .三、解答题(21-28题,共70分。
四川2023年大专生专升本数学考试及答案 (1)

普通高等学校招生全国统一考试数学(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.“a =1”是“直线0=+y x 和直线0=-ay x 互相垂直”的().A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅=().A .23-B .32-C .32D .233.为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像().A .向左平移π6个长度单位B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.函数|lg |)(x x x f -=在定义域上零点个数为().A .1B .2C .3D .45.如图是一个空间几何体的主视图、侧视图、俯视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为().A .1B .21C .31D .616.一个等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是()A.a11B.a10C.a9D.a87.设函数f(x)=logax(a>0,且a ≠1)满足f(9)=2,则f -1(log92)等于()A.2B.2C.21 D.±28.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,则三棱锥D —ABC 的体积为()A.63a B.123a C.3123a D.3122a 9.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a+b+c=0,a ·b=b ·c=c ·a=-1,则|a|+|b|+|c|等于()A.22B.23C.32D.3310.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是()A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞⎥⎝⎦11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=()A .15BC .3D .512.设F 为双曲线C :22221x y a b -=(a>0,b>0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x2+y2=a2交于P 、Q 两点.若|PQ|=|OF|,则C 的离心率为()ABC .2D二、填空题(共4小题,每小题5分;共计20分)1、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______.2、已知2tan -=α,71tan =+)(βα,则βtan 的值为______.3.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E-BCD 的体积是______.4.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线x+y=0的距离的最小值是______.三、大题:(满分70分)1、已知函数3()x x bf x x++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和;(2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.3.(本题满分12分)已知四边形ABCD 是菱形,060BAD ∠=四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,G H 、分别是CE CF 、的中点.(1)求证:平面//AEF 平面BDGH(2)若平面BDGH 与平面ABCD 所成的角为060,求直线CF 与平面BDGH 所成的角的正弦值4.设),(),,(2211y x Q y x P 是抛物线px y 22=)0(>p 上相异两点,P Q 、到y 轴的距离的积为4且0=⋅OQ OP .(1)求该抛物线的标准方程.(2)过Q 的直线与抛物线的另一交点为R ,与x 轴交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.5.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程. 6.已知函数(a ∈R ).(Ⅰ)讨论g (x )的单调性;(Ⅱ)若.证明:当x >0,且x ≠1时,.参考答案:一、选择题:1-5题答案:CDCCC 6-10题答案:ABDCB 11-12题答案:BA 二、填空题:1、︒60;2、3;3、10;4、4.三、大题:1、【解析】(1)由3()x x b f x x++=得211(1)21b a f b ++===+,3322(2)522b ba f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x +<,即x <()0f x '<,函数()f x 在(,-∞上单调递减,当330x +>,即x >时,()0f x '>,函数()f x 在()+∞上单调递增,故函数()f x 在x =极小值为53(31f =+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴2226633()1()()1()()()11f x x x x x x x x =-+=-++=-+++≥+---53131==+,当且仅当23()x x-=-,即x =综上所述,函数()f x 在x =53(31f =+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题.2、解:由-3∈A ,可得-3=a -2或-3=2a2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3,∴a =-32.3.参考答案:解:(1)G H 、分别是CE CF 、的中点所以//EF GH ------①---1分连接AC 与BD 交与O ,因为四边形ABCD 是菱形,所以O 是AC 的中点,连OG ,OG 是三角形ACE 的中位线//OG AE -②-----3分由①②知,平面//AEF 平面BDGH ----4分(2),BF BD ⊥平面BDEF ⊥平面ABCD ,所以BF ⊥平面ABCD -------5分取EF 的中点N ,//ON BF ON ∴⊥平面ABCD ,建系{,,}OB OC ON设2AB BF t ==,,则()()()100,03,0,10B C F t ,,,,,13,,222t H ⎛⎫⎪ ⎪⎝⎭--------6分()131,0,0,,222t OB OH ⎛⎫== ⎪ ⎪⎝⎭ 设平面BDGH 的法向量为()1,,n x y z = 110130222n OB x t n OH x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,所以(10,3n t =- 平面ABCD 的法向量()20,0,1n = ----9分12231|cos ,|23n n t <>==+ ,所以29,3t t ==----10分所以()1,3,3CF =,设直线CF 与平面BDGH 所成的角为θ13133321336|,cos |sin 1=⨯=〉〈=n CF θ4.参考答案:解:(1)∵OP→·OQ →=0,则x1x2+y1y2=0,-1分又P 、Q 在抛物线上,故y12=2px1,y22=2px2,故得y122p ·y222p+y1y2=0,y1y2=-4p2222212144)(||pp y y x x ==∴-------3分又|x1x2|=4,故得4p2=4,p=1.所以抛物线的方程为:22y x =-------------4分(2)设直线PQ 过点E(a,0)且方程为x =my +a联立方程组⎩⎨⎧=+=x y amy x 22消去x 得y2-2my -2a =0∴⎩⎨⎧-==+ay y m y y 222121①设直线PR 与x 轴交于点M(b,0),则可设直线PR 方程为x =ny +b,并设R(x3,y3),同理可知,⎩⎨⎧-==+by y n y y 223131②--7分由①、②可得32y b y a=由题意,Q 为线段RT 的中点,∴y3=2y2,∴b=2a又由(Ⅰ)知,y1y2=-4,代入①,可得-2a =-4∴a =2.故b =4.∴831-=y y ∴3123123124)(1||1|PR |y y y y n y y n -+⋅+=-+=2481222≥+⋅+=n n .当n=0,即直线PQ 垂直于x 轴时|PR|取最小值245.已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.(Ⅰ)求椭圆C1的标准方程;(Ⅱ)已知椭圆C2的中心在原点,焦点在y 轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的λ倍(λ>1),过点C (﹣1,0)的直线l 与椭圆C2交于A ,B 两个不同的点,若,求△OAB 的面积取得最大值时直线l 的方程.【解答】解:(Ⅰ)所给直线方程变形为,可知直线所过定点为.∴椭圆焦点在y 轴,且c=,依题意可知b=2,∴a2=c2+b2=9.则椭圆C1的方程标准为;(Ⅱ)依题意,设椭圆C2的方程为,A(x1,y1),B(x2,y2),∵λ>1,∴点C(﹣1,0)在椭圆内部,直线l与椭圆必有两个不同的交点.当直线l垂直于x轴时,(不是零向量),不合条件;故设直线l为y=k(x+1)(A,B,O三点不共线,故k≠0),由,得.由韦达定理得.∵,而点C(﹣1,0),∴(﹣1﹣x1,﹣y1)=2(x2+1,y2),则y1=﹣2y2,即y1+y2=﹣y2,故.∴△OAB的面积为S△OAB=S△AOC+S△BOC====.上式取等号的条件是,即k=±时,△OAB的面积取得最大值.∴直线的方程为或.6.已知函数(a∈R).(Ⅰ)讨论g(x)的单调性;(Ⅱ)若.证明:当x>0,且x≠1时,.【解答】(Ⅰ)解:由已知得g(x)的定义域为(0,+∞),…(1分)方程2x2+x﹣a=0的判别式△=1+8a.…(2分)①当时,△≤0,g'(x)≥0,此时,g(x)在(0,+∞)上为增函数;…(3分)②当时,设方程2x2+x﹣a=0的两根为,若,则x1<x2≤0,此时,g'(x)>0,g(x)在(0,+∞)上为增函数;…(4分)若a>0,则x1<0<x2,此时,g(x)在(0,x2]上为减函数,在(x2,+∞)上为增函数,…..…(5分)综上所述:当a≤0时,g(x)的增区间为(0,+∞),无减区间;当a>0时,g(x)的减区间为(0,x2],增区间为(x2,+∞).…(6分)(Ⅱ)证明:由题意知,…(7分)∴,…(8分)考虑函数,则…(9分)所以x≠1时,h'(x)<0,而h(1)=0…(10分)故x∈(0,1)时,,可得,x∈(1,+∞)时,,可得,…(11分)从而当x>0,且x≠1时,.。
数学专升本考试试题(含答案解析)

数学专升本考试试题(含答案解析)一、选择题(每题2分,共20分)1. 若函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值为M,最小值为m,则Mm的值为()A. 2B. 4C. 6D. 8答案:C解析:函数f(x) = x^2 4x + 3在区间[1, 3]上的最大值和最小值分别为f(1)和f(3),计算可得M = f(1) = 0,m = f(3) = 0,所以Mm = 00 = 0,故选C。
2. 若等差数列{an}的前n项和为Sn,且S5 = 25,则数列{an}的公差d为()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为Sn = n/2 (a1 + an),代入S5 = 25,得到5/2 (a1 + a5) = 25,又因为a5 = a1 + 4d,所以5/2 (a1 + a1 + 4d) = 25,化简得到a1 + 2d = 5。
又因为S5 =5/2 (a1 + a5) = 5/2 (2a1 + 4d) = 5(a1 + 2d),代入S5 = 25,得到5(a1 + 2d) = 25,解得a1 + 2d = 5。
联立两个方程,得到d = 2,故选A。
3. 若圆x^2 + y^2 = 1上的点到原点的距离为r,则r的取值范围是()A. 0 < r < 1B. 0 ≤ r ≤ 1C. r > 1D. r ≥ 1答案:B解析:圆x^2 + y^2 = 1上的点到原点的距离为r,即r^2 = x^2 + y^2,因为x^2 + y^2 = 1,所以r^2 = 1,即0 ≤ r ≤ 1,故选B。
4. 若函数f(x) = ax^2 + bx + c在x = 1时的导数为2,则b的值为()A. 2B. 3C. 4D. 5答案:A解析:函数f(x) = ax^2 + bx + c在x = 1时的导数为2,即f'(1) = 2,计算f'(x) = 2ax + b,代入x = 1,得到f'(1) = 2a +b = 2,解得b = 2 2a,故选A。
攀枝花学院考试试卷

攀枝花学院考试试卷2017~2018学年度第一学期《高等数学(理工)B1》试卷(B 卷)适用年级:2017级理工类本科适用专业: 计算机科学与技术、软件工程、网络工程班 考 试 形 式:( )开卷、(√)闭卷二级学院: 行政班级: 学 号: 教 学 班: 任课教师: 姓 名: 注:学生在答题前,请将以上内容完整、准确填写,填写不清者,成绩不计。
题号 一 二 三 四 五 六 七 八 九 总分 统分人 复核人 得分一、填空题(每小题3分,满分15分)1、若0x →时,有2221lnsin 12x x a x -⎛⎫ ⎪+⎝⎭,则a = .2、若1x =函数223()3x x bf x x x a++=-+的可去间断点,则常数a = ,b = .3、设0()f x '存在,则0000()()limx xxf x x f x x x →-=- .4、对于函数1(),()(1)m m f x x g x x m +==>在区间[]0,1上使柯西中值定理成立的ξ= .5、若()f x ''在[]1,1-上连续,曲线()y f x =在点()1,1-与()1,1处的切线方程分别为y x =和y x =-,则11()f x dx -''=⎰ .二、选择题(每小题3分,满分15分)得分 阅卷人得分 阅卷人…………………………………………线………………………………………订………………………………………装…………………………………………………1、若0lim ()x xf x A →=,则必有【 】.(A) [][]0lim ()x xf x A →=; (B) 0lim sgn ()sgn x x f x A →=; (C) 0lim ()x xf x A →=; (D) 011lim()x x f x A→=. 2、0x =是函数1()arctan f x x x=的【 】。
2024年专升本高数试卷

2024年专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 当x→0时,xsin(1)/(x)是()A. 无穷小量。
B. 无穷大量。
C. 有界变量,但不是无穷小量。
D. 无界变量,但不是无穷大量。
3. 设y = f(x)在点x = x_0处可导,则limlimits_Δ x→0frac{f(x_0-Δ x)-f(x_0)}{Δ x}=()A. f^′(x_0)B. -f^′(x_0)C. 0D. 不存在。
4. 设y = x^3ln x,则y^′=()A. 3x^2ln x + x^2B. 3x^2ln xC. x^2D. 3x^2ln x - x^25. 函数y = (1)/(3)x^3-x^2-3x + 1的单调递减区间是()A. (-1,3)B. (-∞,-1)∪(3,+∞)C. (-∞,-1)D. (3,+∞)6. ∫ xcos xdx=()A. xsin x + cos x + CB. xsin x-cos x + CC. -xsin x + cos x + CD. -xsin x-cos x + C7. 设f(x)在[a,b]上连续,则∫_a^bf(x)dx-∫_a^bf(t)dt=()A. 0B. 1C. f(b)-f(a)D. 无法确定。
8. 下列广义积分收敛的是()A. ∫_1^+∞(1)/(x)dxB. ∫_1^+∞(1)/(x^2)dxC. ∫_0^1(1)/(√(x))dxD. ∫_0^1(1)/(x^2)dx9. 由曲线y = x^2与y = √(x)所围成的图形的面积为()A. (1)/(3)B. (2)/(3)C. 1D. (1)/(6)10. 二阶线性齐次微分方程y^′′+p(x)y^′+q(x)y = 0的两个解y_1(x),y_2(x),且y_1(x)≠0,则frac{y_2(x)}{y_1(x)}为()A. 常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年攀 枝 花 学 院 专 升 本 考 试 试 卷课 程 名 称《高等数学》一、单项选择题:(每小题2分,共10分。
)1、0sin 3lim x xx→=( )A 、3.B 、2.C 、6 .D 、 0.2、 级数211pn n∞-=∑收敛的条件是( ).A 、1p <.B 、1≤p .C 、 0<p .D 、 0p > . 3、设()f x 在0x 处取得极值,则( )A 、0'()f x 必存在.B 、0'()f x 不存在或0'()f x =0 .C 、0'()f x =0 .D 、0'()f x 必存在但不一定为0.4、设cos x z e y =,则zx y∂=∂∂ ( ) A 、sin x e y . B 、 sin x x e y e +.C 、 cos x e y -.D 、 sin x e y -.5、 设()f x 可导,则()df x =⎰( ).A 、()f x .B 、 ()f x dx .C 、()f x c +.D 、 ()f x dx c +.准考证号: 姓名:二、填空题 (将正确答案填在指定位置。
每小题 2分,共 10 分)1、若向量组12,,,s ααα线性无关,且可由向量组12,,,t βββ线性表示,则s,t的大小关系为 .2、函数2212x y x x -=--的间断点为 ;其中 可去间断点。
3、设22:4D x y +≤,则Ddxdy =⎰⎰ .4、二阶常系数线性方程230y y y '''+-=的通解是 .5、设2)0(='f ,则0()(0)limh f h f h→-= . 三、一元微积分部分(每小题6分,共24分) 1、求极限20sin 5lim2x xx x→+2、求积分1x xe dx ⎰3、已知)sin 2(3x x y +=,求dy .4 、确定函数32694y x x x =-++的单调区间并求极值.四、二元微积分部分(每小题8分,共16分) 1、已知sinx z y =,tx e =,2y t =,求dz dt2、计算2Dx d σ⎰⎰,其中D 由曲线2,1y x y ==所围成的平面闭区域.五、级数、微分方程部分(每小题8分,共16分). 1、求幂级数11(1)31nn n x n ∞-=-+∑的收敛域.2、求微分方程:y yx x '+=的通解.六、线性代数部分(每小题8分,共16分)1、计算行列式121030310156743D --=-2、设矩阵235131242368A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A 的秩r(A)。
七、经济应用(8分)设某产品需求函数为275)(p p D -=,其中p 为单位产品的价格,求4=p 时的需求价格弹性和收益价格弹性,并说明其经济意义.2008年攀 枝 花 学 院 专 升 本 考 试 试 卷课 程 名 称《高等数学》(文史、财经、管理、医学类)一、单项选择题:(每小题3分,共12分.)1、当0,x →1cos x -是2sin x 的( ).A 、等价无穷小.B 、同阶但不是等价无穷小.C 、高阶无穷小.D 、低阶无穷小2、若(sin )y f x =(()f x 可微),则 dy =( ).A 、(sin )f x dx '.B 、(sin )cos f x x '.C 、(sin )cos f x xdx '.D 、(sin )cos f x xdx '-3、==⎪⎩⎪⎨⎧=≠=a x x a x x xx f 处连续,则在,,)(设函数000 sin ( ). A 、1-. B 、1. C 、 2/3. D 、 2 .4、级数∑∞=-131n pn收敛的条件是( ).A 、1p <.B 、1≤p .C 、 2<p .D 、 0p >.二、填空题 (将正确答案填在指定位置.每小题 3分,共 9 分.)1、已知A 是三阶矩阵,A 5=,则2A -= .2、积分xdx e xsin ⎰-ππ= .准考证号: 姓名: 出题人:朱显康 贺奕鹏3、已知a x f =)('0,则0lim→h hx f h x f )()2(00-- = .三、解答下列各题(每小题6分,共42分.)1.求极限20cos ln lim xxx →.2. 求由方程122=-+x y x e y 所确定的隐函数)(x f y =的导数dy dx.3. 计算dxx x ⎰---5 52|32|.4. 已知xy v y x u v u z =+=+=,),ln(22,求xz ∂∂.5. 计算二重积分()2x y dxdy D+⎰⎰ 其中D 由直线 x=0,y=0,x+y=3所围成.6. 判定级数∑∞=1!3n n nn n 的敛散性.7. 求幂级数1121-∞=∑n n n x n 的收敛半径和收敛域.四、(7分)长为l 的铁丝切成两段,一段围成正方形,另一段围成圆形,问这两段铁丝各为多长时,正方形的面积与圆的面积之和最小?五、(7分) 已知1113A 125A 136-⎛⎫ ⎪- ⎪ ⎪-⎝⎭-=,求.六、(8分) 求微分方程xe x y y x=+'的通解.七、(7分) 求由曲线2x y =及直线1,0==y x 所围成图形的面积.八、(8分)..42)(,4.01000)().(),(,,2000者剩余点及消费者剩余和生产求均衡供给曲线方程为求曲线方程已知需右图区域间的面积直线者剩余定义为供曲线与生产右图区域间的面积线与直线费者剩余定义为需求曲消曲线相交时的价格定义为供给曲线与需求均衡价格经济学上x x p x x p p p p p p =-=∏=I =2009年攀 枝 花 学 院 “专 升 本” 考 试 试 卷课 程 名 称《高等数学》题号 一 二 三 四 五 六 七 八 总分 得分 阅卷人姓名:一、填空题(每小题3分,共15分)1、设2......,1n n a a aq aq aq q =++++<,则lim n n a →+∞= .2、若函数0()3'f x =-,则hh x f h x f h )3()(lim00--+→=__________________________________.3、在函数211()12xf x xx x x-=--中,3x 的系数是 ____________ . 4、曲线23x t y t z t =⎧⎪=⎨⎪=⎩在点()1,1,1的切线方程为 _________________________________ .5、当}{22(,)|9D x y x y =+≤时,则⎰⎰Ddxdy 的值等于 .二、单项选择题(每小题3分,共15分)1、设A 是m n ⨯矩阵, C 是n 阶可逆矩阵,矩阵A 的秩为r ,矩阵B AC =的秩为1r ,则( ).A、1r r > B、1r r > C、1r r =D、r 与1r 的关系依C 而定2、设()f x 的导函数是sin x ,则()f x 有一个原函数为( ). A、1sin x +B、1sin x -C、1cos x +D、1cos x -3、设当0x x →时,()()x x βα,都是无穷小()()0≠x β,则当0x x →时,下列表达式中不一定为无穷小的是 ( ).A、()()x x βα2 B、()()xx x 1sin 22βα+C、()()()x x βα⋅+1ln D、()()x x βα+4、已知级数1(1)nn u ∞=-∑收敛,则级数1nn u∞=∑( ).A、收敛B、发散 C、绝对收敛D、敛散性不能判断5、微分方程''2'80y y y --=的通解为( ). A、4212xx y C eC e -=+B、4212xx y C eC e -=+C、4212x xy C e C e =+ D、4212x xy C e C e --=+三、一元函数微积分学(每题6分,共30分)1、求极限xx xLimx 2sin 2+>-.2、求由方程22sin xe y y e -++=所确定的隐函数的导数dy dx.3、计算积分21dx x⎰.4、设某产品生产Q 单位的总成本为2()11001200Q C Q =+,求生产25个单位的边际成本,并解释其经济意义。
5、证明,当x >0时不等式)1ln(1x xx+<+成立.四、多元函数微积分学. (每题6分,共12分)1、已知z uv =,而22u x y =+,2v xy =求x z ∂∂,z y∂∂.2、计算二重积分⎰⎰Dd xy σ2,其中D 由直线1,==y x y 和Y 轴所围成的平面闭区域.四、级数部分 (每题6分,共12分)1、判别级数∑∞=1!)100(n nn 的敛散性.2、求幂级数nn x n )2(11∑∞=的收敛域.五、微分方程. (共6分)1、求微分方程(1)xx eyy e '+=的通解.六、线性代数部分 (每题5分,共10分)1、计算行列式121030310156743D --=-.2、设矩阵235131242368A-⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵A的秩r(A) .。