怎样理解充分条件、必要条件和充要条件
什么是充分条件和必要条件?并举例?

什么是充分条件和必要条件?并举例?
什么是充分条件和必要条件?并举例?
浏览16943次其他分享举报
1个回答
满意答案
lizb1985
推荐于 2019.10.13
1。
充分条件:由条件a推出条件b,但是条件b并不一定能推出条件a,
天下雨了,地面一定湿,但是地面湿不一定是下雨造成的。
2.必要条件:由后一个条件推出前一个条件,但是前一个条件并一定能推出后一个条件。
我们把前面一个例子倒过来:地面湿了,天下雨了。
充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,则也能从命题q推出命题p 。
如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件( 简称:充要条件),反之亦然。
如果A能推出B,那么A就是B的充分条件。
其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A。
高中数学知识讲解_充分条件与必要条件_基础

充分条件与必要条件【学习目标】1.理解充分条件、必要条件、充要条件的定义;2.会求某些简单问题成立的充分条件、必要条件、充要条件;3.会应用充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件表达命题之间的关系;4.能够利用命题之间的关系判定充要关系或进行充要性的证明.【要点梳理】要点一:充分条件与必要条件、充要条件的概念1. 符号p q⇒与p q⇒/的含义“若p,则q”为真命题,记作:p q⇒;“若p,则q”为假命题,记作:p q⇒/.2. 充分条件、必要条件与充要条件①若p q⇒,称p是q的充分条件,q是p的必要条件.②如果既有p q⇔,这时p是q的充分必要条件,称p是⇒,又有q p⇒,就记作p qq的充要条件.要点诠释:对p q⇒的理解:指当p成立时,q一定成立,即由p通过推理可以得到q.①“若p,则q”为真命题;②p是q的充分条件;③q是p的必要条件.以上三种形式均为“p q⇒”这一逻辑关系的表达.要点二:充分条件、必要条件与充要条件的判断1. 从逻辑推理关系看命题“若p,则q”,其条件p与结论q之间的逻辑关系.①若p q⇒,但q p⇒/,则p是q的充分不必要条件,q是p的必要不充分条件;②若p q⇒,则p是q的必要不充分条件,q是p的充分不必要条件;⇒/,但q p③若p q⇔,则p、q互为充要条件;⇒,且q p⇒,即p q④若p q⇒/,则p是q的既不充分也不必要条件.⇒/,且q p2. 从集合与集合间的关系看若p:x∈A,则q:x∈B.①若A⊆B,则p是q的充分条件,q是p的必要条件;②若A是B的真子集,则p是q的充分不必要条件;③若A=B,则p、q互为充要条件;④若A不是B的子集且B不是A的子集,则p是q的既不充分也不必要条件.要点诠释:充要条件的判断通常有四种结论:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.判断方法通常按以下步骤进行:①确定哪个是条件,哪个是结论;②尝试用条件推结论;③再尝试用结论推条件;④最后判断条件是结论的什么条件.要点三:充要条件的证明要证明命题的条件是结论的充要条件,既要证明条件的充分性(即证原命题成立),又要证明条件的必要性(即证原命题的逆命题成立).要点诠释:对于命题“若p ,则q ” :①如果p 是q 的充分条件,则原命题“若p ,则q ”与其逆否命题“若q ⌝,则p ⌝”为真命题;②如果p 是q 的必要条件,则其逆命题“若q ,则p ”与其否命题“若p ⌝,则q ⌝”为真命题;③如果p 是q 的充要条件,则四种命题均为真命题.【典型例题】类型一:充分条件、必要条件、充要条件的判定例1. 指出下列各题中,p 分别是q 的什么条件?(1) p :(2)(3)0x x --=, q : 2x =;(2) p :0c =, q : 抛物线2y ax bx c =++过原点;(3) p :一个四边形是矩形, q : 四边形的邻边相等.【思路点拨】本题中,p 是条件,q 是结论. 尝试用条件推结论,再尝试用结论推条件,从而判断p 分别是q 的什么条件.【解析】(1)∵p : 2x =或3x =, q : 2x =,∴p q ⇒/且q p ⇒,∴p 是q 的必要不充分条件.(2)∵p q ⇒且q p ⇒,∴p 是q 的充要条件,(3)∵p q ⇒/且q p ⇒/,∴p 是q 的既不充分条件也不必要条件.【总结升华】判定充要条件的基本方法是定义法,即“定条件——找推式——下结论”.有时需要将条件等价转化后再判定.举一反三:【变式1】指出下列各题中,p 是q 的什么条件?(1)p :A B ∠=∠, q :A ∠和B ∠是对顶角.(2)p :1x =, q :21x =;【解析】(1)∵p q ⇒/且q p ⇒,∴p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)∵2:111q x x x =⇔==-或∴211x x =⇒=,但211x x =⇒=/,∴p 是q 的充分不必要条件,q 是p 的必要不充分条件.【变式2】判断下列各题中p 是q 的什么条件.(1)p :0a >且0b >, q :0ab >;(2)p :1x y>, q : x y >. 【答案】(1)p 是q 的充分不必要条件.∵0a >且0b >时,0ab >成立;反之,当0ab >时,只要求a 、b 同号即可.∴必要性不成立.(2)p 是q 的既不充分也不必要条件∵1x y >在0y >的条件下才有x y >成立. ∴充分性不成立,同理必要性也不成立.【高清课堂:充分条件与必要条件394804例2】例2. 已知p :0<x <3,q :|x -1|<2,则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件【答案】A【解析】解不等式|x -1|<2得-1<x <3,即q :-1<x <3.将集合P ={|03}x x <<与Q ={|13}A x x =<< 在数轴上表示出来,如图,从图中看P Q ⊆, 所以p ⇒q ,但q ⇒/p ,故p 是q 的充分不必要条件.【总结升华】①先对已知条件进行等价转化化简,然后由定义判断;②不等式(解集)表示的条件之间的相互关系可以借助集合间的关系判断.举一反三:【高清课堂:充分条件与必要条件394804例3】【变式1】设x ∈R ,则条件“2x >”的一个必要不充分条件为( )A.1x >B.1x <C.3x >D.3x <【答案】A【变式2】下列各小题中,p是q的什么条件?(1)p:22-<<;xx-≤≤,q:20(2)p:03xx-<<.<<,q:13【答案】(1) p是q的必要不充分条件;(2) p是q的充分不必要条件.【变式3】设条件甲为“250x x--<””那么甲是乙的()-<”,条件乙为“2560x xA、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件【答案】B类型二:充要条件的探求与证明例3.设x y、∈R,求证:|x y+|=|x|+|y|成立的充要条件是xy≥0.【思路点拨】注意分清条件与结论. 本题中条件:xy≥0;结论:|x y+|=|x|+|y|.要证明充要条件的成立,须从两方面着手:条件∣结论;结论∣条件.【证明】(1)充分性:若xy=0,那么①x=0,y≠0;②x≠0,y=0;③x=0,y=0,于是|x+y|=|x|+|y|如果xy>0,即x>0,y>0或x<0,y<0,当x>0,y>0时,|x+y|=x+y=|x|+|y|.当x<0,y<0时,|x+y|=-(x+y)=-x+(-y)=| x|+|y|.总之,当xy≥0时,有|x+y|=|x|+|y|.(2)必要性:由|x+y|=|x|+|y|及x、y∈R,得(x+y)2=(|x|+|y|)2,即2222x xy y x xy y++=++,|xy|=xy,22∴xy≥0.综上可得|x y+|=|x|+|y|成立的充要条件是xy≥0.【总结升华】充要条件的证明关键是根据定义确定哪是已知条件,哪是结论,然后搞清楚充分性是证明哪一个命题,必要性是证明哪一个命题.判断命题的充要关系有三种方法:(1)定义法;(2)等价法,即利用A B⇔与A B⌝⇔⌝的⇒与B A⌝⇒⌝;A B⇒与A B⌝⇒⌝;B A等价关系,对于条件或结论是不等关系(否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,若A B⊆,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.举一反三:【变式1】已知a b c,,都是实数,证明ac< 0是关于x的方程2++=0有一个正ax bx c根和一个负根的充要条件.【解析】(1)充分性:若ac<0,则Δ=b2-4ac>0,方程2ax bx c++=0有两个相异实根,设为x1,x2,∵ac<0,∴x1·x2=ca<0,即x1,x2的符号相反,即方程有一个正根和一个负根.(2)必要性:若方程2ax bx c++=0有一个正根和一个负根,设为x1,x2,且x1>0,x2<0,则x1·x2=ca<0,∴ac<0.综上可得ac<0是方程2ax bx c++=0有一个正根和一个负根的充要条件. 【变式2】求关于x的方程2210ax x++=至少有一个负的实根的充要条件. 【解析】(1)a=0时适合.(2)当a≠0时,显然方程没有零根.若方程有两异号的实根,则必须满足1440aaa⎧<⎪⇒<⎨⎪∆=->⎩;若方程有两个负的实根,则必须满足12001440aa aa⎧>⎪⎪⎪-<⇒<≤⎨⎪⎪∆=-≥⎪⎩综上知,若方程至少有一个负的实根,则a≤1;反之,若a≤1,则方程至少有一个负的实根,因此,关于x的方程ax2+2x+1=0至少有一个负的实根的充要条件是a≤1类型三:充要条件的应用例4.已知条件p:2x+ax+1≤ 0,条件q:23x x-+2≤ 0,若p是q的充分不必要条件,求实数a的取值范围.【答案】-2≤a≤2【解析】解不等式23x x-+2≤ 0得1≤x≤2.令A={x∈R|2x+ax+1≤ 0},B={x|1≤x≤2},∵p是q的充分不必要条件,∴p q⇒,即A⊆B,可知A=∅或方程2x+ax+1=0的两根要在区间[1,2]内,∴Δ=a 2-4<0或01224210110a a a ∆≥⎧⎪⎪≤-≤⎪⎨⎪++≥⎪++≥⎪⎩,得-2≤a ≤2. 【总结升华】解决这类参数的取值范围问题,应尽量运用集合法求解,即先化简集合A 、B ,再由它们的因果关系,得到A 与B 的包含关系,进而得到相关不等式组,解之即可.举一反三:【变式1】已知命题p :()110c x +c c <<>-,命题q :x >7或x <-1,并且p 是q 的既不充分又不必要条件,则c 的取值范围是________.【答案】0<c ≤2【解析】命题p 对应的集合A ={x|1-c<x<1+c ,c>0},同理,命题q 对应的集合B ={x|x>7或x<-1}.因为p 是q 的既不充分又不必要条件,所以A B =∅或A 不是B 的子集且B 不是A 的子集,所以1117c c -≥-⎧⎨+≤⎩,①或1117c c +≥-⎧⎨-≤⎩,②,解①得c≤2,解②得c≥-2,又c>0,综上所述得0<c≤2.【变式2】已知p :1|1|23x --≤,q :22210(0)x x m m -+-≤>,若p 是q 的充分不必要条件,求m 的取值范围.【答案】9m ≥【解析】由22210(0)x x m m -+-≤>解得11m x m -≤≤+ 又由1|1|23x --≤解得210x -≤≤ p 是q 的充分不必要条件,所以012,110m m m >⎧⎪-≤-⎨⎪+>⎩或012,110m m m >⎧⎪-<-⎨⎪+≥⎩解得9m ≥。
高一数学充分条件与必要条件笔记

高一数学充分条件与必要条件笔记充分条件与必要条件是数学中重要的概念,它们描述了命题成立的条件和结论之间的关系。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B的充分必要条件,简称充要条件。
既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A 是B的既不充分也不必要条件。
可以根据这些定义来判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件。
同时,这些判断也可以基于逻辑推理关系来进行。
1. 充分条件:如果由条件A可以推出结论B,那么就说A是B的充分条件。
简单来说,就是有了A,就可以得到B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的充分条件。
2. 必要条件:如果由结论B可以推出条件A,那么就说A是B的必要条件。
简单来说,就是没有A,就没有B。
比如,如果一个数能被2整除,那么这个数一定是偶数。
在这里,“能被2整除”就是“偶数”的必要条件。
3. 充分必要条件:如果由A可以推出B,由B也可以推出A,那么就说A是B 的充分必要条件,简称充要条件。
比如,在三角形中,如果一个角是直角,那么这个三角形是直角三角形。
在这里,“是直角”就是“直角三角形”的充分必要条件。
4. 既不充分也不必要条件:如果由A不能推出B,由B也不能推出A,那么就说A是B的既不充分也不必要条件。
比如,在三角形中,“是等腰三角形”不能推出“有一个角是直角”,也不能推出“是直角三角形”,因此,“是等腰三角形”就是“是直角三角形”的既不充分也不必要条件。
这些判断可以根据逻辑推理关系来进行。
在判断某一条件是否为另一条件的充分条件、必要条件、既不充分也不必要条件时,可以通过逻辑推理的方法来验证。
充分与必要条件怎么区分

充分与必要条件怎么区分
1、必要条件:如果能由结论推出条件,但由条件推不出结论,此条件为必要条件。2、充分条件:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条B不可以推出A,则A是B的充分不必要条件
由A不可以推出B,由B可以推出A,则A是B的必要不充分条件
由A不可以推出B,由B不可以推出A,则A是B的不充分不必要条件
由A可以推出B,由B可以推出A,则A是B的充要条件(充分且必要条件)
怎样理解充分条件、必要条件和充要条件

怎样理解充分条件、必要条件和充要条件张万库充分条件、必要条件和充要条件是简易逻辑中的重要概念,准确理解、有意识地运用这几个概念思考问题和解决问题,可以使同学们养成严谨的思维品质,提高大家的逻辑思维能力。
怎样理解这三个概念呢?1. 充分条件、必要条件和充要条件反映的是一个命题中条件和结论间的因果关系(条件关系),是条件对于结论成立的作用。
谈一个命题的条件是否充分、必要、充要时,这个命题必须是确定的。
2. 充分条件的特征是“有之必然,无之未必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 未必不成立,也有可能成立。
这样的条件A 就是结论B 的充分条件。
例如,在命题“若x>0,则x 20>”中,有了条件“x>0”,就一定有结论“x 20>”成立。
把条件“x>0”换成“x <0”或“x ≠0”,仍有结论“x 20>”成立。
因此条件“x >0”是结论“x 20>”的充分条件。
教材中由“p q ⇒”定义“p 是q 的充分条件”,说的就是命题“若p 则q ”中条件p 对于结论q 成立的作用。
3. 必要条件的特征是“无之必不然,有之未必然”,即对于给定的命题“若A 则B ”,没有条件A ,结论B 一定不成立(⌝⇒⌝A B );但是有了条件A ,结论B 却未必一定成立。
这样的条件A 就是结论B 的必要条件。
例如,在命题“若x R x Q ∈∈,则”中,没有条件“x Q ∈”,就一定不会有结论“x Q ∈”。
但是有了条件“x R ∈”,却未必有结论“x R ∈”,还有可能是x C Q R ∈。
因此条件“x R ∈”是结论“x Q ∈”的必要条件。
利用“⌝⇒⌝A B ”判断条件A 是结论B 的必要条件,有时是很困难的。
我们可以利用“⌝⇒⌝A B ”的等价命题“B A ⇒”来判断,但一定要注意A 还是条件,B 还是结论,即若由结论B 能推出条件A ,则条件A 对于结论B 的成立是必要的。
充分条件与必要条件知识点

充分条件与必要条件知识点充分条件和必要条件是高中数学中的重要概念。
虽然这些概念比较抽象,但是它们的理解对于学生来说非常重要。
下面是关于高一数学中充分条件和必要条件的知识点。
1.充分条件、必要条件和充要条件充分条件指的是,如果条件A成立,那么结果B也成立。
也就是说,条件A是B成立的充分条件。
必要条件则是指,如果条件A成立,那么结果B也成立。
也就是说,结果B是条件A成立的必要条件。
充要条件则是指,如果有事物情况A,则必然有事物情况B;如果没有事物情况A,则必然没有事物情况B。
简单来说,如果满足条件A,那么结果B必然成立;如果不满足条件A,那么结果B必然不成立。
因此,条件A是结果B的充分必要条件。
反之,如果有事物情况B,则必然有事物情况A;如果没有事物情况B,则必然没有事物情况A。
因此,结果B是条件A的充分必要条件。
简单来说,如果满足结果B,那么条件A必然成立;如果不满足结果B,那么条件A必然不成立。
因此,结果B是条件A的充分必要条件。
也就是说,条件A可以推导出结果B,结果B也可以推导出条件A。
2.充分条件、必要条件和充要条件的判断对于命题“若…,则…”,其条件与结论之间的逻辑关系如下:如果条件A成立,那么结果B也成立,用符号表示为A B。
如果条件A成立,但结果B不一定成立,用符号表示为A B。
如果条件A和结果B互相成立,用符号表示为A B。
具体来说,如果XXX且B成立,则条件A是结果B成立的充分条件,结果B是条件A成立的必要条件。
如果XXX 且B成立,则条件A是结果B成立的充分且不必要条件,结果B是条件A成立的必要且非充分条件。
如果A和B互相成立,并且B能推导出A成立,则条件B是结果A成立的充分条件,结果A是条件B成立的必要条件。
如果A和B互相成立,那么它们互为充要条件。
要证明A是B的充要条件,需要分两步:①先证明A是B成立的充分条件;②再证明A是B成立的必要条件。
如果A和B互相成立,那么它们互为充要条件。
怎样理解充分条件、必要条件和充要条件

怎样理解充分条件、必要条件和充要条件充分条件、必要条件和充要条件是简易逻辑中的重要概念,准确理解、有意识地运用这几个概念思考问题和解决问题,可以使同学们养成严谨的思维品质,提高大家的逻辑思维能力。
怎样理解这三个概念呢?1. 充分条件、必要条件和充要条件反映的是一个命题中条件和结论间的因果关系(条件关系),是条件对于结论成立的作用。
谈一个命题的条件是否充分、必要、充要时,这个命题必须是确定的。
2. 充分条件的特征是“有之必然,无之未必不然”,即对于给定的命题“若A则B”,有了条件A,结论B一定成立();没有条件A,结论B未必不成立,也有可能成立。
这样的条件A就是结论B的充分条件。
例如:只要天下雨,地就会湿。
“下雨”就是“地湿”的充分条件,有“下雨”这个条件就一定有“地湿”这个结果,但“地湿”这个结果不一定就是“天下雨”造成的,也许还可能有其他的条件原因,如洒水车洒的、别人喷的等等。
3. 必要条件的特征是“无之必不然,有之未必然”,即对于给定的命题“若A则B”,没有条件A,结论B一定不成立();但是有了条件A,结论B却未必一定成立。
这样的条件A就是结论B的必要条件。
例如:只有阳光充足,菜才能长得好。
“阳光充足”就是“菜长得好”的必要条件,有“阳光充足”这个条件“菜”不一定就长得好,还需要施肥、浇水等其他条件。
但“菜”要长得好一定要有“阳光充足”这个条件。
4. 充要条件:即充分必要条件。
或者说是无条件的。
充要条件的特征是“有之必然,无之必不然”,即对于给定的命题“若A则B”,有了条件A,结论B一定成立;没有条件A,结论B一定不成立。
这样的条件A就是结论B的充要条件。
例如:有两条对应边平行且相等的四边形是平行四边形。
“两条对应边平行且相等”是“平行四边形”的充要条件。
5.在命题“若A则B”中,条件A是结论B的充分(必要、充要)条件,在逆命题“若B则A”中,条件B就是结论A的必要(充分、充要)条件。
运用充分条件、必要条件、充要条件的概念和观点思考问题、解决问题时,一定要弄清问题中所涉及的命题是什么(即弄清谁是条件,谁是结论)。
充分条件、必要条件、充要条件-高中数学知识点讲解

充分条件、必要条件、充要条件1.充分条件、必要条件、充要条件【知识点的认识】1、判断:当命题“若则”为真时,可表示为,称为的充分条件,是的必要条件.事实上,p q p q p q q p与“”等价的逆否命题是“”.它的意义是:若不成立,则一定不成立.这就是说,p q ¬q ¬p q p q 对于是必不可少的,所以说是的必要条件.例如:.显然,则.等价于p q p p:x>2;q:x>0 x p x qx q x p,则一定成立.2、充要条件:如果既有“”,又有“”,则称条件是成立的充要条件,或称条件是成立p q q p p q q p的充要条件,记作“”.与互为充要条件.p q p q【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若为真命题且为假命题,则命题是命题的充分不必要条件;p q q p p q②若为假命题且为真命题,则命题是命题的必要不充分条件;p q q p p q③若为真命题且为真命题,则命题是命题的充要条件;p q q p p q④若为假命题且为假命题,则命题是命题的即不充分也不必要条件.p q q p p q⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怎样理解充分条件、必要条件和充要条件
张万库
充分条件、必要条件和充要条件是简易逻辑中的重要概念,准确理解、有意识地运用这几个概念思考问题和解决问题,可以使同学们养成严谨的思维品质,提高大家的逻辑思维能力。
怎样理解这三个概念呢?
1. 充分条件、必要条件和充要条件反映的是一个命题中条件和结论间的因果关系(条件关系),是条件对于结论成立的作用。
谈一个命题的条件是否充分、必要、充要时,这个命题必须是确定的。
2. 充分条件的特征是“有之必然,无之未必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 未必不成立,也有可能成立。
这样的条件A 就是结论B 的充分条件。
例如,在命题“若x>0,则x 20>”中,有了条件“x>0”,就一定有结论“x 20>”成立。
把条件“x>0”换成“x <0”或“x ≠0”,仍有结论“x 20>”成立。
因此条件“x >0”是结论“x 20>”的充分条件。
教材中由“p q ⇒”定义“p 是q 的充分条件”,说的就是命题“若p 则q ”中条件p 对于结论q 成立的作用。
3. 必要条件的特征是“无之必不然,有之未必然”,即对于给定的命题“若A 则B ”,没有条件A ,结论B 一定不成立(⌝⇒⌝A B );但是有了条件A ,结论B 却未必一定成立。
这样的条件A 就是结论B 的必要条件。
例如,在命题“若x R x Q ∈∈,则”中,没有条件“x Q ∈”,就一定不会有结论“x Q ∈”。
但是有了条件“x R ∈”,却未必有结论“x R ∈”,还有可能是x C Q R ∈。
因此条件“x R ∈”是结论“x Q ∈”的必要条件。
利用“⌝⇒⌝A B ”判断条件A 是结论B 的必要条件,有时是很困难的。
我们可以利用“⌝⇒⌝A B ”的等价命题“B A ⇒”来判断,但一定要注意A 还是条件,B 还是结论,即若由结论B 能推出条件A ,则条件A 对于结论B 的成立是必要的。
教材中由“p q ⇒”定义“q 是p 的必要条件”,说的就是命题“若q 则p ”中条件q 对于结论p 成立的作用(⌝⇒⌝q p )。
4. 充要条件的特征是“有之必然,无之必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 一定不成立(⌝⇒⌝A B 即B A ⇒)。
这样的条件A 就是结论B 的充要条件。
例如,在命题“△ABC 中,若∠∠∠A B C ==,则BC=CA=AB ”中,有了条件“∠A=∠B=∠C ”,就一定有结论“BC=CA=AB ”成立;反之没有条件“∠A=∠B=∠C ”,就一定没有结论“BC=CA=AB ”成立(即有了“BC=CA=AB ”,也一定有“∠A=∠B=∠C ”)。
因此条件“∠A=∠B=∠C ”是结论“BC=CA=AB ”的充要条件。
弄懂了充分条件、必要条件的本质,教材中由“p q ⇔”定义“p 是q 的充要条件”则是不难理解的。
5. 在命题“若A 则B ”中,条件A 是结论B 的充分(必要、充要)条件,在逆命题“若B 则A ”中,条件B 就是结论A 的必要(充分、充要)条件。
运用充分条件、必要条件、充要条件的概念和观点思考问题、解决问题时,一定要弄清问题中所涉及的命题是什么(即弄清谁是条件,谁是结论)。
点评:充分条件、必要条件和充要条件的学习与运用,是一个极好的思维训练资源。
只要准确理解、有意识运用这几个概念思考问题和解决问题,同学们就可以少犯错误,变得聪
明起来。
练一练:
1. 已知a ,b ,c 是常数,则“a>0且b ac 240-<”是“对任意x R ax bx c ∈++>,20恒成立”的什么条件?
2. 我们知道a b a b ab ==⎧⎨⎩+==⎧⎨⎩1121,与是等价的,那么a b >>⎧⎨⎩11与a b ab +>>⎧⎨⎩
21是否也等价呢?
答案:
1. 充分不必要条件
2. 不等价(提示:在平面直角坐标系内画出两个不等式组所表示的区域A 和B 。
从下图中可以直观地看出A 是B 的真子集,因此,不等价,是充分不必要条件。
用图形判断条件的充分性、必要性、充要性,形象直观,一目了然)。