充分条件、必要条件、充要条件
充分条件、必要条件、充要条件题型解析

ʏ朱珠充分条件与必要条件是高中数学的重要概念,因其抽象性而成为同学们难以理解的内容㊂下面就这方面的题型进行举例分析㊂一㊁充分条件㊁必要条件㊁充要条件的判断充分条件与必要条件:若p⇒q,则p是q的充分条件,q是p的必要条件;若p⇒/q,则p不是q的充分条件,q不是p的必要条件㊂一般地,如果p⇒q,且q⇒p,就记作p⇔q,则p是q的充分必要条件,简称充要条件㊂概括地说,如果p⇔q,那么p与q互为充要条件㊂判断p是q的什么条件,主要判断p⇒q,及q⇒p这两个命题的正确性,若p⇒q真,则p是q成立的充分条件;若q⇒p 真,则p是q成立的必要条件㊂要否定p与q不能相互推出时,举出一个反例即可㊂例1(1)已知实系数一元二次方程a x2+b x+c=0(aʂ0),则下列结论正确的是()㊂①Δ=b2-4a cȡ0是这个方程有实根的充要条件;②Δ=b2-4a c=0是这个方程有实根的充分条件;③Δ=b2-4a c>0是这个方程有实根的必要条件;④Δ=b2-4a c<0是这个方程没有实根的充要条件㊂A.③④B.②③C.①②③D.①②④(2)若p:AɘB=A,q:∁U B⊆∁U A,则p 是q的()㊂A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:对于(1),利用Δ=b2-4a c判断方程根的情况,当Δ=0时,一元二次方程有两个等根;当Δ>0时,一元二次方程有两个不相等的根;当Δ<0时,一元二次方程没有实数根㊂对于(2),画出V e n n图(如图1),结合图形,可帮助求解㊂图1解:(1)Δȡ0⇔一元二次方程a x2+b x+ c=0(aʂ0)有实根,①正确㊂Δ=0⇒一元二次方程a x2+b x+c=0(aʂ0)有实根,②正确㊂Δ>0⇒一元二次方程a x2+b x+c=0 (aʂ0)有实根,但a x2+b x+c=0(aʂ0)有实根⇒/Δ>0,③错误㊂Δ<0⇔一元二次方程a x2+b x+c=0(aʂ0)无实根,④正确㊂应选D㊂(2)结合图1可得AɘB=A⇔A⊆B⇔∁U A⊇∁U B,即p是q的充要条件㊂应选C㊂充分条件与必要条件的两种判断方法:直接利用定义判断;集合法,将命题p,q分别看作集合A, B,当A⊆B时,p是q的充分条件,q是p的必要条件,当A=B时,p,q互为充要条件㊂二㊁充分条件㊁必要条件㊁充要条件的应用利用充分条件㊁必要条件求参数的取值范围问题,常利用集合法求解,先化简集合A={x|p(x)}和B={x|q(x)},然后根据p 与q的关系(充分㊁必要㊁充要条件),得出集合A与B的包含关系,进而得到相关不等式组,最后求出参数的取值范围㊂例2已知集合A={x|a<x<a+2}, B={x|x<-1或x>3},且A是B的充分不必要条件,求实数a的取值范围㊂分析:由A是B的充分不必要条件,说0 1知识结构与拓展高一数学2023年9月Copyright©博看网. All Rights Reserved.明集合A 是B 的真子集,即A ⫋B ,由此可得实数a 满足的条件,从而得到实数a 的取值范围㊂解:因为A 是B 的充分不必要条件,所以A ⫋B ㊂又因为A ={x |a <x <a +2},B ={x |x <-1或x >3},所以a +2ɤ-1或a ȡ3,解得a ȡ3或a ɤ-3,所以实数a 的取值范围是{a |a ȡ3或a ɤ-3}㊂充分条件㊁必要条件中的含参数问题,往往是通过集合的包含关系来解答的㊂三㊁充要条件的证明充要条件的证明,可分为充分性和必要性的证明,证明时要注意两种叙述方式的区别:①p 是q 的充要条件,由p ⇒q 是充分性,由q ⇒p 是必要性;②p 的充要条件是q ,由p ⇒q 是必要性,由q ⇒p 是充分性㊂例3 求证:方程m x 2-2x +3=0有两个同号且不相等实根的充要条件是0<m <13㊂分析:先找出条件和结论,然后证明充分性和必要性都成立㊂证明:先证充分性(由条件推结论)㊂因为0<m <13,所以方程m x 2-2x +3=0的判别式Δ=4-12m >0,所以方程有两个不相等的实根㊂设方程的两根为x 1,x 2,当0<m <13时,x 1+x 2=2m >0且x 1x 2=3m>0,所以方程m x 2-2x +3=0有两个同号且不相等的实根,所以0<m <13⇒方程m x 2-2x +3=0有两个同号且不相等的实根㊂再证必要性(由结论推条件)㊂若方程m x 2-2x +3=0有两个同号且不相等的实根,则Δ=4-12m >0,x 1x 2=3m>0,所以0<m <13,所以方程m x 2-2x +3=0有两个同号且不相等的实根⇒0<m <13㊂综上可得,方程m x 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <13㊂ 证明p 是q 的充要条件,既要证明命题 p ⇒q为真,又要证明 q ⇒p 为真,前者证明的是充分性,后者证明的是必要性㊂证明充要条件,即证明原命题和逆命题都成立㊂要注意 p 是q 的充要条件 与 p 的充要条件是q 这两种说法的差异,要分清哪个是条件,哪个是结论㊂1.求证:关于x 的方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂提示:先证明p ⇒q ,即证明必要性,再证明q ⇒p ,即证明充分性㊂设命题p :方程a x 2+b x +c =0有一个根是1,命题q :a +b +c =0㊂先证明p ⇒q ,即证明必要性,由x =1是方程a x 2+b x +c =0的根,可得a ㊃12+b ㊃1+c =0,即a +b +c =0㊂再证明q ⇒p ,即证明充分性,由a +b +c =0,可得c =-a -b ,因为a x 2+b x +c =0,所以a x 2+b x -a -b =0,即a (x 2-1)+b (x -1)=0,也即(x -1)(a x +a +b )=0,所以x =1是方程的一个根㊂综上可知,方程a x 2+b x +c =0有一个根是1的充要条件是a +b +c =0㊂2.已知三个不等式:a b >0,b c -a d >0,c a -db>0(其中a ,b ,c ,d 均为实数)㊂用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,则可组成的正确命题的个数是( )㊂A.0 B .1 C .2 D .3提示:a b >0为①,b c -a d >0为②,ca-d b >0为③㊂若①②成立,则1a b (b c -a d )>,可得c a -d b >0,即③成立㊂若①③成立,则a bc a -d b>0,可得b c -a d >0,即②成立㊂若②③成立,则由③得b c -a da b>0,由②b c -a d >0得a b >0,即①成立㊂应选D ㊂作者单位:江苏省阜宁县东沟中学(责任编辑 郭正华)11知识结构与拓展高一数学 2023年9月Copyright ©博看网. All Rights Reserved.。
高中数学重点《充分条件与必要条件》教案

高中数学重点《充分条件与必要条件》教案学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。
对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
华罗庚先生倡导的“由薄到厚”和“由厚到薄”的学习过程就是这个道理。
方法因人而异,但学习的四个环节(预习、上课、作业、复习)和一个步骤(归纳总结)是少不了的。
下面就和一起看看有关高中数学重点《充分条件与必要条件》教案。
高中数学选修1-1《充分条件与必要条件》教案1教学准备教学目标运用充分条件、必要条件和充要条件教学重难点运用充分条件、必要条件和充要条件教学过程一、基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。
3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A 是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断1若成立则A是B成立的充分条件,B是A成立的必要条件。
2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。
3.若成立则A、B互为充要条件。
(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
二、范例选讲例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?(1)在△ABC中,p:A>B q:BC>AC;(2)对于实数x、y,p:x y≠8 q:x≠2或y≠6;(3)在△ABC中,p:SinA>SinB q:tanA>tanB;(4)已知x、y∈R,p:(x-1)2 (y-2)2=0 q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )A、x<0B、x<0或x>4C、│x-1│>1D、│x-2│>3(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的条件.答案:(1)充分条件(2)充要、必要不充分(3)A=> B <=> C=> D故填充分。
高考数学充分条件与必要条件

(一)充分条件、必要条件和充要条件定义 1.充分条件:如果A成立那么B成立,则条件A是B成 立的充分条件。 2.必要条件:如果A成立那么B成立,这时B是A的必 然结果,则条件B是A成立的必要条件。
A B
3.充要条件:如果A既是B成立的充分条件,又是B 成立的必要条件,则A是B成立的充要条件;同时B也 是A成立的充要条件。
充分不必要
练习1.设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不
充分条件是( C)
A、x<0 C、│x-1│>1
B、x<0或x>4 D、│x-2│>3
P32例1变式
记住:小范围能推出大范围,大范围不能推 出小范围。
新疆和静高级中学
•
;车吉祥 https:// 车吉祥
AB
第三种方法:等价法
利用 A B与B A
A B与B A
等价关系。
B A与A B
的互为逆否命题的
证明A是B的充要条件,分两步:
(1)充分性:把A当作已知条件,结合前提 条件推出A。
例1.(充分必要条件的判断)指出下列各组命题中,
p是q的什么条件?
(1)(2)(3)在P32考例1
(1)在△ABC中,p:A>B q:BC>AC; 充要
(2)对于实数x、y,p:x+y≠8 q:x≠2或充y≠分6不;必要 (3)在△ABC中,p:SinA>SinB 即q:不ta充nA分>又tan不B必;要
(4)已知x、y∈R p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
新疆和静高级中学
新疆和静高级中学
新疆和静高级中学
充分条件必要条件充要条件的概念

充分条件必要条件充要条件的概念
充分条件、必要条件与充要条件是逻辑学与数学中的基本概念,它们的定义如下:
1. 充分条件:
在数学和逻辑学中,充分条件是一个能够导致某个结果的条件。
换句话说,如果存在一个条件,那么我们就可以合理地认为它能导致某个结果。
例如,如果A 是B 的充分条件,那么我们可以说只要A 发生,B 就一定会发生。
2. 必要条件:
在数学和逻辑学中,必要条件是一个没有它就不能产生结果的条件。
换句话说,如果没有一个条件,那么我们就无法合理地推断出某个结果。
例如,如果B 是A 的必要条件,那么我们可以说只有B 发生,A 才会发生。
3. 充分且必要条件:
充分且必要条件是同时满足两个条件的条件。
换句话说,如果A 是B 的充分条件,同时B 是A 的必要条件,那么我们可以说A 是B 的充分且必要条件。
在逻辑学和数学中,这种条件通常被称为充要条件。
充分条件、必要条件和充要条件的概念可以应用于各种情况,包括数学证明、逻辑推理和计算机科学。
例如,在计算机科学中,这些概念可以帮助我们编写更加可靠和健壮的代码,因为它们可以确保我们只使用必要的条件,从而避免不必要的复杂性和错误。
怎样理解充分条件、必要条件和充要条件

怎样理解充分条件、必要条件和充要条件张万库充分条件、必要条件和充要条件是简易逻辑中的重要概念,准确理解、有意识地运用这几个概念思考问题和解决问题,可以使同学们养成严谨的思维品质,提高大家的逻辑思维能力。
怎样理解这三个概念呢?1. 充分条件、必要条件和充要条件反映的是一个命题中条件和结论间的因果关系(条件关系),是条件对于结论成立的作用。
谈一个命题的条件是否充分、必要、充要时,这个命题必须是确定的。
2. 充分条件的特征是“有之必然,无之未必不然”,即对于给定的命题“若A 则B ”,有了条件A ,结论B 一定成立(A B ⇒);没有条件A ,结论B 未必不成立,也有可能成立。
这样的条件A 就是结论B 的充分条件。
例如,在命题“若x>0,则x 20>”中,有了条件“x>0”,就一定有结论“x 20>”成立。
把条件“x>0”换成“x <0”或“x ≠0”,仍有结论“x 20>”成立。
因此条件“x >0”是结论“x 20>”的充分条件。
教材中由“p q ⇒”定义“p 是q 的充分条件”,说的就是命题“若p 则q ”中条件p 对于结论q 成立的作用。
3. 必要条件的特征是“无之必不然,有之未必然”,即对于给定的命题“若A 则B ”,没有条件A ,结论B 一定不成立(⌝⇒⌝A B );但是有了条件A ,结论B 却未必一定成立。
这样的条件A 就是结论B 的必要条件。
例如,在命题“若x R x Q ∈∈,则”中,没有条件“x Q ∈”,就一定不会有结论“x Q ∈”。
但是有了条件“x R ∈”,却未必有结论“x R ∈”,还有可能是x C Q R ∈。
因此条件“x R ∈”是结论“x Q ∈”的必要条件。
利用“⌝⇒⌝A B ”判断条件A 是结论B 的必要条件,有时是很困难的。
我们可以利用“⌝⇒⌝A B ”的等价命题“B A ⇒”来判断,但一定要注意A 还是条件,B 还是结论,即若由结论B 能推出条件A ,则条件A 对于结论B 的成立是必要的。
充分条件、必要条件

一、充分条件、必要条件、充要条件的定义
1.若p 则q 为真,q p ⇒;若p 则q 为假,q p ⇒
条件 结论
2.定义
(1)若q p ⇒,则p 是q 的充分条件
(2)若p q ⇒,则p 是q 的必要条件
(3)若q p ⇒且p q ⇒,则q 是p 的充要条件
二、充分条件、必要条件的判断方法
(1)定义法:直接利用定义进行判断断
步骤: ①分清条件、结论
②
技巧:①可先化简命题再进行判断;②否定一个命题只需举出一个反例即可。
(2)集合法:集合A ,B 分别是使命题p ,q 为真命题的对象所组成的集合.
⎩
⎨⎧⇒⇒p q q p 充分不必要条件 A B 必要不充分条件
充要条件
既不充分也不必要条件
三、充分条件与必要条件的应用
例:已知p :,q :{x |x 2-2x +1-m 2≤0,m >0},若p 是q 的充分不
必要条件,求实数m的取值范围.
令A=,
……………………………………………………2分
B={x|x2-2x+1-m2≤0,m>0}
={x|[x-(1-m)]·[x-(1+m)]≤0,m>0},
∴B={x|1-m≤x≤1+m,m>0}.………………4分
∵p是q的充分不必要条件,
∴A B.……………………………………………6分
四、证明充要条件
步骤:①分清条件、结论;
②证明充分性:条件⇒结论;
③证明必要性:结论⇒条件;
④下结论。
技巧:证明充要条件,即证明命题的原命题和逆命题都成立.证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证.。
充分条件、必要条件、充要条件-高中数学知识点讲解

充分条件、必要条件、充要条件1.充分条件、必要条件、充要条件【知识点的认识】1、判断:当命题“若则”为真时,可表示为,称为的充分条件,是的必要条件.事实上,p q p q p q q p与“”等价的逆否命题是“”.它的意义是:若不成立,则一定不成立.这就是说,p q ¬q ¬p q p q 对于是必不可少的,所以说是的必要条件.例如:.显然,则.等价于p q p p:x>2;q:x>0 x p x qx q x p,则一定成立.2、充要条件:如果既有“”,又有“”,则称条件是成立的充要条件,或称条件是成立p q q p p q q p的充要条件,记作“”.与互为充要条件.p q p q【解题方法点拨】充要条件的解题的思想方法中转化思想的依据;解题中必须涉及两个方面,充分条件与必要条件,缺一不可.证明题目需要证明充分性与必要性,实际上,充分性理解为充分条件,必要性理解为必要条件,学生答题时往往混淆二者的关系.判断题目可以常用转化思想、反例、特殊值等方法解答即可.判断充要条件的方法是:①若为真命题且为假命题,则命题是命题的充分不必要条件;p q q p p q②若为假命题且为真命题,则命题是命题的必要不充分条件;p q q p p q③若为真命题且为真命题,则命题是命题的充要条件;p q q p p q④若为假命题且为假命题,则命题是命题的即不充分也不必要条件.p q q p p q⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.【命题方向】充要条件是学生学习知识开始,或者没有上学就能应用的,只不过没有明确定义,因而几乎年年必考内容,多以小题为主,有时也会以大题形式出现,中学阶段的知识点都相关,所以命题的范围特别广.1/ 1。
充分条件与必要条件充要条件

充分条件与必要条件充要条件教学目标1.理解充分条件、必要条件、充要条件的概念.(重点)2.会用充分不必要条件,必要不充分条件、充要条件.既不充分也不必要条件表达命题间的关系.(重点)3.会求问题成立的充分条件、必要条件、充要条件,会证明充要条件.(难点、易错点)教材整理1 充分条件与必要条件阅读教材P9~P10部分,完成下列问题.充分条件与必要条件判断(正确的打“√”,错误的打“×”)(1)若p是q的必要条件,则q是p的充分条件.()(2)“两角不相等”是“两角不是对顶角”的必要条件.()(3)x>a2+b2(a>0,b>0)是x>2ab的充分条件.()【答案】(1)√(2)×(3)√教材整理2 充要条件阅读教材P11~P12部分,完成下列问题.充要条件1.推出关系:p⇒q,且q⇒p,记作p⇔q.2.简称:p是q的充分必要条件,简称充要条件.3.意义:p⇔q,则p是q的充要条件或q是p的充要条件,即p与q互为充要条件.课堂练习判断(正确的打“√”,错误的打“×”)(1)q 是p 的必要条件时,p 是q 的充分条件.( )(2)若p 是q 的充要条件,则命题p 和q 是两个相互等价的命题.( )(3)q 不是p 的必要条件时,“p ⇒/q ”成立.( )【答案】 (1)√ (2)√ (3)√例题分析判断下列各题中p 是q 的什么条件?(1)p :α=π3,q :cos α=12;(2)在△ABC 中,p :a >b ,q :sin A >sin B ;(3)p :四边形的对角线相等,q :四边形是平行四边形.【精彩点拨】 根据定义法,集合法,等价法作出判断.【自主解答】 (1)∵α=π3⇒cos α=12,cos α=12⇒/α=π3,∴p 是q 的充分条件.(2)∵由正弦定理a sin A =b sin B ,知a >b ⇒sin A >sin B ,sin A >sin B ⇒a >b ,∴p 是q 的充要条件.(3)∵⎩⎪⎨⎪⎧四边形的对角线相等D ⇒/四边形是平行四边形,四边形是平行四边形D ⇒/四边形的对角线相等, ∴p 是q 的既不充分也不必要条件.小结充分、必要、充要条件的判断方法1.定义法若p ⇒q ,q ⇒/p ,则p 是q 的充分条件;若p ⇒/q ,q ⇒p ,则p 是q 的必要条件;若p⇒q,q⇒p,则p是q的充要条件;若p⇒/q,q⇒/p,则p是q的既不充分也不必要条件.2.集合法对于集合A={x|x满足条件p},B={x|x满足条件q},具体情况如下:若A⊆B,则p是q的充分条件;若A⊇B,则p是q的必要条件;若A=B,则p是q的充要条件;若A B,则p是q的充分条件;若A B,则p是q的必要条件;即小范围可推出大范围,大范围不能推出小范围.3.等价法等价转化法就是在判断含有“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断. [再练一题]1.设p:1<x<2,q:2x>1,则p是q成立的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件【解析】由2x>1=20得x>0,所以p⇒q但q⇒/p,所以p是q的充分条件.【答案】 A2.指出下列命题中,p是q的什么条件?(1)p:x2=2x+1,q:x=2x+1;(2)p:a2+b2=0,q:a+b=0;(3)p:x=1或x=2,q:x-1=x-1;(4)p:sin α>sin β,q:α>β.【解】(1)∵x2=2x+1⇒/x=2x+1,x =2x +1⇒x 2=2x +1,∴p 是q 的必要条件.(2)∵a 2+b 2=0⇒a =b =0⇒a +b =0,a +b =0⇒/a 2+b 2=0,∴p 是q 的充分条件.(3)∵当x =1或x =2成立时,可得x -1=x -1成立,反过来,当x -1=x -1成立时,可以推出x =1或x =2,∴p 既是q 的充分条件也是q 的必要条件.(4)由sin α>sin β不能推出α>β,反过来由α>β也不能推出sin α>sin β,∴p 既不是q 的充分条件,也不是q 的必要条件.是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.【精彩点拨】 用集合的观点研究问题,先求出4x +p <0和x 2-x -2>0所对应的集合,再由“4x +p <0”⇒“x 2-x -2>0”求p 的范围.【自主解答】 由x 2-x -2>0,解得x >2或x <-1,令A ={x |x >2或x <-1},由4x +p <0,得B = ⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x <-p 4,当B ⊆A 时,即-p 4≤-1,即p ≥4,此时x <-p 4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.小结1.解答本题的关键是分清4x +p <0⇒x 2-x -2>0.2.解答这类题主要根据充分条件、必要条件与集合的关系,转化为集合与集合间的包含关系,然后建立关于参数的不等式(组)进行求解.[再练一题]3.若p :x (x -3)<0是q :2x -3<m 的充分条件,则实数m 的取值范围是_______.【解析】 p :x (x -3)<0,则0<x <3,q :2x -3<m ,则x<m+32,由题意知p⇒q,∴m+32≥2,∴m≥3.【答案】m≥3探究1 如何证明充要条件?【提示】充要条件的证明分充分性和必要性的证明.在证明时要注意两种叙述方式的区别:①p是q的充要条件,则由p⇒q证的是充分性,由q⇒p证的是必要性;②p的充要条件是q,则由p⇒q证的是必要性,由q⇒p证的是充分性.探究2如何求解充要条件?【提示】探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac <0.【精彩点拨分清条件p与结论q→证充分性p⇒q→证必要性q⇒p→结论p⇔q【自主解答】充分性:(由ac<0推证方程有一正根和一负根)∵ac<0,∴一元二次方程ax2+bx+c=0的判别式Δ=b2-4ac>0.∴方程一定有两个不等实根.设为x1,x2,则x1x2=ca<0,∴方程的两根异号,即方程ax2+bx+c=0有一正根和一负根.必要性:(由方程有一正根和一负根推证ac<0)∵方程ax2+bx+c=0有一正根和一负根,设为x1,x2,则由根与系数的关系得x1x2=ca<0,即ac<0,综上可知:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0. 小结有关充要条件的证明问题,要分清哪个是条件,哪个是结论,谁是谁的什么条件,由“条件⇒结论”是证明命题的充分性,由“结论⇒条件”是证明命题的必要性.证明要分两个环节:一是证充分性;二是证必要性.已知方程x 2+(2k -1)x +k 2=0,求使方程有两个大于1的实数根的充要条件.【精彩点拨】 求解过程要保证每一步的变形转化过程都可逆,直接求出充要条件.【自主解答】 令f (x )=x 2+(2k -1)x +k 2,则方程x 2+(2k -1)x +k 2=0有两个大于1的实数根⇔⎩⎪⎨⎪⎧ Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0⇔k <-2. 因此k <-2是使方程x 2+(2k -1)x +k 2=0有两个大于1的实数根的充要条件.小结 探求充要条件一般有两种方法1.先寻找必要条件,即将探求充要条件的对象视为结论,寻找使之成立的条件;再证明此条件是该对象的充分条件,即从充分性和必要性两方面说明.2.将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因为探求过程每一步都是等价的,所以不需要将充分性和必要性分开来证.[再练一题]4.已知x ,y 都是非零实数,且x >y ,求证:1x <1y 的充要条件是xy >0.【证明】 (1)必要性:由1x <1y ,得1x -1y <0,即y -x xy<0,又由x >y ,得y -x <0,所以xy >0.(2)充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y .综上所述,1x <1y 的充要条件是xy >0.练习1.“x >1”是“log 12(x +2)<0”的( )A.充要条件B.充分条件C.必要条件D.既不充分也不必要条件【解析】 由x +2>1得x >-1,故选B.(小范围可推大范围,大范围不能推小范围) 【答案】 B2.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A.充分条件B.必要条件C.必要条件D.既不充分也不必要条件【解析】 当四边形ABCD 为菱形时,必有对角线互相垂直,即AC ⊥BD .当四边形ABCD 中AC ⊥BD 时,四边形ABCD 不一定是菱形,还需要AC 与BD 互相平分.综上知,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件.【答案】 A3.实数a ,b 中至少有一个不为零的充要条件是( )A.ab =0B.ab >0C.a 2+b 2=0D.a 2+b 2>0【解析】 a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.故选D. 【答案】 D4.若“x <m ”是“(x -1)(x -2)>0”的充分条件,则m 的取值范围是________.【解析】 由(x -1)(x -2)>0可得x >2或x <1,由已知条件,知{x |x <m }{x |x>2,或x <1},∴m ≤1. 【答案】 (-∞,1]5.判断下列各题中p 是q 的什么条件.(1)p :x >1,q :x 2>1;(2)p :(a -2)(a -3)=0,q :a =3;(3)p :a <b ,q :a b <1.【解】 (1)由x >1可以推出x 2>1;由x 2>1,得x <-1或x >1,不一定有x >1.因此,p 是q 的充分条件.(2)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要条件.(3)由于a <b ,当b <0时,a b >1;当b >0时,a b <1,故若a <b ,不一定有a b <1;当a >0,b >0,a b <1时,可以推出a <b ;当a <0,b <0,a b <1时,可以推出a >b .因此p 是q 的既不充分也不必要条件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
充分条件、必要条件、充要条件
三维目标
知识与技能:
1、理解充分条件、必要条件及充要条件的概念;理解“ ”的含义。
2、初步掌握充分、必要条件及充要条件的判断方法。
3、在理解定义的基础上,能对定义进行转化,转化成推理关系及集合的包含关系。
过程与方法
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。
情感态度价值观
1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
教学重点
知识方面:充分条件、必要条件和充要条件三个概念的定义。
在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。
方法技能方面:
1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
教学难点
⑴在中q 是p的必要条件的理解;
⑵如何判断p是q的什么条件;
⑶判断命题条件与结论间关系时,条件p的确定
教学设计
一、创设情境,引入新课
思考1:当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈.”那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?为什么?【因为前面你所介绍的她是你的妈妈就足于说明你是她的孩子】
思考2:这在数学中是一层什么样的关系呢?【充分条件与必要条件】
二、复习回顾
思考1:什么叫做命题?【能判断真假的语句】
思考2:什么叫做真命题,什么叫做假命题?
思考3:常见的逻辑连接词有哪些,他们表示什么意思?【或、且、非】
知识探究(一)
思考1:条件p :x >0,结论q :x 2>0,如果条件“x >0”成立,那么结论“x 2
>0”成立 一定成立吗?
思考2:该语句用数学符号怎么表示?【x >0⇒x 2
>0】 思考3:要使结论q :x 2>0成立,有条件p :x >0足够了吗,“充分”了吗?
思考4:怎样利用做够,充分语句叙述该语句?【要使p 成立,q 足够充分了了】 结论:如果已知p ⇒q ,那么我们说,p 是q 的充分条件.
练习:判断下列条件p 是不是q 的充分条件?
条件p :x =y ,结论q :x 2=y 2
知识探究(二)
思考1:条件p :(x -1)(x -2)=0,结论q :x =1,p 是q 的充分条件吗?
思考2:而由条件(x -1)(x -2)=0一定有x =1成立,即(x -1)(x -2)=0⇒/x =1成立吗?
思考3:如果条件(x -1)(x -2)=0不成立,结论x =1成立吗?
思考4:要使x =1成立,必须具备(x -1)(x -2)=0的条件吗?【我们就说(x -1)(x -2)=0是x =1成立的必要条件.】
结论:如果已知q ⇒p ,那么我们说,p 是q 的必要条件.
思考5:该结论还可以怎样理解,你能举例说明吗同学讨论?【如果p 不成立,那么q 就不成立,即⌝p ⇒⌝q .也就是说,要使q 成立,就必须p 成立.例:没有氧气,人类就不能生存;有了氧气,人类未必就能生存.我们说,氧气是人类生存的必要条件.】
知识探究(三)
思考1:对于探究一中的条件p 和结论q ,q p ⇒成立吗?因此,q p 是必要条件吗? 思考2:由此你得到什么结论?
若p ⇒q 且q ⇒/p ,即p 是q 成立的充分条件,但不是必要条件,我们称p 是q 的充分不必要条件.
思考3:对于探究二中的条件p 和结论q ,p q ⇒吗,因此,p q 是的充分条件吗? 思考4:由此你得到什么结论?
若p ⇒/q 且q ⇒p ,即p 是q 成立的必要条件,但不是充分条件,我们称p 是q 的必要不充
分条件.
思考5:条件p:三角形的三条边相等,结论q:三角形的三个角相等,p⇒q,q⇒p成立是的什么条件?
吗?因此,p q
结论:如果p⇒q且q⇒p,记作p⇔q.这时,p既是q成立的充分条件,又是q的必要条件,我们称p是q的充分必要条件,简称p是q的充要条件.
另外,如果p⇒/q且q⇒/p,那么称p是q的既不充分又不必要条件
思考6:你怎样理解必要不充分条件”、“充要条件”、“既不充分又不必要条件?
我国古代《墨经》里对充要条件有精辟的论述:
“有之则必然,无之则未必不然,是为‘大故’;无之则不然,有之则未必然,是为‘小故’.”也就是说,
充分条件的特征是:“有它就行,没它未必不行”;
必要条件的特征是:“没它不行,有它未必行”;
充要条件的特征是:“有它就行,没它不行”.
由此可看出,充分条件、必要条件都不是唯一的,而充要条件是唯一的,是互逆的.
知识运用
三.练习:
1.填空(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分又不必要条件”中选出一种):
“x是6的倍数”是“x是2的倍数”的条件;
“x是2的倍数”是“x是6的倍数”的条件;
“x既是2的倍数也是3的倍数”是“x是6的倍数”的条件;
“x是4的倍数”是“x是6的倍数”的条件.
2、x≤-1是x≤1 的条件.
x2-1<0是(x+2)(x-3)<0的充分而不必要条件
(x+2)(x-3)<0是x2-1<0的条件.
x2-1=0是| x |=3的条件.
x2-1=0是| x |=1的条件.
小结:
对于两个不等式而言:
(ⅰ)解集范围小的成立,则解集范围大的也成立;但是,反过来不能成立.
(ⅱ)若两个不等式的解集无包含与被包含关系,则它们相互都不能推得
课堂小结:
1)充分条件、必要条件、充要条件的概念.
(2)判断充分、必要条件、充要条件的基本步骤:
①认清条件和结论;
②考察p⇒q和q⇒p的真假
附:板书设计
充分条件、必要条件、充要条件
1、定义:
若p⇒q,则p是q的充分条件,q是p的必要条件。
形象记忆:箭尾
..是箭尾
..的必要条件。
..的充分条件,箭头
..是箭头
2、若p⇔q,则p是q的充分必要条件,q是p的充分必要条件(简称充要条件)。
若p⇒q但q⇒p,则p是q的充分非必要条件,q是p的必要非充分条件。
3、判断p与q的充要条件关系的步骤:
①判断p⇒q与q⇒p是否成立。
②再由形象记忆法判断p与q的条件关系。