数学奥林匹克高中训练题(30)及答案
2022CMO试题及答案

2022CMO试题及答案一、选择题(每题5分,共30分)1. 下列哪项不是中国数学奥林匹克(CMO)的参赛条件?A. 必须为中国公民B. 必须在数学竞赛中取得优异成绩C. 必须获得学校推荐D. 必须年满18周岁答案:D2. CMO的举办时间通常是在每年的:A. 3月B. 6月C. 9月D. 12月答案:C3. 在CMO比赛中,以下哪项不是评分标准之一?A. 解题的创造性B. 解题的速度C. 解题的准确性D. 解题的规范性答案:B4. CMO的参赛者通常需要通过以下哪项选拔?A. 省级数学竞赛B. 市级数学竞赛C. 校级数学竞赛D. 国家数学竞赛答案:A5. CMO的奖项设置通常包括:A. 金牌、银牌、铜牌B. 一等奖、二等奖、三等奖C. 特等奖、优胜奖D. 杰出奖、优秀奖答案:A6. 下列哪项不是CMO的参赛意义?A. 提高数学素养B. 选拔数学人才C. 增强国际竞争力D. 获得高考加分答案:D二、填空题(每题5分,共30分)7. CMO的全称是_________。
答案:中国数学奥林匹克8. 2022年CMO的主办城市是_________。
答案:【具体城市名称】9. CMO的比赛通常分为两天进行,每天有_________道题目。
答案:310. CMO的参赛者年龄一般不超过_________岁。
答案:2011. CMO的题目涵盖了代数、几何、组合等多个数学领域,其中_________是必考内容。
答案:平面几何12. CMO的获奖者有机会代表中国参加_________。
答案:国际数学奥林匹克(IMO)三、解答题(每题20分,共40分)13. 证明:对于任意的正整数n,n的立方与n的2倍之和,总是大于n的平方。
答案:证明:设n为任意正整数。
考虑表达式 n^3 + 2n - n^2,我们需要证明对于所有n > 0,该表达式大于n^2。
n^3 + 2n - n^2 = n^2(n + 2) - n^2 = n^2(n + 2 - 1) =n^2(n + 1)。
数学奥林匹克高中训练题(20)及答案

数学奥林匹克高中训练题(20)第一试一、选择题(本题满分36分;每小题6分) 1.(训练题25)已知函数1x ay x a -=---的反函数的图象关于点(1,3)-成中心对称图形;则实数a 等于(A).(A) 2 (B)3 (C)-2 (D)-42.(训练题25)我们把离心率等于黄金比215-的椭圆称之为“优美椭圆”.设a by a x (12222=+>b >0)为优美椭圆;,F A 分别是它的左焦点和右端点;B 是它的短轴的一个端点;则ABF ∠等于(C).(A)60o(B)75o(C)90o(D)120o3.(训练题25)已知ABC ∆三边的长分别是,,a b c ;复数12,z z 满足1212,,z a z b z z c ==+=;那么复数21z z 一定是(C). (A)是实数 (B)是虚数 (C)不是实数 (D)不是纯虚数4.(训练题25)函数21522223411(1)6()1x x C x x P f x C C C ++-⋅-⋅=+++的最大值是(D). (A)20 (B)10 (C)10- (D) 20-5.(训练题25)以O 为球心;4为半径的球与三条相互平行的直线分别切于,,A B C 三点.已知4=∆BOC S ;16ABC S ∆>;则ABC ∠等于(B).(A)12π (B)512π (C)712π (D)1112π 6.(训练题25)在集合{1,2,3,,10}M =的所有子集中;有这样一族不同的子集;它们两两的交集都不是空集;那么这族子集最多有(B).(A)102个 (B)92个 (C)210个 (D) 29个二、填空题(本题满分54分;每小题9分)1.(训练题25)在直角坐标系中;一直角三角形的两条直角边分别平行于两坐标轴;且两直角边上的中A 1 AC 1B 1BCD线所在直线方程分别是31y x =+和2y mx =+;则实数m 的值是3124或 . 2.(训练题25)设()(0,1)1xx a f x a a a =>≠+;[]m 表示不超过实数m 的最大整数;则函数]21)([]21)([--+-x f x f 的值域是 {1,0}- .3.(训练题25)设,,a b c 是直角三角形的三条边长;c 为斜边长;那么使不等式kabc b a c a c b c b a ≥+++++)()()(222对所有直角三角形都成立的k 的最4.(训练题25)如图;正三棱柱111ABC A B C -的各条棱长都是1;截面1BCD 在棱1AA 上的交点为D ;设这个截面与底面ABC 和三个侧面111111,,ABB A BCC B CAAC 所成的二面角依次为1234,,,αααα;若1234cos cos cos cos αααα+=+5.(训练题25)已知()f x 是定义域在实数集的函数,且(2)[1()]1().(1)2f x f x f x f +-=+=若则(1949)f 2 .6.(训练题25)设1x 是方程12cos 3sin 3-=-a x x 的最大负根;2x 是方程222cos 2sin x x a -=的最小正根;那么;使不等式12x x ≤成立的实数a 的取值范围是1122a a ≤-=或 . 第二试一、(训练题25)(本题满分25分)某眼镜车间接到一任务;需要加工6000个A 型零件和2000个B 型零件;这个车间有214名工人;他们每一个人加工5个A 型零件的时间可加工3个B 型零件.将这些人分成两组同时工作;每组加工同一型号的零件;为了在最短的时间完成;应怎样分组?77二、(训练题25)(本题满分25分)已知一个四边形的各边长都是整数;并且任意一边的长都能整除其余三边之和.求证:这个四边形必有两边相等. 三、(训练题25)(本题满分35分)实数数列1231997,,,,a a a a 满足:1223199619971997a a a a a a -+-++-=.若数列{}n b 满足:12(1,21997)kk a a a b k k++==.求199719963221b b b b b b -++-+- 的最大可能值.四、(训练题25)(本题满分35分)给定两个七棱锥;它们有公共的底面1234567A A A A A A A ;顶点12,P P 在底面的两侧.现将下述线段中的每一条染红;蓝两色之一:12,P P ;底面上的所有的对角线和所有的侧棱.求证:图中心存在一个同色三角形.。
高中数学竞赛模拟试题及参考答案(可编辑)

数学奥林匹克高中训练题第一试一、填空题(每小题8份,共64分)1.函数3()2731xx f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,113a =,且12[]n n n a a a +=-,则20092010a a +=_____. 3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____. 4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____. 5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.在四面体-O ABC 中,若点O 处的三条棱两两垂直,,则在该四面体的表面上与点A 距离为2的点形成的曲线长度之和为_____.7.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2kk e -=,则这n 个椭圆的长轴之和为_____.8.某校进行投篮比赛,共有64人参加.已知每个参赛者每次投篮的命中率均为34,规定只有连续命中两次才能被录取,一旦录取就停止投篮,否则一直投满4次.设ξ表示录取人数,则E ξ=_____.二、解答题(共56分)9.(16分)设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上点F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.(20分)是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.(20分)设函数32()f x ax bx cx d =+++的图像Γ上有两个极值点,P Q ,其中P 为坐标原点, (1)当点Q 的坐标为(1,2)时,求()f x 的解析式;(2)当点Q 在圆22(2)(3)1x y -+-=上时,求曲线Γ的切线斜率的最大值.加试一、(40分)设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、(40分)已知周长为1的i i i A B C ∆(1,2)i =的三条边的长分别为,,i i i a b c .设2224i i i i i i i p a b c a b c =+++(1,2)i =,求证:121||54p p -<.三、(50分)是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、(50分)对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.参 考 答 案 第一试一、1.53-.令3xt =,[0,3]x ∈,则有3()()271f x g t t t ==-+,[1,27]t ∈,而2'()3273(3)(3)g t t t t =-=-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.2.2009. 由已知可得113a =,223a =,343a =.下面用数学归纳法证明:21n n a a +-=,1n n a a n ++=.显然,当1n =时,结论成立.假设当n k =时,结论成立,即是有21k k a a +-=,1k k a a k ++=.则当1n k =+时,3122222[](2[])2()([][])2[1][])1k k k k k k k k k k k k a a a a a a a a a a a a ++++++-=---=---=-+-=(. 121(1)1k k k k a a a a k ++++=++=+. 即,当1n k =+时,结论也成立.综上所述,21n n a a +-=,1n n a a n ++=总成立.故200920102009a a +=.3.84.由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x A B ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.4.4. 由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4. 5.[0,3).由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2cx a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.6.32π. 如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=. 7.122n --.设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k k a c =,2k k k kce a -==,故可得2k k a -=,于是可得121222212n nn a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.8.1894. 由于每位参赛者被录取的概率均为331331133189444444444256p =⨯+⨯⨯+⨯⨯⨯=,故录取人数ξ服从二项分布,即189(64,)256B ξ~,所以189189642564E ξ=⨯=.二、9.由已知得(,0)2p F ,设点(,0)A a ,则12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=.令1122(,),(,)M x y N x y ,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实数根,将该方程化简得:22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-.故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.10.当(0,)2πθ∈时,函数sin y x =与cos y x =的图像关于直线4x π=对称,函数tan y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有sin cos sin cos θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.11.因为32()f x ax bx cx d =+++,所以'2()32f x ax bx c =++.因为图像Γ上有一个极值点P 为坐标原点,所以'(0)0f =,且(0)0f =.故0c d ==.(1)当点Q 的坐标为(1,2)时,由'(1)0f =与(1)2f =可得:320a b +=,且2a b +=.解之,得:4,6a b =-=.此时,32()46f x x x =-+.(2)∵'2()32f x ax bx =+,且由题意点Q 在圆22(2)(3)1x y -+-=上知0a <,∴曲线Γ的切线斜率k 的最大值为'()f x 的最大值2max3b k a=-.设点Q 的坐标为(,)m n ,则有'()0f m =,且()f m n =,∴2320am bm +=,且32am bm n +=.∴32b m a =-,23nb m=. ∴2max 332b n k a m =-=⋅. ∵n m表示过原点且与圆22(2)(3)1x y -+-=有公共点的直线的斜率,而过原点且与圆22(2)(3)1x y -+-=有公共点的直线斜率的最大值为2∴2max33(23322b n k a m =-=⋅≤=+∴曲线Γ的切线斜率的最大值为3加 试一、由西姆松定理知,,P Q R 三点共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有D A C D P R D P ∠=∠=∠.故DAC ∆∽DPQ ∆,同理,可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PR DB DA DP PR BA BC QR DC DQ QR BCDB BA⋅===⋅⋅. 从而PR QR =的充要条件是DA BADC BC=.又由三角形的角平分线的性质定理可得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. 二、由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,于是不难得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=. 2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. 三、由640p q r s +++=,且,,,p q r s 是互不相同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由于23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故3(1)3226402qs p q r s p q s q s -+++=++=++=,即是有(32)(34)385771929q s ++==⨯⨯,于是得3419,32729s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====.四、所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,第二步说明26n =是可以的.首先说明当25n ≤时是不行的.我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.其次说明当26n =时是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
2019年高一数学奥林匹克竞赛决赛试题及答案

2019年**一中高一数学竞赛奥赛班试题(决赛)及答案(时间:5月16日18:40~20:40)满分:120分一、 选择题(本大题共6小题,每小题5分,满分30分)1.已知M=},13|{},,13|{},,3|{Z n n x x P Z n n x x N Z n n x x ∈-==∈+==∈=,且P c N b M a ∈∈∈,,,设c b a d +-=,则∈d ( )A. MB. NC. PD.P M 2.函数()142-+=xx x x f 是( )A 是偶函数但不是奇函数B 是奇函数但不是偶函数C 既是奇函数又是偶函数 C 既不是奇函数也不是偶函数3.已知不等式m 2+(cos 2θ-5)m +4sin 2θ≥0恒成立,则实数m 的取值范围是( )A . 0≤m ≤4B . 1≤m ≤4C . m ≥4或x ≤0D . m ≥1或m ≤04.在△ABC 中,c b a ,,分别是角C B A ,,所对边的边长,若0sin cos 2sin cos =+-+B B A A ,则cba +的值是( ) A.1 B.2 C.3 C.2 5. 设 0ab >>, 那么 21()a b a b +- 的最小值是A. 2B. 3C. 4D. 56.设ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则B CBAC Acos tan sin cos tan sin ++的取值范围是( )A. (0,)+∞B.C.D. )+∞.二、填空题(本大题共10小题,每小题5分,满分50分)7.母线长为3的圆锥中,体积最大的那一个的底面圆的半径为 8.函数|cos sin |2sin )(x x ex x f ++=的最大值与最小值之差等于 。
个个9.设函数,:R R f →满足1)0(=f ,且对任意的R y x ∈,,都有)1(+xy f =2)()()(+--x y f y f x f ,则________________)(=x f 。
数学奥林匹克高中训练题33及答案

数学奥林匹克高中训练题33及答案数学奥林匹克高中训练题(33)第一试一、选择题(本题满分36分,每小题6分)1.(训练题33)1=的解集是(D).(A){1(B)1{10(C)1{π (D)φ 2.(训练题33)一个三角形的三条边恰为221,21,1m m m m +++-,则这个三角形中最大角为(B). (A)3π (B)32π (C)43π (D)56π 3.(训练题33)己知()f x 是R 上的奇函数,()g x 是R 上的偶函数 , 若2()()23f x g x x x -=++, 则()()f x g x +=(A).(A)223x x -+- (B)223x x +- (C)223x x --+ (D)223x x -+4.(训练题33)满足方程组221410580,x y x y ?+--+=?=的数组(,)x y 是(C). (A) 294152180,294155217-+ (B) 294155217,294152180+- (C) 294152180,294155217+- (D) 294155217,294152180-+ 5.(训练题33)tan 1x =是54x π=的(A). (A)必要条件, 但非充分条件. (B)充分条件, 但非必要条件.(C)充分条件, 也是必要条件. (D)非充分条件, 也非必要条件.6.(训练题33)正方形纸片ABCD , 沿对角线AC 对折, 使D 点在面ABC 外, 这时DB 与面ABC 所成的角一定不等于(D).(A)30° (B)45° (C)60° (D)90°二、填空题(本题满分54分,每小题9分)1.(训练题33)若1098762()222361f x x x x x x x x =+--++++, 则1)f = 4 .2.(训练题33)n N ∈,则111112123123n++++=+++++++ 21n n + .3.(训练题33)若2000199819961994(1)(62)(1)(3)(1)(237)(1)(102)i i i i z i i i i ++---=+-+-+ ,则z = 1 . 4.(训练题33)多项式2200122001(22)(33)x x x x +++--展开后合并同类项,所得结果中x 的奇次项系数之和为 -1 .5.(训练题33)正方体1111ABCD A BC D -棱长为1,E 是DC 中点,F 是1BB 中点,则四面体1AD EF 的体积是524 .6.(训练题33)在坐标平面上,由条件1,23y x y x ?≥--??≤-+??所限定的平面区域的面积是16 .三、(训练题33)(本题满分20分)tan5o 是有理数还是无理数?请证明!四、(训练题33)(本题满分20分)公差为4的有限项的等差数列,它的首项的平方与其余所有项之和不超过100.请你回答,这个等差数列最多可以有多少项?(8)五、(训练题33)(本题满分20分),,a b c 均为实数,,,a b b c c a ≠≠≠.证明:222322a b c b c a c a b a b b c c a+-++-++-≤<-+-+-.第二试一、(训练题33)(本题满分50分),O H 分别是锐角ABC ?的外心与垂心,点D 在AB 上,AD AH =,点E 在AC 上,AE AO =.证明:DE AE =.二、(训练题33)(本题满分50分)某工厂的m 位工人共提了n 条(1)n >不同的合理化建议.经统计发现,每两个工人提的合理化建议中都至少有一条相同的建议,但没有两个工人所提的建议完全相同.证明: 12n m -≤.三、(训练题33)(本题满分50分)在圆上有21个点.证明:以这些点为端点组成的所有弧中,不超过120o 的弧不少于100条.。
2020年中国高中数学奥林匹克试题与解答 精品

ORQN MFED CBAP2020年中国数学奥林匹克试题与解答(2020年1月11日)一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N .(1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;(2)若 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形, 所以OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆, 所以ABD ACD ∠=∠,于是22EQO ABD ACD FRO ∠=∠=∠=∠,所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 所以 EM =FM , 同理可得 EN =FN ,所以 EM FN EN FM ⋅=⋅. (2)答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则11,22NS OD EQ OB ==,所以NS ODEQ OB=. ① 又11,22ES OA MQ OC ==,所以ES OAMQ OC=. ② 而AD ∥BC ,所以OA ODOC OB=, ③ 由①,②,③得NS ESEQ MQ=. 因为 2NSE NSA ASE AOD AOE ∠=∠+∠=∠+∠,()(1802)EQM MQO OQE AOE EOB EOB ∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE =∠+︒-∠=∠+∠, 即NSE EQM ∠=∠,所以NSE ∆~EQM ∆,故EN SE OAEM QM OC==(由②). 同理可得, FN OAFM OC =, 所以 EN FNEM FM=, 从而 EM FN EN FM ⋅=⋅.二、求所有的素数对(p ,q ),使得q p pq 55+.解:若pq |2,不妨设2=p ,则q q 55|22+,故255|+qq .由Fermat 小定理, 55|-qq ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.若pq 为奇数且pq |5,不妨设5=p ,则qq 55|55+,故6255|1+-q q .当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,所以313=q .经检验素数对)313,5(合乎要求.若q p ,都不等于2和5,则有1155|--+q p pq ,故SO RQNFEDCBA P)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ②故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k,)12(21-=-s q l, 其中s r l k ,,,为正整数. 若l k ≤,则由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s l k l k l -≡-≡==≡=----------,这与2≠p 矛盾!所以l k >.同理有l k <,矛盾!即此时不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A Λ是一个正2n +1边形,{}1221,,,+=n A A A P Λ.求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设这个凸m 边形为m P P P Λ21,只考虑至少有一个锐角的情况,此时不妨设221π<∠P P P m ,则)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,若凸m 边形中恰有两个内角是锐角,则它们对应的顶点相邻.在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边(n r ≤≤1),这样的),(j i 在r 固定时恰有12+n 对.(1) 若凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,此时这2-m 个顶点的取法数为21--m r C .(2) 若凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,所以,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,此时这2-m 个顶点的取法数为2-m rC .所以,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m n m n C C n .四、给定整数3≥n ,实数n a a a ,,,21Λ满足 1min 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<<Λ21,则对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,所以()∑∑=-+=+=nk kn knk ka a a 13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i k n⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 所以,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k,等号均在n i n i a i ,,2,1,21Λ=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n (n 为奇数),或者)2(32122-n n (n 为偶数). 五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.问:对怎样的n ,存在一种染色方式,使得对于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分别被染为这3种颜色?解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。
【精品】数学奥林匹克竞赛高中训练题集【共36份】

奥林匹克数学竞赛高中训练题集
目 录
数学奥林匹克高中训练题(01) ........................................................................................................................... 1 数学奥林匹克高中训练题(02) ........................................................................................................................... 3 数学奥林匹克高中训练题(03) .............................................................................................. 4 数学奥林匹克高中训练题(04) ........................................................................................................................... 6 数学奥林匹克高中训练题(05) ...................................................................................................
数学奥林匹克高中训练题(30)及答案

数学奥林匹克高中训练题(30)第一试一、选择题(本题满分36分:每小题6分)1.(训练题37)a 是由1998个9组成的1998位数:b 是由1998个8组成的1998位数:则b a ⋅的各位数字之和为(C).(A)19980 (B)19971 (C)17982 (D)179912.(训练题37)已知)2,0(π∈x :则方程03832=++ctgx x ctg 的所有根的和为(C).(A)π3 (B)π4 (C)π5 (D)π63.(训练题37)已知三个正数a 、b 、c 之和为10:如果它们之中没有一个大于其余数的2倍:那么abc 的最小值是(B).(A)32 (B)4131 (C)9727(D)16137 4.(训练题37)已知])32()32[(21n n n x -++=)(N n ∈:n x 为正整数:则19981999x 的个位数字为(B).(A)1 (B)2 (C)6 (D)75.(训练题37)已知ABC ∆中:2lg ,2lg ,2lg C tg B tg A tg 成等差数列:则B ∠的取值范围是(B). (A)60π≤∠<B (B)30π≤∠<B (C)323ππ≤∠≤B (D)ππ≤∠≤B 32 6.(训练题37)一只小球放入一长方形容器内:且与共点的三个面相接触:小球上有一点到这三个面的距离分别是cm 3:cm 3:cm 6:则这只小球的半径(D).(A)只为cm 3 (B)只为cm 6 (C)只为cm 9 (D)以上说法不对二、填空题(本题满分54分:每小题9分)1.(训练题37)已知!1999|1998n :则正整数n 的最大值为 55 .2.(训练题37)已知0O 是正ABC ∆的内切圆:1O 与0O 外切且与ABC ∆的两边相切:…:1n O +与n O 外切且与ABC ∆两边相切)(N n ∈.那么:在ABC ∆内所有这些可能的圆(包括0O :n O )(N n ∈)的面积之和与ABC ∆ 3.(训练题37)P 是边长为2的正ABC ∆所在平面上的一动点:且16222=++PC PB PA :则动点P的轨迹为 以正ABC ∆的中心为圆心:2为半径的圆 .4.(训练题37)已知方程)(88N n n z y x ∈=++有666组正整数解),,(z y x .那么n 的最大值是 304 .5.(训练题37)已知正四面体ABCD 的六条棱的长分别为cm 4:cm 7:cm 20:cm 22:cm 28:xcm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥林匹克高中训练题(30)
第一试
一、选择题(本题满分 36分,每小题6分)
1. (训练题37) a 是由1998个9组成的1998位数,b 是由1998个8组成的1998位数,则a b 的各位 数字之和为(C ).
(A ) 19980
(B )19971
(C ) 17982
(D )17991
2
2. (训练题37)已知x • (0,2二),则方程3ctg x 8ctgx *3=0的所有根的和为(C ).
(A ) 3 -
(B ) 4 二
(C )5二 (D ) 6 ■:
3.(训练题37)已知三个正数a 、b 、c 之和为10,如果它们之中没有一个大于其余数的 2倍,那么abc
的最小值是(B ).
1
7 13 (A) 32
(B)31 -
(C)27 -
(D)7 -
4 9 16
4.(训练题37)已知X n 二丄[(2「3广* (2 -・一3门(n ,N) , X .为正整数,则 心981999的个位数字为 2
(B).
(A) 1
(B) 2
(C) 6
ABC
5.(训练题37)已知 ABC 中,lg tg ,lg tg , Ig tg
成等差数列,则 2 2 2
2 二 (A) 0 :: B
(B) 0 :: B
(C)
B -
6
3 3
3
6.(训练题37)一只小球放入一长方形容器内,且与共点的三个面相接触,小
球上有一点到这三个面的 距离分别是3cm , 3cm , 6cm ,则这只小球的半径(D ).
(A )只为3cm
(B )只为6cm
(C )只为9cm
、填空题(本题满分 54分,每小题9分)
1.(训练题37)已知1998n 11999!,则正整数n 的最大值为 55
2.(训练题37)已知L 0。
是正 ABC
的内切圆,L 01与L 0。
外切且与 ABC 的两边相切,…,L O n d
与L 0.外切且与AABC 两边相切(n ・N ) •那么,在 UABC 内所有这些可能的圆(包括 L 0。
,
11兀
0n (n ,N ))的面积之和与 ABC 的面积之比为
——:
3.(训练题37) P 是边长为2的正 ABC 所在平面上的一动点, 且PA 2 PB 2 PC 2 =16,则动点P 的轨迹为 以正 ABC 的中心为圆心,2为半径的圆 ________________ .
4. (训练题37)已知方程x 8y 8^ n (n ,N )有666组正整数解(x,y,z ).那么n 的最大值是 304 .
5. (训练题37)已知正四面体 ABCD 的六条棱的长分别为 4cm , 7cm , 20cm , 22cm , 28cm ,
(D)7
■ B 的取值范围是(B).
2 二 (D)
B - ~
3
(D )以上说法不对
xcm。
则[x ]的最小值为 8
2 2^
x —x 亠 a —- a ■■■■■ 0 的整数解恰好有两个,求 a 的取
x 2a 1
值范围?( 1 ::: a _ 2)
四、(训练题37)(本题满分20分)当x 为何实数时,y = x 2 -X• ;2(x • 3)2 • 2(x 2 -5)2有最小值, 最大值是多少? x = -2,1; y min = 9
五、(训练题37)(本题满分20分)已知函数f (x )在R •上有定义,且满足下列条件:① f (x )在R
•严格
亠
2
1 3
;②在 R 上恒有 f 2(x)f(f(x) 门二 f 3(1).
x
(1)求函数值f(1) ; (2)
(2)给出一个满足提设条件的函数 f (x ).
第二试
一、 (训练题37)(本题满分50分)已知如图,AD 是锐角 ABC 的角平分线,.BAC = , ADC 二'■,
且 cos : = cos 2 .求证 AD 2 = BD CD .
二、 (训练题37)(本题满分50分)求21999的末四位数.(4688)
三、 (训练题37)(本题满分50分)已知n 是正整数, m 是正奇数,a,b 是正常数,且 a b 1,函数
2n 丄
f (x, n )八 x m ax m -b .若实数 s,t 满足 f (s, n )二 f (t, n 1) = 0 求证:s :: t .
6 .(训练题37)已知对于每一个实数
x 和 y ,函数 f (x)满足 f (x) f ( y) = f (x y) xy .若
f (1) ,则满足f (n ) =1998的正整数对 (m, n)共有
16
个.
三、(训练题37)(本题满分20分)已知不等式组 1
递减,且f (x ) •二 x。