自动实验一——典型环节的MATLAB仿真 报告
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
自动控制原理MATLAB仿真实验报告

实验一MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1 、step ( sys ) ;其中 sys 可以为连续系统,也可为离散系统。
2 、step ( sys ,Tn ) ;表示时间范围0---Tn 。
3 、step ( sys ,T ) ;表示时间范围向量T 指定。
4 、Y step ( sys , T ) ;可详细了解某段时间的输入、输出情况。
2、脉冲响应:f (x)dx 1脉冲函数在数学上的精确定义:f ( x) 0, t 0f ( s) 1其拉氏变换为:Y ( s) G (s) f (s) G ( s)所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式:①impulse ( sys ) ;impulse ( sys , Tn );②impulse ( sys , T );③Y impulse ( sys ,T )(二)分析系统稳定性有以下三种方法:1、利用 pzmap绘制连续系统的零极点图;2、利用 tf2zp 求出系统零极点;3、利用 roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为4 3 23s 2s 5s 4s 6G s ,试判断其稳定性5 4 3 2s 3s 4 s 2s 7s 22.用 Matlab 求出2s 2 s 2G 的极点。
( s)4 3 2s 7 s 3s 5 s 2%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果:p =-1.7680 + 1.2673i-1.7680 - 1.2673i0.4176 + 1.1130i0.4176 - 1.1130i-0.2991Pole-Zero Map 1.510.5sixAyranigamI-0.5-1-1.5-2 -1.5 -1 -0.5 0 0.5Real Axis图 1-1 零极点分布图由计算结果可知,该系统的 2 个极点具有正实部,故系统不稳定。
自动控制原理MATLAB仿真实验指导书

自动控制原理MATLAB 仿真实验实验指导书电气电子信息工程系自动化教研室实验一典型环节的MATLAB仿真一、实验目的1.熟悉 MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、 SIMULINK 的使用MATLAB 中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行 MA TLAB软件,在命令窗口栏“>> ”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1 所示的 SIMULINK仿真环境下。
2.选择 File 菜单下 New 下的 Model 命令,新建一个simulink 仿真环境常规模板。
图 1-1SIMULINK 仿真界面图 1-2系统方框图3.在 simulink 仿真环境下,创建所需要的系统。
以图 1-2 所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。
点击simulink 下的“ Continuous”,再将右边窗口中“ Transfer Fen”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在 simulink 仿真环境“ untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“ Gain”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“ Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
控制工程基础实验——Matlab仿真实验报告

实验一:Mat lab 仿真实验1.1直流电机的阶跃响应给直流电机一个阶跃,直流电机的传递函数如下:画出阶跃响应如下:Step Resp onse零极点分布:POle-ZeroMap0.8 0.60.4-0.4 -0.6 -0.8g m-0.2 -1-10000-9000 -8000 -7000 -6000 ReaWi@ -4000 -3000 -2000 -1000s A 0.2G(s)=50(0.1s 1)(1 10*s 1)分析:直流电机的传递函数方框图如下:所以传递函数可以写成:n (s) 1/C EU a (S )FaS 2 T m S T式中,T mJ^,T a =L分别为电动机的机电时间常数与电磁时间常数。
一般 C M C ER相差不大。
而试验中的传递函数中,二者相差太大,以至于低频时:(低频时)0.1s 1所以对阶跃的响应近似为:x °(t) = 50(1 - e 处)G(s)二 _______ 50(0.1s 1)(1 10,s 1)直流电机传递函数方块图1.2直流电机的速度闭环控制如图1-2,用测速发电机检测直流电机转速,用控制器Gc(s)控制加到电机电枢上 的电压。
图1-2氏流电机速度闭环控1.2.1假设Gc(s)=100,用matlab 画出控制系统开环Bode 图,计算增益剪切频率、相位 裕量、相位剪切频率、增益裕量Bode Diagram5d^MTno0050O■ ■90sa&—80 ^17021、10幅值裕量Gm1 2 310 10 10Freque ncy (rad/sec)=11.1214410510610相位裕量Pm = 48.1370幅值裕量对应的频率值(相位剪切) wcg =3.1797e+003相位裕量对应的频率值(幅值剪切)wcp =784.3434从理论上,若G c(s) =100,那么开环传递函数为:G(s)=100-4(0.1s 1)(0.001s 1)(1 10 s 1)1001 (0.1 )2 J (0.001 )2 1 (1 10A )21 1 1.G(j H 一[tan (0.1 ) tan (0.001 ■) tan (0.0001 ■)]令G(j%)|=1,假设J1+(0.佃J托0.1灼,J+(1汉10鼻国)2屯1 得:c=786.15 继而,.G(j c)二-[tan d(0.1 c) tan'(0.001 c) tan'(0.0001 c)] = 48.06 1.2.2 通过分析bode图,选择合适的K p作为G c(s),使得闭环超调量最小。
实验1典型环节的动态特性仿真分析

■ 5.仿真系统连接完成且仿真所用的参数 均正确设置后,可进行仿真操作,点击 图形仿真操作画面“Simulation”下拉 式菜单“start”选项和“stop”选项可 分别控制仿真过程的启动与停止。仿真 过程结束后,点击示波器可显示出仿真 曲线。
■ 若需要同时显示三条响应曲线时的仿真 框图可采用如下的形式,其中传递函数 的形式根据不同环节进行设置。
实验一 典型环节的动态特 性仿真分析
一、实验目的和要求
■ (1)熟悉MATLAB软件的SIMULINK工 具箱。
■ (2)通过观察典型环节在单位阶跃信 号作用下的响应曲线,熟悉它们的动态 特性。
■ (3)了解各典型环节中参数变化对其 动态特性的影响。
二、实验主要仪器和设备
■ 装有Matlab软件的计算机
五、实验数据记录
■ (1)比例环节 G(S)=
;
■ 所选的几个不同参数值分别为K1= ;K2= ; K3= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应 的有关参数值):
■ (2)积分环节 G(S)=
;
■ 所选的几个不同参数值分别为Ti1= ;Ti2= ; Ti3= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应 的有关参数值):
■ ② 令ξ=0,ωn取不同值:ωn1= ;ωn2= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关 参数值):
■ ③ 令ξ=0.216,ωn取不同值:ωn1= ;ωn2= ;
■ 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关 参数值):
六、实验报告
■ 实验报告应包含如下内容:实验目的和 要求、实验所需主要仪器与设备、实验 内容、实验步骤与方法、原始实验数据 记录和处理(数据曲线、图表等)、实 验结果分析等。报告要求书写认真,图 表规范、完整,数据记录真实,分析透 彻和结论正确。
自动实验一——典型环节的MATLAB仿真报告

自动实验一——典型环节的MATLAB仿真报告引言:典型环节的MATLAB仿真是一种常见的模拟实验方法,通过使用MATLAB软件进行建模和仿真,可以有效地研究和分析各种复杂的物理系统和控制系统。
本报告将介绍一个典型环节的MATLAB仿真实验,包括实验目的、实验原理、实验步骤、实验结果和讨论等内容。
一、实验目的本实验旨在通过MATLAB仿真实验,研究和分析一个典型环节的动态特性,深入了解其响应规律和控制方法,为实际系统的设计和优化提供理论支持。
二、实验原理典型环节是控制系统中的重要组成部分,一般包括惯性环节、惯性耦合和纯滞后等。
在本实验中,我们将重点研究一个惯性环节。
惯性环节是一种常见的动态系统,其特点是系统具有自身的动态惯性,对输入信号的响应具有一定的滞后效应,并且在输入信号发生变化时有一定的惯性。
三、实验步骤1.建立典型环节的数学模型。
根据实际情况,我们可以选择不同的数学模型描述典型环节的动态特性。
在本实验中,我们选择使用一阶惯性环节的传递函数模型进行仿真。
2.编写MATLAB程序进行仿真。
利用MATLAB软件的控制系统工具箱,我们可以方便地建立惯性环节的模型,并利用系统仿真和分析工具进行仿真实验和结果分析。
3.进行仿真实验。
选择合适的输入信号和参数设置,进行仿真实验,并记录仿真结果。
4.分析实验结果。
根据仿真结果,可以分析典型环节的动态响应特性,比较不同输入信号和控制方法对系统响应的影响。
四、实验结果和讨论通过以上步骤,我们成功地完成了典型环节的MATLAB仿真实验,并获得了仿真结果。
通过对仿真结果的分析,我们可以得到以下结论:1.惯性环节的响应规律。
惯性环节的响应具有一定的滞后效应,并且对输入信号的变化具有一定的惯性。
随着输入信号的变化速度增加,惯性环节的响应时间呈指数级减小。
2.稳态误差与控制增益的关系。
控制增益对稳态误差有重要影响,适当调整控制增益可以减小稳态误差。
3.不同输入信号的影响。
自动控制原理MATLAB仿真实验报告

实验一 典型环节的MATLAB 仿真 一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验内容① 比例环节1)(1=s G 和2)(1=s G ;Simulink 图形实现:示波器显示结果:② 惯性环节11)(1+=s s G 和15.01)(2+=s s GSimulink 图形实现:示波器显示结果:③ 积分环节s s G 1)(1Simulink 图形实现:示波器显示结果:④ 微分环节s s G )(1Simulink 图形实现:波器显示结果:⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G1)、G1(s )=s+2Simulink 图形实现:示波器显示结果:2)、G2(s)=s+1 Simulink图形实现:示波器显示结果:⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=1)、G1(1)=1+1/sSimulink 图形实现:示波器显示结果:2)G2(s)=1+1/2s Simulink图形实现:示波器显示结果:三、心得体会通过这次实验我学到了很多,对课本内容加深了理解,熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法,加深对各典型环节响应曲线的理解,这为对课程的学习打下了一定基础。
实验二线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。
2.通过响应曲线观测特征参量ζ和nω对二阶系统性能的影响。
3.熟练掌握系统的稳定性的判断方法。
二、实验内容1.观察函数step( )的调用格式,假设系统的传递函数模型为243237()4641s s G s s s s s ++=++++绘制出系统的阶跃响应曲线?2.对典型二阶系统222()2n n n G s s s ωζωω=++1)分别绘出2(/)n rad s ω=,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标,,,,p r p s ss t t t e σ。
Matlab仿真实验-自动控制原理

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、SIMULINK 的使用MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。
利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:图1-1 SIMULINK 仿真界面 图1-2 系统方框图1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fen ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名 学号
XXXXXX 电子与信息工程学院实验报告册
课程名称:
自动控制原理 实验地点: 实验时间
同组实验人: 实验题目: 典型环节的MATLAB 仿真
一、实验目的:
1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。
3.定性了解各参数变化对典型环节动态特性的影响。
二、实验原理及SIMULINK 图形:
1.比例环节的传递函数为 2
21211()2100,200Z R G s R K R K Z R =-=-=-==
其对应的模拟电路及SIMULINK 图形如图1-3所示。
2.惯性环节的传递函数为
2211211212()100,200,110.21R Z R G s R K R K C uf Z R C s =-=-=-===++
其对应的模拟电路及SIMULINK 图形如图1-4所示。
3.积分环节(I)的传递函数为
uf C K R s s C R Z Z s G 1,1001.011)(111112==-=-=-=
其对应的模拟电路及SIMULINK 图形如图1-5所示。
图1-5 积分环节的模拟电路及及SIMULINK 图形 图1-4 惯性环节的模拟电路及SIMULINK 图形
4.微分环节(D)的传递函数为
uf C K R s s C R Z Z s G 10,100)(111112==-=-=-= uf C C 01.012=<<
其对应的模拟电路及SIMULINK 图形如图1-6所示。
5.比例+微分环节(PD )的传递函数为
)11.0()1()(111212+-=+-=-=s s C R R R Z Z s G uf C C uf C K R R 01.010,10012121=<<=== 其对应的模拟电路及SIMULINK 图形如图1-7所示。
6.比例+积分环节(PI )的传递函数为
)11(1)(11212s R s C R Z Z s G +-=+-=-= uf C K R R 10,100121===
其对应的模拟电路及SIMULINK 图形如图1-8所示。
三、实验设备:
计算机 Matlab 软件
四、试验内容: 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。
① 比例环节1)(1=s G 和2)(1=s G ;
② 惯性环节11)(1+=
s s G 和1
5.01)(2+=s s G ③ 积分环节s
s G 1)(1= ④ 微分环节s s G =)(1
⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G 图1-6 微分环节的模拟电路及及SIMULINK 图形
图1-7 比例+微分环节的模拟电路及SIMULINK 图形
图1-8 比例+积分环节的模拟电路及SIMULINK 图形曲线
⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+=
五、实验步骤:
1.运行MA TLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真环境下。
2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。
3.在simulink 仿真环境下,创建所需要的系统。
以图1-2所示的系统为例,说明基本设计步骤如下:
1)进入线性系统模块库,构建传递函数。
点击simulink 下的“Continuous ”,再将右边窗口中“Transfer Fcn ”的图标用左键拖至新建的“untitled ”窗口。
2)改变模块参数。
在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数。
其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK ,即完成该模块的设置。
3)建立其它传递函数模块。
按照上述方法,在不同的simulink 的模块库中,建立系统所需的传递函数模块。
例:比例环节用“Math ”右边窗口“Gain ”的图标。
4)选取阶跃信号输入函数。
用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。
5)选择输出方式。
用鼠标点击simulink 下的“Sinks ” (输出显示模块库),就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。
(Sinks 接收模块库/信宿和仿真显示仪器库, 信宿是相对于信源而言的)
6)选择反馈形式。
为了形成闭环反馈系统,需选择“Math ” 模块库右边窗口“Sum ”图标,并用鼠标双击,将其设置为需要的反馈形式(改变正负号)。
7)连接各元件,用鼠标划线,构成闭环传递函数。
8)运行并观察响应曲线。
用鼠标单击工具栏中的“”按钮,便能自动运行仿真环境下的系统框图模型。
运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。
六、实验结果及分析:
1、比例环节1)(1=s G 和2)(1=s G 的SIMULINK 图形如下所示:
结果分析:
由以上阶跃响应波形图知,比例环节使得输出量与输入量成正比,既无失真也无延迟,响应速度快,能对输入立即作出响应,因此系统易受外界干扰信号的影响,从而导致系统不稳定。
2、惯性环节11)(1+=s s G 和1
5.01)(2+=s s G 的SIMULINK 图形如下所示:
结果分析:
由以上单位阶跃响应波形图知,惯性环节使得输出波形在开始时以指数曲线上升,上升速度与时间常数(惯性环节中s 的系数)有关。
3、积分环节s
s G 1)(1=的SIMULINK 图形如下所示:4、微分环节s s G =)(1的SIMULINK 图形如下所示:
结果分析:
积分环节的输出量反映了输入量随时间的积累,积分作用随着时间而逐渐增强,其反映速度较比例环节迟缓。
由上图的单位阶跃响应波形图知,微分环节的输出反映了输入信号的变化速度,即微分环节能预示输入信号的变化趋势,但是若输入为一定值,则输出为零。
5、比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G 的SIMULINK 图形如下所示:
结果分析:
由以上单位阶跃响应波形知,比例作用与微分作用一起构成比例微分环节使得系统较单独的比例环节作用稳定,在输入为常值时也有响应的输出,避免了单独微分环节作用时的“零输出”。
输出稳定时的幅值与比例环节的比例系数成正比。
6、比例+积分环节(PI )s s G 11)(1+=和s
s G 211)(2+=的SIMULINK 图形如下所示: 结果分析:
由以上单位阶跃响应波形可知,积分环节和比例环节一起作用使得系统的响应速度变快了,其输出与积分时间常数有关。
七、实验心得与体会
本次实验我们熟悉了MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。
MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包,利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。
在实验中,我们通过SIMULINK 功能模块建立控制系统各个典型环节的模型,进行仿真和调试,得到了各个典型环节在单位阶跃信号作用下的响应波形,通过观察各个典型环节在单位阶跃信号作用下的动态特性,我们定性的了解各参数变化对典型环节动态特性的影响,同时也加深了我们对各典型环节响应曲线的理解。