正方体长方体组合图形的表面积与体积·

合集下载

长方体正方体的表面积公式

长方体正方体的表面积公式

长方体正方体的表面积公式
长方体和正方体的表面积公式分别如下:
长方体表面积公式:
设长方体的长、宽、高分别为a、b、c,则其表面积为:
S = 2ab + 2ac + 2bc
正方体表面积公式:
设正方体的边长为a,则其表面积为:
S = 6a²
其中,S表示表面积,a、b、c表示长方体的三条边长。

对于正方体,S表示表面积,a表示边长。

表面积是指几何体的所有表面积之和。

在这里,长方体和正方体的表面积公式均是由各个面积加和得出的。

对于长方体,有两个平面有相同的面积,所以需要计算两遍,而对于正方体,六个面的面积相等,因此只需要计算一遍,并将其乘以
6即可。

长方体正方体表面积和体积ppt(共21张PPT)

长方体正方体表面积和体积ppt(共21张PPT)
长方体的体积=长×宽×高 V=abh
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析

人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。

2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。

3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。

4.学生能够探索某些实物体积的测量方法。

长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。

长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。

长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。

同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。

容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。

不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。

总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。

同时,学生需要探索某些实物体积的测量方法。

同。

第二个价值是通过操作让学生深入理解长、宽、高的概念。

建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。

练五是应用题,要求学生根据长方体的特征计算面积、体积等。

小学六年级数学小升初珍藏版复习资料第19讲 组合图形的认识、表面积与体积(解析)

小学六年级数学小升初珍藏版复习资料第19讲 组合图形的认识、表面积与体积(解析)

2022-2023学年小升初数学精讲精练专题汇编讲义第19讲 组合图形的认识、表面积与体积小学阶段所学的立体图形主要有长方体、正方体、圆柱体和圆锥体,这四种立体图形的表面积和体积的计算是小升初数学的热点内容,特别是涉及到立体图形的切拼时,立体图形的表面积和体积发生了变化,牢固掌握这些立体图形的特征和有关的计算方法及切拼时表面积和体积的变化规律是解题的关键,本讲将在前面两讲学习的基础上进一步总结整理立体图形切拼时表面积和体积的变化规律。

知识点一:立体图形的表面积和体积计算常用公式: 立体图形 表面积体积 长方体S=2)(bh ah ab ++a :长 b:宽 h :高 S :表面积 V abh = V Sh = 正方体S=26a a :棱长 S :表面积 3V a = V Sh = 圆柱222π2πS rh r =+=+圆柱侧面积个底面积 2πV r h =圆柱圆锥 22ππ360n S l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体 知识点二:解决立体图形的表面积和体积问题时的注意事项(1)要充分利用正方体六个面的面积都相等,每个面都是正方形的特点.(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍;反之,把两个立体图形拼合到一起,减少的表面积等于重合部分面积的两倍。

(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来;若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。

2.解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积;把物体从水中取出,水面下降部分的体积等干物体的体积,这是物体全部浸没在水中的情况。

如果物h r hr 知识精讲体不全部浸在水中,那么排开水的体积就等于浸在水中的那部分物体的体积. (2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变.(3)求一些不规则物体体积时,可以通过变形的方法求体积。

长方体和正方体(三)表面积与体积二

长方体和正方体(三)表面积与体积二

表面积和体积(二)【知识点1】:长方体正方体的切割与拼接例1:一个长方体底面是一个边长为20厘米的正方形,高为40厘米,如果把它的高增加5厘米,它的表面积会增加多少平方厘米?练习1:有一个长方体,如果把高增加3cm后,就变成一个正方体,表面积就会增加96cm2。

求这个长方体的体积。

练习2:把一个长方体和一个正方体拼成一个新的长方体,这个新长方体的表面积比原来的长方体的表面积增加了80平方厘米,求正方体的表面积。

练习3:把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。

正方体的表面积比原来长方体的表面积减少320平方厘米。

求原来长方体的体积。

例2:把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了多少平方厘米。

练习1:一个长方体正好可以切成5个同样大小的正方体,切成的5个正方体的表面积比原来长方体表面积多了200平方厘米,求原来长方体的表面积?练习2:把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。

原来正方体的表面积是多少?练习3:用两个棱长是3厘米的正方体,拼成一个长方体,它的表面积比两个正方体的表面积少多少平方厘米,这个长方体的表面积是多少平方厘米。

例3:把棱长12厘米的正方体切割成棱长是3厘米的小正方体,可以切割成多少块?练习1:一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的小正方体,表面积增加了多少平方厘米?练习2:有一个棱长是1米的正方体木块,如果把它锯成相等的8个小正方体,表面积增加多少平方米?练习3:如下图,一个正方体被切成12个大大小小的长方体,这些长方体表面积的总和是350平方厘米,求原来正方体的表面积和体积。

例4:把一个长为10分米,宽为6分米,高为8分米的长方形,切割成相等的两个长方体,有几种切法,那种增加的表面积最多?哪种增加的表面积最少?练习1:把两个相同的长方体拼成一个大的长方体,已知小长方体的长是8cm,宽是6cm,高是3cm。

长方体和正方体的表面积和体积ppt课件

长方体和正方体的表面积和体积ppt课件

左、右两个面的长是( )、宽是( )。
前、后两个面的长是( )、宽是( )。
说一说
正方体有几个 面?
这几个面之间 有什么关系?
你知道吗?
8厘米
4厘米
长方体有几个面?
这几个面之间有什么 关系? 5厘米 它们可以分成几组?
如果告诉我们这个长方体的长、宽、高, 你能想办法算出做这样的一个长方体纸盒 至少要用多少平方厘米硬纸板吗?
对称
旋转
平移
因数与 倍数
图形的 变换
长方体和 正方体
空间与图形
体积和 容积
分数基 本性质
综合
运用

解决

年 级 数
问题







本册教学总目标及要求:
1、理解分数的意义和基本性质,会比较分数的大小,会把假分 数化成带分数或整数,会进整数、小数的互化,能够比较熟练地 进行约分和通分。
2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、 3、5的倍数的特征;会求100以内的两个数的最大工公因数和最 小公倍数。
一起来学习……
重点、难点
长方体正方体的特征, 长方体及正方体表面积和体积计算公式 表面积和体积公式的应用
你还记得吗?
3cm
5cm
4cm
(1)这个长方体的长、宽、高各是
多少?
(2)哪些面的面积相等?
你还记得吗?
3cm
5cm
4cm
(3)这个长方体上、下两个面的长是 ( )、宽是( )。
3、理解分数加、减法的意义,掌握分数加、减法,会解决有关 分数加、减法简单实际问题。
4、知道体积和容积的意义及度量单位,会进行单位之间的换算, 感受有关体积和容积之间的实际意义。

长方体和正方体--表面积体积

长方体和正方体--表面积体积

知识要点对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如如图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.c b aHGFED CBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.第三讲:长方体和正方体(一)不规则立体图形1.右图中共有多少个面?多少条棱?后面前面右面左面下面上面2. 如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?立体图形的体积计算常用公式: 立体图形 示例 体积公式 相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a = V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法3.如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?4.右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)5.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?6.(《小学生数学报》邀请赛)从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)7.从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是平方厘米.866678.一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?9.右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?(二)重叠正方体10.边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?11.如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木12.用6块右图所示(单位:cm)的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?12313.如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.14.(2008年“希望杯”五年级第2试)如图,棱长分别为1厘米、2厘米、3厘米、5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是_______平方厘米.15.边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?16.把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.,求这个立体图形的表面积.(三)三视图17.现有一个棱长为1厘米的正方体,一个长宽为1厘米高为2厘米的长方体,三个长宽为1厘米高为3厘米的长方体.下列图形是把这五个图形合并成某一立体图形时,从上面、前面、侧面所看到的图形.试利用下面三个图形把合并成的立体图形(如例)的样子画出来,并求出其表面积.例:侧前上18.如下图,用若干块单位正方体积木堆成一个立体,小明正确地画出了这个立体的正视图、俯视图和侧视图,问:所堆的立体的体积至少是多少?正视图俯视图侧视图19.(第十二届全国“华罗庚金杯”少年数学邀请赛)用一些棱长是1的小正方体码放成一个立体图形,从上向下看这个立体图形,如下图a,从正面看这个立体图形,如下图b,则这个立体图形的表面积最多是________.a b20. (2008年清华附中试题)选项中有4个立方体,其中是用左边图形折成的是( ).DCBA(四)体积求解21.(第四届《小数报》数学竞赛决赛)一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?22.(第六届“华杯赛”决赛口试)某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?高宽长23.(第十届“迎春杯”)一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.24.(第十五届“迎春杯”决赛)把一根长2.4米的长方体木料锯成5段(如图),表面积比原来增加了96平方厘米.这根木料原来的体积是_____立方厘米.2.4米25.(第五届《小数报》数学竞赛决赛)一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面之和为600平方分米.求这个大长方体的体积.26.有三个大小一样的正方体,将接触的面用胶粘接在一起成图示的形状,表面积比原来减少了16平方厘米.求所成形体的体积.27.把11块相同的长方体的砖拼成如图所示的大长方体,已知每块砖的体积是3288cm,则大长方体的表面积为多少?(五)水中投石28.有大、中、小三个正方形水池,它们的内边长分别是6米、3米、2米.把两堆碎石分别沉没在中、小水池的水里,两个水池的水面分别升高了6厘米和4厘米.如果将这两堆碎石都沉没在大水池的水里,大水池的水面升高了多少厘米?29.一个正方体容器,容器内部边长为24厘米,存有若干水,水深17.2厘米,现将一些碎铁块放入容器中,铁块沉入水底,水面上升2.5厘米,如果将这些铁块铸成一个和容器等高的实心圆柱,重新放入池中,则水面升高几厘米?30.(2009年迎春杯初赛六年级)如图,有一个棱长为10厘米的正方体铁块,现已在每两个对面的中央钻一个边长为4厘米的正方形孔(边平行于正方体的棱),且穿透.另有一长方体容器,从内部量,长、宽、高分别为15厘米、12厘米、9厘米,内部有水,水深3厘米.若将正方体铁块平放入长方体容器中,则铁块在水下部分的体积为立方厘米.(六)其他31.把一个长方体形状的木料分割成3小块,使这3小块的体积相等.已知这长方体的长为15厘米,宽为12厘米,高为9厘米.分割时要求只能锯两次,如图1就是一种分割线的图.除这种分割的方法外,还可有其他不同的分割方法,请把分割线分别画在图2的各图中.图1图232. (第三届“华杯赛”复赛)如图从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长2厘米的正方形,然后,沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?139233. 小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如下图左,从上面看如下图右.那么这个几何体至少用了 块木块.一课一练1. 右图中共有多少个面?多少条棱?2. 在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?3.如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?4.(2008年走美六年级初赛)一个表面积为256cm的长方体如图切成27个小长方体,这27个小长方体表面积的和是2cm.5.用10块长5厘米,宽3厘米,高7厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?6.要把6件同样的长17、宽7、高3的长方体物品拼装成一件大的长方体,表面积最小是多少?7.用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?8. (第六届“迎春杯”决赛)一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米.9. (第七届“祖冲之杯”数学邀请赛)现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?10.右图是由22个小正方体组成的立体图形,其中共有多少个大大小小的正方体?由两个小正方体组成的长方体有多少个?。

长方体与正方体的表面积与体积

长方体与正方体的表面积与体积

长方体与正方体的表面积与体积内容大纲1.知识梳理2.经典精讲3.综合练习4.拓展提高5.巩固练习知识梳理1、长方体和正方体的认识(1)、长方体的特征:有6个面,都是长方形,(有时相对的两个面是正方形),相对的面形状相同,面积(大小)相等;有12条棱,相对的棱长度相等;8个顶点。

(2)、正方体的特征:有6个面,都是正方形,6个面的面积相等;12条棱的长度相等;8个顶点。

说明:正方体是特殊的长方体(3)、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和= 棱长×122、长方体和正方体的表面积(1)、长方体的表面积计算公式:S=2(ab+ah+bh),其中S为长方体的表面积,a为长,b 为宽,h为高。

(2)正方体的表面积计算公式:S=6×a×a=6a2,其中S为正方体的表面积,a为棱长。

3、长方体和正方体的体积或容积(1)体积:物体所占空间的大小,是物体的体积。

容积:容器所能容纳物体的体积,是容器的容积。

(2)长方体体积的计算公式:长方体体积=长×宽×高=底面积×高;用字母表示是:V=abh(3)正方体体积的计算公式:正方体体积=棱长×棱长×棱长;用字母表示是:V=3 a注意:长方体与正方体表面积与体积的变化关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。

所以,对于同一个物体,体积大于容积。

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

如长、宽、高各扩大2倍,体积就会扩大到原来的8倍。

4、体积与容积单位换算常见的体积单位有:3cm ;3dm ;3m 等。

常见的容积单位有:L 、mL 等体积单位的换算有:3311000m dm =;3311000dm cm =;相邻体积单位间的进率是1000.容积单位的换算有:11000L mL =体积与容积间的单位换算:311000m L =;311dm L =;311000dm mL =;311cm mL =转换依据:(1)高级单位化为低级单位:乘以进率; (2)低级单位化为高级单位:除以进率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长方体表面积体积
.
1.一个零件的形状大小如图。它的体积是多 少立方厘米?它的表面积是多少平方厘米? (单位:厘米)
6-2=4
.
2.有一个长方体形状的零件,中间挖去一个 正方体的孔(如下图)。你能算出它的体积 和表面积吗?(单位:厘米)
原长方体的体积ห้องสมุดไป่ตู้ 8×5×6=240(立方厘米), 小正方体的体积为 2×2×2=8(立方厘米), 这个零件的体积是 240-8=232(立方厘米) 长方体完整的表面积是(8×5+8×6+5×6)×2=236(cm²)
.
前面和上面的表面积=长x宽+长x高 =长x(宽+高)
209=长x(宽+高)
=11x19 =11x(17+2)
.
7、有一块边长5厘米的正方体铁块,浸没在一 个长方体容器里的水中。取出后,水面下降 0.5厘米。长方体容器的底面积是多少平方厘 米?
0.5
铁块体积=水面下降体积 长方体容器底面积=水面下降体积÷水面下降高
.
这个零件的表面积是:236+(2×2)×4=252(平方厘米)。
3.一个正方体和一个长方体拼成一个新的长 方体,拼成的长方体的表面积比原来的长方 体的表面积增加了50平方厘米。原正方体的 表面积是多少平方厘米?
增加了4个正方形的面,一个正方形的面积 50÷4=12.5(平方厘米 ) 原正方体的表面积 12.5×6=75(平方厘米)
.
8.有一块棱长为6厘米的正方体木块,如果把它 锯成棱长为2厘米的正方体若干块,表面积增 加多少厘米?
.
9.一个正方体的表面涂满了红色,然后如下图 切开,切开的小正方体中: (1)三个面涂有红色的有几个? (2)两个面涂有红色的有几个? (3)一个面涂有红色的有几个? (4)六个面都没有涂色的有几个?
.
4.一个长方体,前面和上面的表面积之和是209
平方厘米,这个长方体的长、宽、高以厘米为单
位的数都是质数。这个长方体的体积与表面积各
是多少?
长 宽


100以內的质数有: 2、3、5、7、11、
13、19、17、23、29 、37、31、41、47、 43、53、59、61、71 、67、73、83、89、 79、97
相关文档
最新文档