不定方程
小学奥数知识点:不定方程

小学奥数知识点:不定方程一次不定方程:含有两个未知数的一个方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程;常规方法:观察法、试验法、枚举法;多元不定方程:含有三个未知数的方程叫三元一次方程,它的解也不唯一;多元不定方程解法:根据已知条件确定一个未知数的值,或者消去一个未知数,这样就把三元一次方程变成二元一次不定方程,按照二元一次不定方程解即可;涉及知识点:列方程、数的整除、大小比较;解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案;技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数;小学奥数经典题1.两辆汽车从A,B两地同时出发相向而行,客车行完全程要8小时,货车行完全程要10小时,两车相遇后又各自往前驶去,已知出发5小时后两车相距50千米,问A,B两地相距多少千米?2.有一个箱子里放着一些黄色乒乓球,为了估计球的数量,我们把20个白色乒乓球放入箱子中,充分搅拌混合后,任意摸出30个球,发现其中有3个白球.你估计箱子里原来大约有多少个黄色乒乓球?3.工程队挖一条水渠,第一天挖了全长的多28米,第二天挖了全长的少20米,这时剩下22米没挖完.这条水渠全长多少米?4.如图,一个边长为40厘米的正方形ABCD的场地,蚂蚁和蜗牛同时从A 点出发,蚂蚁以5厘米/分钟的速度沿线路A→B→C→D行走,蜗牛以2厘米/分钟的速度沿线路A→D行走.出发18分钟时,蚂蚁走到E点,蜗牛走到F点,求三角形AEF的面积是多少平方厘米?5.运来一批水果.第一天卖出总数的15%,第二天卖出160千克,剩下的与卖出的重量的比是1:3.这批水果共有多少千克?。
不定方程

不定未知数的个数多于方程的个数的方程叫做不定方程。
不定方程是数论中一个十分重要的课题。
在通常情况下,只讨论不定方程的整数解或者正整数解。
不定方程的问题可分为三个层次:是否有解?有多少解,是有限解,还是无限解?求出全部解。
一、 基本理论1. 不定方程Z a c c x a x a x a i n n ∈=+++,(2211 且i a 都不为0)有解c a a a n ),,(21 ⇔。
2. 不定方程有整数解⇒(1)它必有实数解;(2)+∈∀Z m ,方程modm 后有解。
3. 不定方程222z y x =+满足(x,y )=1,x>0,y>0,z>0,2∣x ,其全部整数解可表示为:x=2ab ,2222,b a z b a y +=-=其中a 、b 满足a>b>0,a 与b 奇偶性不同,(a,b)=1。
4. 中国剩余定理(孙子定理):设正整数n m m m ,,21两两互质,则Z a a a n ∈∀ ,,21,同余方程组:)(mod 11m a x ≡)(mod 22m a x ≡ 〈1〉)(mod n n m a x ≡一定有解,且其全部解可写成:n n n n n n m m lm m m b a m m m b a m m m b a x 211131223211++++=-其中i b 满足n i m b m m m m i i in ,2,1),(mod 121=≡⋅,l 为任意整数。
注:(1)当n m m m ,,21不两两互质时,当且仅当(j i m m ,)∣(j i a a -)时方程组〈1〉有解。
(2)常常将i m 分解为质因数的积,化方程组〈1〉为i i p αmod 的同余方程组,然后再处理。
二、 常用方法1. 代数式的恒等变形,特别是代数式的因式分解;2. 估计(解的范围、解的奇偶性);3. 同余(包括奇偶分析);4. 整除;5. 构造6. 无穷递降7. 用中国剩余定理等不定方程理论;8. 其他。
不定方程

不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。
不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。
不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
在本节我们来看一看不定方程的基础性的题目。
基础知识1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如(不同时为零)的方程称为二元一次不定方程。
定理1.方程有解的充要是;定理2.若,且为的一个解,则方程的一切解都可以表示成为任意整数)。
定理3.元一次不定方程,()有解的充要条件是.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
不定方程定义

不定方程定义不定方程定义及相关定义1. 不定方程定义不定方程是指含有未知数的方程,其解可能是整数或有理数,并且方程的系数是已知的。
不定方程的一般形式为:A1x1 + A2x2 + … + Anxn = B其中,A1, A2, …, An 是方程中的系数,x1, x2, …, xn 是未知数,B 是已知的常数。
2. 二元一次不定方程二元一次不定方程是指只含有两个未知数的一次方程。
一般形式为:A1x + A2y = B其中,A1、A2 和 B 是已知的常数。
解二元一次不定方程可以用到数论的知识,如贝祖等式、扩展欧几里得算法等。
3. 举例及理由例1:解二元一次不定方程 3x + 5y = 7。
•理由:这是一个经典的二元一次不定方程,解之可以帮助我们理解贝祖等式的应用。
例2:解二元一次不定方程 2x + 4y = 10。
•理由:这是一个特殊的二元一次不定方程,通过求解该方程,我们可以讨论贝祖等式的无解情况。
例3:解二元一次不定方程 4x + 3y = 2。
•理由:这是另一个特殊的二元一次不定方程,解之可以为我们提供扩展欧几里得算法的实际应用。
4. 相关书籍推荐•“Elementary Number Theory” by David M.Burton: 这本书是数论的经典教材,涵盖了不定方程以及其他数论概念的详细内容。
适合对数论感兴趣的读者,提供了丰富的例题和练习题。
•“An Introduction to the Theory of Numbers”by Ivan Niven, Herbert S. Zuckerman, and Hugh L.Montgomery: 这是另一本优秀的数论教材,对不定方程及其解法进行了深入讲解。
书中提供了大量的例题和习题,适合进一步深入学习不定方程的读者。
以上是关于不定方程定义及相关定义的简要介绍和举例说明。
对于想要深入了解和研究不定方程的读者,推荐阅读上述书籍以获取更详细的知识。
初中数学自招系列(6):不定方程

自主招生:不定方程【知识梳理】形如x +y =4,x +y +z =3,yx 11+=1的方程叫做不定方程,其中前两个方程又叫做一次不定方程。
这些方程的解是不确定的,我们通常研究(1)不定方程是否有解?(2)不定方程有多少个解?(3)求不定方程的整数解或正整数解。
对于二元一次不定方程问题,我们有以下两个定理:定理1.二元一次不定方程ax +by =c ,(1)若其中(a ,b )c ,则原方程无整数解;(2)若(a ,b )=1,则原方程有整数解;(3)若(a ,b )|c ,则可以在方程两边同时除以(a ,b ),从而使原方程的一次项系数互质,从而转化为(2)的情形。
如:方程2x +4y =5没有整数解;2x +3y =5有整数解。
定理2.若不定方程ax +by =1有整数解⎩⎨⎧==00y y x x ,则方程ax +by =c 有整数解⎩⎨⎧==00cy y cx x ,此解称为特解。
方程方程ax +by =c 的所有解(即通解)为⎩⎨⎧−=+=ak cy y bk cx x 00(k 为整数)。
对于非二元一次不定方程问题,常用求解方法有:(1)恒等变形.通过因式分解、配方、换元等方法将方程变形,使之易于求解;(2)构造法.先利用恒等式构造一些特解,再进一步证明不定方程有无穷多组解;(3)估算法.先缩小方程中某些未知数的取值范围,然后再求解。
【例题精讲】题型一:二元一次不定方程例1.求方程4x +5y =21的整数解。
例2.求方程63x +8y =-23的整数解。
题型二:多元一次不定方程(组)的整数解例3.求方程12x +8y +36z =100的所有整数解。
题型三:其他不定方程例4.求不定方程2111=+y x 的正整数解。
例5.求方程y 2+3x 2y 2=30x 2+517的所有正整数解。
例6.求方程x +y =x 2-xy +y 2的全部整数解。
例7.求方程x 6+3x 3+1=y 4的整数解。
初等数论第二章:不定方程

( y0 y ) 是整数, 令这个整数为t1 , 代入上式,得 a x x0 bt1 , 即x x0 bt1 . 同时由 ( y0 y ) t1 , 得y y0 at1 . a
1、辗转相除法 对于ax+by=c,先利用辗转相除法得到 ax+by=1的一个解;再两边乘于c,得到ax+by=c的一个解; 最后运用定理(2.2)写出一切整数解.
§2.2 解二元一次不定方程
• 对于二元一次不定方程(2.1)整数解的研 究,最理想的结果是能像一元二次方程那 样,找出表示方程(2.1)所有整数解的公式. • 这个公式是能够找到的,但它是建立在方 程(2.1)的一个整数解(即所谓的特解)的 基础上的.因些如何找到方程(2.1)的一个 整数解就成为求出它一切整数解的关键.
)
(6)的解为:y 2 33t , x y x 3 37t (t 0, 1, 2,
)
从而原方程的解为:x 3 37t , y 2 x y 8 107t (t 0, 1, 2, )
或先求出原方程的一个特解,再给出一切整数解。
在(2)式两端同乘以c1得 asc1 btc1 (a, b)c1 c 令x0 =sc1 , y0 =tc1,即得 ax0 by0 c, 故(2. 1)式有一组整数解x0,y0 .
注:定理的证明过程实际给出求解方程(2.1)的方法:
不定方程—解答

不定⽅程—解答不定⽅程不定⽅程是指未知数的个数多于⽅程的个数,且未知数的取值范围是受某些限制(如整数、正整数或有理数)的⽅程.不定⽅程是数论的⼀个重要课题,也是⼀个⾮常困难和复杂的课题.1.⼏类不定⽅程(1) ⼀次不定⽅程在不定⽅程和不定⽅程组中,最简单的不定⽅程是整系数⽅程)0,0(,0≠>=++b a c by ax ①通常称之为⼆元⼀次不定⽅程。
⼀次不定⽅程解的情况有如下定理。
定理1.⼆元⼀次不定⽅程ax by c +=(,,a b c 为整数)有整数解的充分必要条件是c b a |),(。
定理2.若(,)1a b =,且00,x y 为①之⼀解,则⽅程①全部解为0x x bt =+, 0y y at =-,其中t 为整数。
(2) 佩尔)(pell ⽅程形如122=-dy x (*d N ∈,d 不是完全平⽅数)的⽅程称为佩尔⽅程。
能够证明它⼀定有⽆穷多组正整数解;⼜设),(11y x 为该⽅程的正整数解),(y x 中使d y x +最⼩的解,则其全部正整数解如下:111111111[()()]2)()]n n n n n n x x x y x x ?=++=+-??(1,2,3,)n =。
①只要有解),(11y x ,就可以由通解公式给出⽅程的⽆穷多组解。
②n n y x ,满⾜的关系:1(nn x y x y +=+;11211222n n n n n n x x x x y x y y ----=-??=-? 。
(3) 勾股⽅程222z y x =+这⾥只讨论勾股⽅程的正整数解,只需讨论满⾜1),(=y x 的解,此时易知z y x ,,实际上两两互素。
这种z y x ,,两两互素的正整数解),,(z y x 称为⽅程的本原解,也称为本原的勾股数。
容易看出y x ,⼀奇⼀偶,⽆妨设y 为偶数,下⾯的结果勾股⽅程的全部本原解通解公式。
定理3.⽅程222z y x =+满⾜1),(=y x ,2|y 的全部正整数解),,(z y x 可表为2222,2,b a z ab y b a x +==-=,其中,b a ,是满⾜b a b a ,,0>>⼀奇⼀偶,且1),(=b a 的任意整数。
不定方程求解方法

不定方程求解方法一、不定方程是啥。
1.1 不定方程呢,就是方程的个数比未知数的个数少的方程。
比如说,x + y = 5,这里就两个未知数x和y,但是就一个方程。
这就像你要去猜两个东西是啥,但是只给了你一个线索,有点像雾里看花,摸不着头脑。
1.2 这种方程在数学里可是很常见的。
它的解不是唯一确定的,往往有好多组解。
这就好比一个大宝藏,有好多条路可以通向它。
二、求解不定方程的一些常用方法。
2.1 枚举法。
这就像一个一个去试。
比如说对于简单的不定方程2x + 3y = 10,我们可以从x = 0开始试。
当x = 0的时候,y就不是整数了;当x = 1的时候,y也不是整数;当x = 2的时候,y = 2。
就这么一个一个试,虽然有点笨,但是对于一些简单的不定方程还是很有效的。
就像我们找东西,有时候没有捷径,那就只能一个角落一个角落地找,这就叫笨鸟先飞嘛。
2.2 利用数的性质。
比如说奇偶性。
如果方程是x + y = 11,我们知道两个数相加是奇数,那么这两个数必定是一奇一偶。
这就像给我们开了一个小窗户,能看到一点里面的情况。
再比如说倍数关系,如果方程是3x + 6y = 18,我们可以先把方程化简成x + 2y = 6,因为6y肯定是3的倍数,18也是3的倍数,所以x也得是3的倍数。
这就像是在一团乱麻里找到了一个线头,顺着这个线头就能把麻理清楚。
2.3 换元法。
就拿方程x²+ y²+ 2x 4y = 20来说,我们可以设u = x + 1,v = y 2,这样方程就变成了u²+ v²= 25。
这就像给方程换了一身衣服,让它看起来更顺眼,更容易解决。
这就好比我们整理房间,把东西重新摆放一下,看起来就整齐多了。
三、实际应用中的不定方程求解。
3.1 在生活里有很多地方会用到不定方程求解。
比如说你去买水果,苹果一个3元,香蕉一根2元,你带了10元钱,设买苹果x个,买香蕉y根,那方程就是3x + 2y = 10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。
不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。
不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
在本节我们来看一看不定方程的基础性的题目。
基础知识1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如c by ax =+(,,,,Z c b a ∈b a ,不同时为零)的方程称为二元一次不定方程。
定理1.方程c by ax =+有解的充要是c b a |),(;定理2.若1),(=b a ,且00,y x 为c by ax =+的一个解,则方程的一切解都可以表示成⎪⎪⎩⎪⎪⎨⎧-=+=t b a a y y t b a b x x ),(),(00t (为任意整数)。
定理3.n 元一次不定方程c x a x a x a n n =+++ 2211,(N c a a a n ∈,,,,21 )有解的充要条件是c a a a n |),,,(21 .方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求c by ax =+一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解n 元一次不定方程c x a x a x a n n =+++ 2211时,可先顺次求出332221),(,),(d a d d a a ==, ……,n n n d a d =-),(1.若n d c ,则方程无解;若n d |c ,则方程有解,作方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+--------c x a t d t d x a t d t d x a t d t d x a x a n n n n n n n n n n 11111122333322222211 求出最后一个方程的一切解,然后把1-n t 的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
3.m 个n 元一次不定方程组成的方程组,其中n m <,可以消去1-m 个未知数,从而消去了1-m 个不定方程,将方程组转化为一个1+-m n 元的一次不定方程。
(二)高次不定方程(组)及其解法1.因式分解法:对方程的一边进行因式分解,另一边作质因式分解,然后对比两边,转而求解若干个方程组;2.同余法:如果不定方程0),,(1=n x x F 有整数解,则对于任意N m ∈,其整数解),,(1n x x 满足)(mod 0),,(1m x x F n ≡ ,利用这一条件,同余可以作为探究不定方程整数解的一块试金石;3.不等式估计法:利用不等式工具确定不定方程中某些字母的范围,再分别求解;4.无限递降法:若关于正整数n 的命题)(n P 对某些正整数成立,设0n 是使)(n P 成立的最小正整数,可以推出:存在*1N n ∈,使得01n n <成立,适合证明不定方程无正整数解。
方法与技巧:1.因式分解法是不定方程中最基本的方法,其理论基础是整数的唯一分解定理,分解法作为解题的一种手段,没有因定的程序可循,应具体的例子中才能有深刻地体会;2.同余法主要用于证明方程无解或导出有解的必要条件,为进一步求解或求证作准备。
同余的关键是选择适当的模,它需要经过多次尝试;3.不等式估计法主要针对方程有整数解,则必然有实数解,当方程的实数解为一个有界集,则着眼于一个有限范围内的整数解至多有有限个,逐一检验,求出全部解;若方程的实数解是无界的,则着眼于整数,利用整数的各种性质产生适用的不等式;4.无限递降法论证的核心是设法构造出方程的新解,使得它比已选择的解“严格地小”,由此产生矛盾。
(三)特殊的不定方程1.利用分解法求不定方程)0(≠=+abc cxy by ax 整数解的基本思路:将)0(≠=+abc cxy by ax 转化为ab b cy a x =--))((后,若ab 可分解为Z b a b a ab i i ∈=== 11,则解的一般形式为⎪⎩⎪⎨⎧+=+=c b b y c a a x ii ,再取舍得其整数解; 2.定义2:形如222z y x =+的方程叫做勾股数方程,这里z y x ,,为正整数。
对于方程222z y x =+,如果d y x =),(,则22|z d ,从而只需讨论1),(=y x 的情形,此时易知z y x ,,两两互素,这种两两互素的正整数组叫方程的本原解。
定理3.勾股数方程222z y x =+满足条件y |2的一切解可表示为:2222,2,b a z ab y b a x +==-=,其中1),(,0=>>b a b a 且b a ,为一奇一偶。
推论:勾股数方程222z y x =+的全部正整数解(y x ,的顺序不加区别)可表示为:d b a z abd y d b a x )(,2,)(2222+==-=其中0>>b a 是互质的奇偶性不同的一对正整数,d 是一个整数。
勾股数不定方程222z y x =+的整数解的问题主要依据定理来解决。
3.定义3.方程*22,,(4,1N d Z y x dy x ∈∈±±=-且不是平方数)是c dy x =-22的一种特殊情况,称为沛尔(Pell)方程。
这种二元二次方程比较复杂,它们本质上归结为双曲线方程c dy x =-22的研究,其中d c ,都是整数,0>d 且非平方数,而0≠c 。
它主要用于证明问题有无数多个整数解。
对于具体的d 可用尝试法求出一组成正整数解。
如果上述pell 方程有正整数解),(y x ,则称使y d x +的最小的正整数解),(11y x 为它的最小解。
定理4.Pell 方程*22,,(1N d Z y x dy x ∈∈=-且不是平方数)必有正整数解),(y x ,且若设它的最小解为),(11y x ,则它的全部解可以表示成: [][])()()(21)()(21*11111111N n y d x y d x d y y d x y d x x n n n n n n ∈⎪⎪⎩⎪⎪⎨⎧--+=-++=. 上面的公式也可以写成以下几种形式:(1)n n n d y x d y x )(11+=+;(2)⎩⎨⎧+=+=++n n n n n n x y y x y y dy x x x 111111;(3)⎩⎨⎧-=-=-+-+11111122n n n n n n y y x y y x x x . 定理5.Pell 方程*22,,(1N d Z y x dy x ∈∈-=-且不是平方数)要么无正整数解,要么有无穷多组正整数解),(y x ,且在后一种情况下,设它的最小解为),(11y x ,则它的全部解可以表示为[][])()()(21)()(21*1211121112111211N n y d x y d x d y y d x y d x x n n n n n n ∈⎪⎪⎩⎪⎪⎨⎧--+=-++=---- 定理6. (费尔马(Fermat )大定理)方程3(≥=+n z y x n n n 为整数)无正整数解。
费尔马(Fermat )大定理的证明一直以来是数学界的难题,但是在1994年6月,美国普林斯顿大学的数学教授A.Wiles 完全解决了这一难题。
至此,这一困扰了人们四百多年的数学难题终于露出了庐山真面目,脱去了其神秘面纱。
典例分析例1.求不定方程2510737=+y x 的整数解。
解:先求110737=+y x 的一组特解,为此对37,107运用辗转相除法:33372107+⨯=,433137+⨯=, 18433+⨯=将上述过程回填,得:378)372107(9378339)3337(93749374843748331⨯-⨯-⨯=⨯-⨯=-⨯-=⨯-=⨯--=⨯-=9107)26(3737261079⨯+-⨯=⨯-⨯=由此可知,9,2611=-=y x 是方程110737=+y x 的一组特解,于是650)26(250-=-⨯=x ,2259250=⨯=y 是方程2510737=+y x 的一组特解,因此原方程的一切整数解为:⎩⎨⎧-=+-=ty t x 37225107650。
例2.求不定方程213197=+y x 的所有正整数解。
解:用原方程中的最小系数7去除方程的各项,并移项得:753230719213y y y x -+-=-= 因为y x ,是整数,故u y =-753也一定是整数,于是有375=+u y ,再用5去除比式的两边,得523573u u u y -+-=-=,令523u v -=为整数,由此得352=+v u 。
经观察得1,1=-=v u 是最后一个方程的一组解,依次回代,可求得原方程的一组特解:2,2500==y x ,所以原方程的一切整数解为:⎩⎨⎧+=-=ty t x 721925。
例3.求不定方程40823=++z y x 的正整数解。
解:显然此方程有整数解。
先确定系数最大的未知数z 的取值范围,因为z y x ,,的最小值为1,所以4823401=⎥⎦⎤⎢⎣⎡--≤≤z 。
当1=z 时,原方程变形为3223=+y x ,即2332x y -=,由上式知x 是偶数且102≤≤x 故方程组有5组正整数解,分别为⎩⎨⎧==132y x ,⎩⎨⎧==104y x ,⎩⎨⎧==76y x ,⎩⎨⎧==48y x ,⎩⎨⎧==110y x ;当2=z 时,原方程变形为2423=+y x ,即2324x y -=,故方程有3组正整数解,分别为:⎩⎨⎧==92y x ,⎩⎨⎧==64y x ,⎩⎨⎧==36y x ;当3=z 时,原方程变形为1623=+y x ,即2316x y -=,故方程有2组正整数解,分别为:⎩⎨⎧==52y x ,⎩⎨⎧==24y x ; 当4=z 时,原方程变形为823=+y x ,即238x y -=,故方程只有一组正整数解,为⎩⎨⎧==12y x 。