实验报告:单容液位定值控制系统实验报告Word版
单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。
实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。
2. 液位传感器:用于实时监测水箱的液位。
3. 控制器:采用PID控制器,用于调节水箱液位。
4. 电源和信号线:提供电力和信号传输。
实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。
2. 将PID控制器与液位传感器连接,建立控制回路。
3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。
4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。
5. 开始实验,记录初始液位和控制器输出设定值。
6. 观察液位的变化,并记录实时液位值。
7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。
8. 结束实验,记录最终液位和控制器参数。
实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。
2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。
3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。
4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。
5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。
结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。
通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。
实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。
单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告一、实验目的本实验旨在通过单容量水箱液位pid控制实验,掌握PID控制器的基本原理及其在工程中的应用,熟悉液位传感器的使用方法,了解单容量水箱液位pid控制系统的组成和工作原理。
二、实验原理1. PID控制器PID控制器是一种用于工业过程自动化控制的常见算法。
PID是Proportional-Integral-Derivative(比例-积分-微分)三个英文单词的缩写。
PID算法通过对过程变量进行采样和比较,计算出误差,并根据误差大小进行调整。
其中比例项P、积分项I和微分项D分别代表了对过程变量偏差大小、偏差持续时间以及偏差变化率的反馈调整。
2. 液位传感器液位传感器是一种用于测量液体或固体物料高度或深度的设备。
常见的液位传感器有浮球式、压力式、电容式等多种类型。
本实验中采用电容式液位传感器进行测量。
3. 单容量水箱液位pid控制系统单容量水箱液位pid控制系统由水箱、液位传感器、PID控制器和执行机构(如电磁阀)组成。
系统的工作原理是:液位传感器采集水箱内的液位信号,将其转换为电信号并传输给PID控制器;PID控制器通过比较设定值和实际值之间的误差,输出相应的控制信号给执行机构,使其调节水箱内的水流量,从而维持水箱液位稳定在设定值。
三、实验步骤1. 搭建实验装置将单容量水箱与电磁阀、电容式液位传感器等连接起来,组成完整的单容量水箱液位pid控制系统。
2. 设置PID参数根据实际情况,设置合适的PID参数。
其中比例系数Kp、积分系数Ki 和微分系数Kd需要进行适当调整以达到最佳效果。
3. 进行实验测试将设定值设置为一定值,并记录下当前的反馈值。
根据反馈值计算出误差,并通过PID控制器输出相应的调节信号给执行机构。
随着时间的推移,观察液位是否能够稳定在设定值附近。
4. 调整PID参数如果发现液位不能够稳定地保持在设定值附近,需要对PID参数进行适当调整。
可以通过增大或减小比例系数、积分系数和微分系数来调整系统的响应速度和稳定性。
单容量水箱液位pid控制实验报告

单容量水箱液位pid控制实验报告实验目的:通过单容量水箱液位PID控制实验,学习PID控制器的原理和调节方法,掌握PID控制器在液位控制中的应用。
实验器材:1. 单容量水箱2. 水泵3. 液位传感器4. 控制器5. 电脑实验原理:PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的控制器。
根据物体的反馈信号与设定值之间的差异,PID控制器会计算出相应的控制量,以使系统的输出信号趋近于设定值,从而实现对物体的控制。
实验步骤:1. 搭建实验装置:将单容量水箱与水泵和液位传感器连接,将控制器与电脑连接。
2. 设置实验参数:根据实验需求,设置控制器的比例增益、积分时间常数和微分时间常数,并将设定值设定为所需的液位。
3. 开始实验:启动水泵,观察水箱液位的变化,并记录在实验报告中。
4. 数据分析:根据液位传感器的反馈信号,计算实际液位与设定值之间的差异,并根据PID控制器的算法计算出相应的控制量。
5. 调整控制参数:根据实验数据分析的结果,调整PID控制器的参数,如增大比例增益、调整积分时间常数和微分时间常数,再次进行实验。
6. 重复步骤3-5,直到达到所需的控制效果。
实验结果与分析:根据实验数据,绘制出液位随时间变化的曲线图。
通过分析曲线形状和数据变化趋势,判断控制系统的稳定性和响应时间。
如果液位在设定值附近波动较小,并且响应时间较短,则说明PID控制系统的参数调节较为合适。
结论:通过单容量水箱液位PID控制实验,我们学习了PID控制器的原理和调节方法,并掌握了PID控制器在液位控制中的应用。
同时,我们还了解到PID控制器的参数调节对控制系统的稳定性和响应时间有很大影响,需要通过实验数据的分析来进行参数调整。
这些知识和技能对于后续的控制系统设计和实施有着重要的指导意义。
单容水箱液位pid控制系统实验报告

单容水箱液位pid控制系统实验报告本次实验以单容水箱液位PID控制系统为研究对象,通过实验来探究PID控制系统在单容水箱液位控制中的应用。
实验采用的硬件设备包括一台多功能数据采集仪、一个电动水泵、一个水箱、一个液位传感器以及一台电脑。
液位传感器负责实时监测水箱的液位高度,然后将液位信号传输给多功能数据采集仪,再通过电脑处理分析数据。
电动水泵负责将水加入到水箱中,实现液位的上升。
在实验中我们需要采用PID控制算法对液位进行控制。
PID控制器是由比例控制器(P)、积分控制器(I)和微分控制器(D)三个部分组成的一种常见的控制算法。
比例控制器根据当前偏差值来进行控制,积分控制器主要解决由于比例控制器的积累误差,使系统达到静态稳态的需求,微分控制器则是对系统输出信号的变化率进行调整,在系统响应速度方面起到了重要的作用。
PID控制器综合了三种控制器的优点,因此在工业自控领域中得到了广泛的应用。
在实验的开始,我们首先需要计算PID控制参数,包括比例系数Kp、积分时间Ti和微分时间Td。
计算出这些参数之后,我们需要将它们输入到控制器中,使得控制器能够根据当前的液位值来进行控制。
实验过程中,需要适当控制电动水泵的运行时间和运行速度,使得液位能够平稳地上升,同时又不超过设定的上限值。
在实验中,我们首先对比例系数进行了调整。
我们发现当比例系数过大时,液位的波动会变得非常剧烈,表现为液位的快速上升和下降。
当比例系数过小时,系统的响应速度将会比较慢,导致液位不能够很好地达到设定值。
通过实验我们调整了比例系数,使得液位能够更加稳定地上升,并且在液位接近设定值时,系统能够迅速地响应。
我们也对积分时间和微分时间进行了调整,并且通过分析实验数据,我们最终确定了比例系数为1.8、积分时间为0.2秒和微分时间为0.1秒。
通过本次实验,我们深入了解了PID控制系统在单容水箱液位控制中的应用,也体验了PID控制系统参数调整的过程。
我们相信,在实际工程中,PID控制系统的应用会带来更大的效益。
过程控制实验报告3(液位单闭环实验)

班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:液位单闭环实验
一、实验目的:
通过实验掌握单回路控制系统的构成。
学生可自行设计,构成单回路单容液位,并采用临界比例度法、阶跃反应曲线法和整定单回路控制系统的PID参数,熟悉PID参数对控制系统质量指标的影响,用计算机进行PID参数的调整和自动控制的投运。
二、实验设备:
水泵、变频器、压力变送器、主回路调节阀、上水箱、上水箱液位变送器、牛顿模块(输入、输出)。
表4-13 阶跃反应曲线整定参数表
4、将计算所得的PID参数值置于计算机中。
5、使水泵Ⅰ在恒压供水状态下工作。
观察计算机上液位曲线的变化。
6、待系统稳定后,给定加个阶跃信号,观察其液位变化曲线。
7、再等系统稳定后,给系统加个干扰信号,观察液位变化曲线。
8、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果于表格4.12中。
五、试验报告:
根据试验结果编写实验报告,并根据K、T、τ平均值写出广义的传递函数。
单容水箱液位定值控制系统课设报告

综合实验报告实验名称自动控制系统综合实验题目单容水箱液位定值控制系统指导教师王巧玲设计起止日期2013 年 1 月 7 日~1 月 18 日系别自动化学院控制工程系专业学生姓名班级学号成绩目录第一章MCGS 简介 (1)一、MCGS 组态软件的系统构成 (1)1、MCGS 组态软件的整体结构 (1)2、MCGS 组态软件的五大组成部分 (1)二、MCGS 组态软件的工作方式 (2)1、MCGS 如何与设备进行通讯 (2)2、MCGS 如何产生动画效果 (2)3、MCGS 如何实施远程多机监控 (2)4、如何对工程运行流程实施有效控制 (2)三MCGS 组态软件的一般组态过程 (2)工程项目系统分析 (2)工程立项搭建框架 (3)设计菜单基本体系 (3)制作动画显示画面 (4)编写控制流程程序 (4)完善菜单按钮功能 (4)编写程序调试工程 (4)第二章综合实验纲要 (6)一、综合实验的目的 (6)二、综合实验的基本要求 (6)三、实验前的准备及安全操作规程 (6)安全操作规程 (6)四、综合实验内容要求 (7)硬件系统设计 (7)软硬件测试 (7)数据 I/O 及通信设计 (7)监控组态界面设计 (7)控制算法设计 (8)系统调试和完善 (8)撰写设计报告 (8)第三章单容水箱液位定值控制系统 (9)概况 (9)实验所需设备以及所需软件 (9)要求 (9)实验原理 (9)第四章实验设计 (10)一、实时数据库的设计 (10)二、添加设备 (10)三、添加运行策略 (11)四、添加用户窗口 (12)主窗口属性 (13)五、设计主页面 (14)添加设定值 SV、测量值 PV 以及输出值 OP 的动态条显示 (14)添加变量设定栏 (15)添加变量显示栏 (16)添加手自动按钮 (16)添加历史曲线按钮 (17)添加实时曲线显示 (17)六、历史曲线页面 (18)第五章实验结果 (19)一、PID 调试过程 (19)二、PID 参数确定 (19)三、加扰动、测性能 (20)第六章总结 (20)第七章参考资料文献 (20)第一章MCGS简介一、MCGS组态软件的系统构成1、MCGS组态软件的整体结构MCGS(Monitor and Control Generated System)是一套基于 Windows 平台的,用于快速构造和生成上位机监控系统的组态软件系统,可运行于 Microsoft Windows95/98/NT/2000/XP 等操作系统。
单容水箱液位组态控制实验报告【范本模板】

4 单容水箱液位组态控制实验报告学院:自动化学院班级:学号:姓名:单容水箱液位组态一.实验目的:1.熟悉单容水箱液位调节阀PID 控制系统工作原理2.熟悉单用户项目组态过程3.掌握WINCC 画面组态设计方法4.掌握WINCC 过程值归档的组态过程5.掌握WINCC 消息系统的组态过程6.掌握WINCC 报表系统的组态过程二:单容水箱实验原理1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变.被调量为水位H.分析水位在调节阀开度扰动下的动态特性.直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。
(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。
)调整水箱出口到一定的开度。
突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。
通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ, 其中,F 是水槽横截面积。
在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。
公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻.给定值 图4-1单容水箱液位数学模型的测定实验如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: )1()(0+=TS S KR S G 。
相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。
2、控制系统接线表测量或控制量 测量或控制量标号使用PLC 端口 使用ADAM 端口下水箱液位 LT103 AI0 AI0调节阀FV101 AO0 AO03参考结果单容水箱水位阶跃响应曲线,如图4—2所示:图4—2 单容水箱液位飞升特性此时液位测量高度184。
5 mm,实际高度184.5 mm -3。
5 mm =181 mm 。
实际开口面积5.5x49.5=272.25 mm²。
单容水箱液位过程控制实验报告范文

单容水箱液位过程控制实验报告范文一、实验目的1、了解单容水箱液位控制系统的结构与组成。
2、掌握单容水箱液位控制系统调节器参数的整定方法。
3、研究调节器相关参数的变化对系统静、动态性能的影响。
4、了解PID调节器对液位、水压控制的作用。
本实验采用计算机PID算法控制。
首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。
2.2被控对象本实验是单容水箱的液位控制。
被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。
由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。
这样,当水箱水位升高时,其出水量也在不断增大。
所以,若阀V6开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。
由此可见,单容水箱系统是一个自衡系统。
三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。
电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。
图2为电动调节阀与管道的连接图。
图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。
四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。
本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制综合实验报告实验名称:单容液位定值控制系统
专业:电气工程
班级:
姓名:
学号:
实验方案
一、实验名称:单容液位定值控制系统
二、实验目的
1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
三、实验原理
本实验系统结构图和方框图如图1所示。
被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制(本次实验我组采用的是PI控制)。
图1 中水箱单容液位定值控制系统
(a)结构图 (b)方框图
一、实验目的
1.了解单容液位定值控制系统的结构与组成。
2.掌握单容液位定值控制系统调节器参数的整定和投运方法。
3.研究调节器相关参数的变化对系统静、动态性能的影响。
4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。
5.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备
1.实验控制水箱;
2.实验对象及控制屏、计算机一台、SA-44挂件一个、PC/PPI通讯电缆一根;
3.三相电源输出(~380V/10A)、单相电源输出(~220V/5A)中单相I、单相II端口、三相磁力泵(~380V)、压力变送器LT2、电动调节阀中控制信号(4~20mA 输入,~220V输入)、S7-200PLC 中AO端口、AI2端口。
三、实验原理
本实验系统结构图和方框图如图1所示。
被控量为中水箱的液位高度,实验要求中水箱的液位稳定在给定值。
将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。
为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。
图1 中水箱单容液位定值控制系统
(a)结构图 (b)方框图
四、实验内容与步骤
本实验选择中水箱作为被控对象。
实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。
本次实验采用的是S7-200控制的方法。
图2 S7-200PLC控制单容液位定值控制实验接线图
1.将SA-42 S7-200PLC控制挂件挂到屏上,并用PC/PPI通讯电缆线将S7-200PLC连接到计算机串口2,并按照下面的控制屏接线图连接实验系统。
将“LT2中水箱液位”钮子开关拨到“ON”的位置。
2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相Ⅰ、Ⅲ空气开关,给S7-200PLC及电动调节阀上电。
3.打开Step 7-Micro/WIN 32软件,并打开“S7-200PLC”程序进行下载,然后将S7-200PLC置于运行状态,然后运行MCGS组态环境,打开“S7-200PLC 控制系统”工程,然后进入MCGS运行环境,在主菜单中点击“实验三、单容液位定值控制”,进入实验三的监控界面。
4.在上位机监控界面中点击“启动仪表”。
将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过调节仪表实现。
5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值。
6.根据经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。
7.待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,通过以下几种方式加干扰:
(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,后面三种仅供参考)
(2)将电动调节阀的旁路阀F1-3或F1-4(同电磁阀)开至适当开度;
(3)将下水箱进水阀F1-8开至适当开度;(改变负载)
(4)接上变频器电源,并将变频器输出接至磁力泵,然后打开阀门F2-1、F2-4,用变频器支路以较小频率给中水箱打水。
以上几种干扰均要求扰动量为控制量的5%~15%,干扰过大可能造成水箱中水溢出或系统不稳定。
加入干扰后,水箱的液位便离开原平衡状态,经过一段调节时间后,水箱液位稳定至新的设定值(采用后面三种干扰方法仍稳定在原设定值),记录此时的智能仪表的设定值、输出值和仪表参数,液位的响应过程曲线将如图3所示。
图3 单容水箱液位的阶跃响应曲线
8.分别适量改变调节仪的P及I参数,重复步骤7,用计算机记录不同参数时系统的阶跃响应曲线。
9.分别用P、PD、PID三种控制规律重复步骤4~8,用计算机记录不同控制规律下系统的阶跃响应曲线。
四、实验结果分析
实验刚开始时,输入设定值(SV)为90cm,比例系数(P)、积分时间(I)均设为10,液位波形开始有近似规律的阻尼震荡响应,直至最后波形稳定,得出相应曲线。
(如图4、5所示)
图4 单容液位控制的系数调节
图5 单容液位控制的响应曲线
六、实验总结
学习了单容液位定值控制系统方法,待液位稳定于给定值后,将调节器切换到“自动”控制状态,待液位平衡后,突减仪表设定值为60,使其有一个负阶跃增量的变化,但由于疏忽,未能将图像保存下来。
由于设定值的原因,波位波形曲线趋向正确,但是阻尼震荡时间过长,得到最后结果曲线所需时间较长,说明取值并不是完美。
后经过学长讲解,应将积分时间(I)设为5,这样将大大提升实验效率。
这更要求我们在做实验前可以通过分析法对实验结果进行理论分析,找到近似值,在实验时可以直接在理论值附近进行验证,将有效提高实验效率。
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。