初中数学函数知识点总结
初三数学的函数知识点总结

初三数学的函数知识点总结一、函数的概念1. 函数的定义:函数是一种特殊的关系,即每一个自变量对应唯一的因变量,并且每一个可能的自变量都对应一个确定的因变量。
通俗地讲,函数就是一种“输入-输出”关系。
2. 自变量和因变量:在函数中,自变量是指可以独立变化的变量,通常用x来表示;而因变量则是函数的输出,通常用y来表示。
3. 函数的表达式:函数可以用数学公式或图象表示,通常表示为y=f(x),其中f(x)是函数,表示自变量x经过函数f所得的因变量y。
4. 定义域和值域:函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
5. 奇函数和偶函数:如果f(-x)=-f(x)成立,那么函数f(x)是奇函数;如果f(-x)=f(x)成立,那么函数f(x)是偶函数。
二、函数的表示方法1. 函数的图象:函数的图象是将自变量和因变量的所有可能取值通过直角坐标系的点连起来所得的图形。
2. 函数的映射图:函数的映射图是将函数值与自变量一一对应的有序对用点表示,并由这些点组成的图。
3. 函数的解析式:函数的解析式是用公式或方程表示的函数表达式,可以直接求出给定自变量时的因变量值。
4. 函数的等价变形:函数的等价变形是对函数进行代数运算、图象变换等操作得到的新函数。
三、函数的基本性质1. 函数的有界性:如果函数f(x)在某一区间内有界,则函数在这个区间内有最大值和最小值。
2. 函数的单调性:如果函数f(x)在某一区间内的导数始终大于0或小于0,则函数在这个区间内是递增或递减的。
3. 函数的奇偶性:奇函数具有对称中心为原点的对称图象,偶函数具有对称中心为y轴的对称图象。
4. 函数的周期性:如果函数f(x)满足f(x+T)=f(x),其中T为正常数,则函数具有周期T。
5. 函数的零点和极值:函数的零点是指使函数取零值的自变量值,而极值则是函数取得最大值或最小值的点。
6. 函数的单值性和多值性:一般情况下,函数对应一个自变量只能有一个因变量,因此是单值函数;但有些函数也可以对应一个自变量有多个因变量,这就是多值函数。
初中数学函数知识点归纳

初中数学函数知识点归纳初中数学中的函数知识点主要包括函数的定义、函数的性质、函数的表示方法、函数之间的关系以及函数的应用等内容。
下面我将对这些知识点进行归纳总结。
一、函数的定义:1.自变量和因变量:函数是一种数与数之间的对应关系,其中自变量是输入的数值,因变量是输出的数值。
2.值域:函数的值域是所有可能输出的数值的集合,通常用符号D表示。
3.定义域:函数的定义域是所有可能输入的数值的集合,通常用符号R表示。
二、函数的性质:1.奇偶性:函数f(x)的性质与其自变量的奇偶性有关,如果f(-x)=f(x),则函数是偶函数;如果f(-x)=-f(x),则函数是奇函数。
2.单调性:函数在一些定义域上的增减性,可以分为递增和递减。
3.周期性:函数在一些定义域上的输出数值存在重复规律,称为函数的周期性。
三、函数的表示方法:1.函数表:通过给定自变量的数值,得出相应的因变量的数值。
2.函数图像:将函数的自变量和因变量分别作为x轴和y轴坐标,画出函数的图像。
3.函数公式:通过表示自变量与因变量之间关系的数学式子来表示函数。
四、函数之间的关系:1.复合函数:若函数f(x)的值域是另一个函数g(x)的定义域,则通过将f(x)的输出作为g(x)的输入,得到的新函数称为复合函数。
2.反函数:若函数f(x)的一些值对应唯一的自变量,且该自变量对应的值也能唯一地确定f(x)的值,则称函数f(x)具有反函数,记作f^(-1)(x)。
3.逆函数:若函数f(x)的自变量与因变量对换,得到新的函数g(x),则称g(x)为函数f(x)的逆函数,记作g(x)=f^(-1)(x)。
五、函数的应用:1.函数的模型:可以用函数来表示一些实际问题中的关系,如速度函数、利润函数等。
2.函数的最值:通过求函数的最大值和最小值,可以解决许多优化问题。
3.函数的图像在坐标系中的位置和形状:通过观察函数的图像,可以判断其基本形状、范围、特征点等。
六、常见的函数类型:1. 一次函数:f(x) = kx + b,其中k和b为常数,其图像为一条直线。
函数初中知识点总结

函数初中知识点总结一、函数的基本概念1. 函数的定义函数是一个或多个自变量和一个因变量之间的对应关系。
通常用f(x)或者y来表示函数,其中x是自变量,y是因变量。
函数的定义可以用一个简单的公式表示,例如f(x) = x^2,也可以用一个表格来表示。
2. 自变量和因变量自变量是函数中的输入变量,因变量是函数中的输出变量。
自变量通常用x表示,因变量通常用y表示。
3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数的定义域和值域可以通过函数的公式或者图像来确定。
4. 初等函数的分类在初中数学中,我们学习了常见的初等函数,包括一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等。
这些函数在实际问题中都有着重要的应用。
5. 函数的符号表示除了用f(x)或者y来表示函数外,我们还可以用其他字母或者符号来表示函数,例如g(x)、h(x)、p(x)等。
二、函数的性质1. 奇偶性函数的奇偶性是指函数图像关于原点对称还是关于y轴对称。
具体来说,如果对于任意的x,有f(-x) = -f(x),则称函数是奇函数;如果对于任意的x,有f(-x) = f(x),则称函数是偶函数。
2. 增减性函数的增减性是指函数图像在定义域上的变化趋势。
如果对于任意的x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果当x1<x2时有f(x1)>f(x2),则称函数是减函数。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果一个函数在定义域上是增函数或者减函数,则称函数在该定义域上是单调的。
4. 周期性如果对于任意的x,有f(x+T) = f(x),其中T是一个常数,则称函数是周期函数,T称为函数的周期。
5. 有界性如果存在一个常数M,对于函数的定义域上的任意x,有|f(x)|≤M,则称函数是有界的。
三、函数的图像1. 直角坐标系中的函数在直角坐标系中,函数的图像是一个曲线或曲线段。
初中数学函数知识点

初中数学函数知识点一、函数的概念。
1. 定义。
- 在一个变化过程中,有两个变量x、y,如果给定一个x值,相应的就确定唯一的一个y值,那么就称y是x的函数,其中x是自变量,y是因变量。
例如:y = 2x+1,对于每一个x的取值,都能通过这个式子计算出唯一的y值。
2. 函数的表示方法。
- 解析法:用数学式子表示两个变量之间的对应关系,如y = 3x - 2。
- 列表法:列出表格来表示两个变量之间的对应关系。
例如,在研究正方形的周长C与边长a的关系时,可以列出如下表格:边长a1 2 3 4.周长C = 4a4 8 12 16.- 图象法:用图象表示两个变量之间的对应关系。
比如一次函数y = x+1的图象是一条直线。
二、一次函数。
1. 定义。
- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。
当b = 0时,y=kx(k≠0)叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质。
- 图象:一次函数y = kx + b的图象是一条直线。
当b = 0时,y = kx的图象是经过原点(0,0)的直线。
- 性质。
- 当k>0时,y随x的增大而增大。
例如y = 2x+1,随着x的值增大,y的值也增大。
- 当k < 0时,y随x的增大而减小。
如y=-3x + 2,x增大时,y减小。
- 求一次函数的解析式。
- 一般需要知道两个点的坐标,将其代入y = kx + b中,得到关于k、b的方程组,解方程组求出k和b的值。
例如,已知一次函数图象过点(1,3)和(2,5),将(1,3)代入y = kx + b得3=k + b,将(2,5)代入得5 = 2k + b,解方程组3=k + b 5 = 2k + b,用第二个方程减去第一个方程得5-3=(2k + b)-(k + b),即2 = k,把k = 2代入3=k + b得b = 1,所以函数解析式为y = 2x+1。
三、反比例函数。
初中函数知识点总结非常全

初中函数知识点总结非常全初中函数知识点总结一、函数的概念:函数是一种特殊的关系,它将自变量的取值与因变量的取值进行对应关系,用数学符号表示为y=f(x)。
二、函数的定义域和值域:1.定义域是指函数中自变量的取值范围,表示为{x,x满足其中一种条件}。
2.值域是指函数中因变量的取值范围,表示为{y,y满足其中一种条件}。
三、函数的图像表示:函数的图像是由函数的所有点(x,f(x))在坐标系中所组成的图形。
四、函数的分类:1. 一次函数:f(x) = kx + b,k和b是常数,k称为斜率,b称为截距。
-斜率k表示函数图像在x轴方向的倾斜程度,正数表示上升,负数表示下降。
-截距b表示函数图像与y轴的交点在y轴上的坐标。
2. 二次函数:f(x) = ax² + bx + c,a、b、c是常数,且a≠0。
-a决定了二次函数的开口方向,正数表示开口向上,负数表示开口向下。
-函数的顶点坐标为(-b/2a,f(-b/2a))。
3.反比例函数:f(x)=k/x,k是常数,且k≠0。
-函数图像的特点是经过原点(0,0)并且没有定义域为0的取值。
4.幂函数:f(x)=xⁿ,n是常数,且n≠0。
-当n>0时,函数的图像自左下方向右上方增长。
-当n<0时,函数的图像自左上方向右下方增长。
五、函数的特性:1.奇偶性:-函数f(x)为奇函数,当且仅当f(-x)=-f(x)。
-函数f(x)为偶函数,当且仅当f(-x)=f(x)。
-一次函数和绝对值函数是奇函数,二次函数和指数函数是偶函数。
2.单调性:-函数f(x)在区间I上单调增加,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)<f(x₂)。
-函数f(x)在区间I上单调减少,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)>f(x₂)。
3.极值和最值:-极大值:若f(x)在特定点x₀处取得最大值f(x₀),则称f(x₀)为函数f(x)在区间I上的极大值。
初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的定义和性质函数是一个数到数的映射关系,通常用f(x)表示。
函数的定义域是指所有能够使函数有意义的x的取值范围,值域是函数所有可能输出的值的集合。
函数可分为一对一函数、多对一函数和一对多函数。
二、常见函数1. 线性函数线性函数的函数图像为一条直线,表达式为f(x) = ax + b,其中a和b为常数。
a决定了直线的斜率,b决定了直线与y轴的交点。
2. 平方函数平方函数的函数图像为一条抛物线,表达式为f(x) = ax² + bx + c,其中a、b和c为常数。
a的正负决定了抛物线的开口方向,c决定了抛物线与y轴的交点。
3. 根号函数根号函数的函数图像为一条开口向上的抛物线,表达式为f(x) = √x。
函数图像只有非负数的x值对应有效。
4. 反比例函数反比例函数的函数图像为一条非零常数的双曲线,表达式为f(x) = k/x,其中k 为常数。
函数图像不包括x = 0这一点。
三、函数的变换1. 平移变换平移变换可以将函数的图像沿着x轴或y轴上下左右移动。
平移的规律如下:- 向左平移a个单位:f(x) → f(x + a)- 向右平移a个单位:f(x) → f(x - a)- 向上平移b个单位:f(x) → f(x) + b- 向下平移b个单位:f(x) → f(x) - b2. 压缩与拉伸变换压缩与拉伸变换可以改变函数图像在x或y方向的大小。
压缩与拉伸的规律如下:- x方向压缩:f(x) → f(kx),其中k > 1- x方向拉伸:f(x) → f(kx),其中0 < k < 1- y方向压缩:f(x) → kf(x),其中k > 1- y方向拉伸:f(x) → kf(x),其中0 < k < 1四、函数的性质和运算1. 函数的奇偶性- 奇函数:f(-x) = -f(x),即关于原点对称- 偶函数:f(-x) = f(x),即关于y轴对称2. 函数的复合函数的复合是指将一个函数作为另一个函数的输入,即f(g(x))。
初中数学函数知识点

数学函数知识点1.常量和变量在某变化过程中可以取不同数值的量叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.2.函数设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.3.自变量的取值范围(1)整式:自变量取一切实数.(2)分式:分母不为零.(3)偶次方根:被开方数为非负数.(4)零指数与负整数指数幂:底数不为零.4.函数值对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.5.函数的表示法(1)解析法;(2)列表法;(3)图象法.6.函数的图象把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:(1)写出函数解析式及自变量的取值范围;(2)列表:列表给出自变量与函数的一些对应值;(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.7.一次函数(1)一次函数如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.(2)一次函数的图象一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.(3)一次函数的性质当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.(4)用函数观点看方程(组)与不等式①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y =kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x 轴交点的横坐标.②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.8.反比例函数(1)反比例函数如果 (k是常数,k≠0),那么y叫做x的反比例函数.(2)反比例函数的图象反比例函数的图象是双曲线.(3)反比例函数的性质①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.③反比例函数图象关于直线y=±x对称,关于原点对称.(4)k的两种求法①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB(5)正比例函数和反比例函数的交点问题若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.1.二次函数如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x 的二次函数.几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y =ax2+bx(ab≠0);y=a(x-h)2(a≠0).2.二次函数的图象二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.3.二次函数的性质二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 0时,y随x的增大而减小;当x>0 时,y随x的增大而增大;当x= y时有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< 0,y随x的增大而增大;当x >0时,y随x的增大而减小;当x= y时有最大值;(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:∆<0时,抛物线y=ax2+bx+c与x轴没有公共点.∆=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当∆=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当∆当4.抛物线的平移抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x -h)2+k.平移的方向、距离要根据h、k的值来决定.函数知识点总结(掌握函数的定义、性质和图像) (一)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。
初二函数知识点

初二函数知识点一、函数基础知识1. 函数定义函数是指一个从集合A(称为定义域)到集合B(称为值域)的映射,记作f: A → B。
在初中数学中,函数通常指的是一种特殊的对应关系,即对于定义域内的每一个x值,都有唯一确定的y值与之对应。
2. 函数的表示方法- 表格法:通过表格列出几组对应值。
- 公式法:用数学公式表达,如y = f(x)。
- 图像法:在坐标系中画出函数的图像。
3. 函数的性质- 单值性:一个x值对应一个y值。
- 定义域和值域:定义域是函数中所有可能的x值的集合,值域是函数中所有可能的y值的集合。
- 函数图像:函数的图像是坐标系中所有满足函数关系的点的集合。
二、线性函数1. 线性函数定义线性函数是指函数关系式为y = kx + b的形式,其中k为斜率,b为截距。
2. 线性函数的性质- 斜率k表示函数的增减性,k > 0时,y随x的增大而增大;k < 0时,y随x的增大而减小。
- 截距b表示当x=0时,y的取值。
- 线性函数图像是一条直线。
3. 线性函数图像的绘制- 利用斜率和截距确定直线的位置和倾斜程度。
- 通常选择两个点(x, y),利用公式计算出y值,然后在坐标系中绘制这两个点,并通过这两个点画一条直线。
三、二次函数1. 二次函数定义二次函数是指函数关系式为y = ax^2 + bx + c的形式,其中a、b、c 为常数,且a ≠ 0。
2. 二次函数的性质- a的符号决定了抛物线的开口方向,a > 0时开口向上,a < 0时开口向下。
- b和c的值影响抛物线的位置和对称轴。
- 二次函数图像是一条抛物线。
3. 二次函数图像的绘制- 确定顶点、对称轴和与x轴的交点(根)。
- 利用顶点式或交点式绘制抛物线。
四、函数的应用1. 实际问题建模将实际问题转化为函数关系式,通过分析函数的性质来解决问题。
2. 函数的最值问题通过求导数或配方法来求解函数的最大值和最小值。
3. 函数的图像变换通过平移、伸缩等变换来研究函数图像的变化规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四象限, y 随 x 的增大
而减小 0
k< 0
b< 0
x
y
图像经过二、三、
四象限,
0
y 随 时,一次函数变为正比例函数,正比 例函数是一次函数的特例。
4、正比例函数的性质 一般地,正比例函数 y kx 有下列性质: (1)当 k>0 时,图像经过第一、三象限,y
x
例函数。反比例函数的解析式也可以写成 y kx1 或 xy=k 的形式。自变量 x 的取值范围是 x 0 的 一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,
这两个分支分别位于第一、三象限,或第二、四
式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自
变量的取值范围。 3、函数的三种表示法及其优缺点
(1)解析法 两个变量间的函数关系,有时可以用一个含有 这两个变量及数字运算符号的等式表示,这种表 示法叫做解析法。 (2)列表法 把自变量 x 的一系列值和函数 y 的对应值列 成一个表来表示函数关系,这种表示法叫做列表 法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对 应值 (2)描点:以表中每对对应值为坐标,在坐 标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把 所描各点用平滑的曲线连接起来。
点 P 与点 p’关于 y 轴对称 纵坐标相等,横 坐标互为相反数
点 P 与点 p’关于原点对称 横、纵坐标均互 为相反数
6、点到坐标轴及原点的距离
点 P(x,y)到坐标轴及原点的距离:
(1)点 P(x,y)到 x 轴的距离等于 y (2)点 P(x,y)到 y 轴的距离等于 x
(3)点 P(x,y)到原点的距离等于 x2 y2
为了便于描述坐标平面内点的位置,把坐标平 面被 x 轴和 y 轴分割而成的四个部分,分别叫做 第一象限、第二象限、第三象限、第四象限。
注意:x 轴和 y 轴上的点,不属于任何象限。 2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在 前,纵坐标在后,中间有“,”分开,横、纵坐 标的位置不能颠倒。平面内点的坐标是有序实数 对,当a b 时,(a,b)和(b,a)是两个不同点 的坐标。
知识点三、函数及其相关概念
1、变量与常量 在某一变化过程中,可以取不同数值的量叫做
变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量 x 与 y,
如果对于 x 的每一个值,y 都有唯一确定的值与 它对应,那么就说 x 是自变量,y 是 x 的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析
初中数学函数知识点总结
初中函数知识点总结
知识点一、平面直角坐标系 1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数 轴,就组成了平面直角坐标系。
其中,水平的数轴叫做 x 轴或横轴,取向右为 正方向;铅直的数轴叫做 y 轴或纵轴,取向上为 正方向;两轴的交点 O(即公共的原点)叫做直 角坐标系的原点;建立了直角坐标系的平面,叫 做坐标平面。
与 y 相等 点 P(x,y)在第二、四象限夹角平分线上 x
与 y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征
位于平行于 x 轴的直线上的各点的纵坐标相 同。 位于平行于 y 轴的直线上的各点的横坐标相同。 5、关于 x 轴、y 轴或远点对称的点的坐标的特 征
点 P 与点 p’关于 x 轴对称 横坐标相等,纵 坐标互为相反数
知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征
点 P(x,y)在第一象限 x 0, y 0 点 P(x,y)在第二象限 x 0, y 0 点 P(x,y)在第三象限 x 0, y 0 点 P(x,y)在第四象限 x 0, y 0 2、坐标轴上的点的特征 点 P(x,y)在 x 轴上 y 0,x 为任意实数 点 P(x,y)在 y 轴上 x 0,y 为任意实数 点 P(x,y)既在 x 轴上,又在 y 轴上 x,y 同 时为零,即点 P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点 P(x,y)在第一、三象限夹角平分线上 x
一次函数 y kx b 的图像是经过点(0,b)的直 线;正比例函数 y kx的图像是经过原点(0,0) 的直线。
kb
的的 符符
函数图像
图像特征
号号
y
k> b> 00
x
图像经过一、 二、三象限, 0
y 随 x 的增 大而增大。
b< 0x
b> 0 k< 0
x
y
图像经过一、 0 三、四象限,
y 随 x 的增 大而增大。
知识点四、正比例函数和一次函数
1、正比例函数和一次函数的概念 一般地,如果 y kx b (k,b 是常数,k 0),那
么 y 叫做 x 的一次函数。 特别地,当一次函数 y kx b 中的 b 为 0 时,
y kx (k 为常数,k 0)。这时,y 叫做 x 的正比 例函数。 2、一次函数的图像 所有一次函数的图像都是 一条直线 3、一次函数、正比例函数图像的主要特征:
随 x 的增大而增大,图像从左之右上升; (2)当 k<0 时,图像经过第二、四象限,y
随 x 的增大而减小,图像从左之右下降。 5、一次函数的性质
一般地,一次函数 y kx b 有下列性质: (1)当 k>0 时,y 随 x 的增大而增大
(2)当 k<0 时,y 随 x 的增大而减小 (3)当 b>0 时,直线与 y 轴交点在 y 轴正半 轴上 (4)当 b<0 时,直线与 y 轴交点在 y 轴负半 轴上 6、正比例函数和一次函数解析式的确定 确定一个正比例函数,就是要确定正比例函数 定义式 y kx (k 0)中的常数 k。确定一个一次函 数,需要确定一次函数定义式 y kx b (k 0)中的 常数 k 和 b。解这类问题的一般方法是待定系数 法 知识点五、反比例函数 1、反比例函数的概念 一般地,函数 y k (k 是常数,k 0)叫做反比