圆锥曲线极点极线问题

合集下载

用圆锥曲线极点与极线的性质解题

用圆锥曲线极点与极线的性质解题

Ⅳ.过圆锥曲线特定直线(极线)上任意一点引圆锥曲线 的切线,则切点弦直线恒过定点(极点).
上述证明可参考《高等几何》,此处不再展开,这里重在说 明其应用.
例1 已知椭圆c:每+y2—1的两焦点为,点P(如,Yo)
ቤተ መጻሕፍቲ ባይዱ
满足.则1PF,l+lPF。j的取值范围为——,直线等+yoy=
1与椭圆C的公共点个数——.
一条直线都有一个极点.
2.标准方程下圆锥曲线极点与相应极线的方程
,2
..2
椭圆争+寺一1,则点p(x。,Y c,)对应的极线方程为:
掣+掣一1.
Ⅱ。
D”
双曲线≥一y62—1,则点p(z。,Y。)对应的极线方程为:
Xo工 口2
yoY一1
b2
1‘
抛物线Y2=2px。则点p(氙,Y。,)对应的极线方程为:
P(X0,yo).还有学生看到竿+yoy一1这样的结构,认为是 切线,所以判断有一个公共点.事实上,下J。o 31"+yoY一1是
~2
P(z。,Y。)对应的极线,P(z。,Y。)在椭圆c:等+y2—1的内 部,此直线与椭圆相离,故交点数为0个,问题能够快速解决.
而常规方法只能联立方程用判别式判断,计算比较复杂.
引用本文格式:黄彩红 用圆锥曲线极点与极线的性质解题[期刊论文]-中学生数理化(学研版) 2013(10)
点共线.由极点与极线性质知相应的三极线共点于P.
f竿一y,一一,1
P(T。,一1),代入极线方程得:<
I—'/72:广X(I—y2一一1.
两式相减得:塑1二竽堕一(y。一y:). L
所以讳·蕊一T。(z:一z。)一2(弘一y1)一o.
(2)设AB方程:y一1一kx,则AB对应的极点为(2k, 1).把AB代人C:,一4y.

圆锥曲线极点极线过定点

圆锥曲线极点极线过定点

圆锥曲线极点极线过定点对于圆锥曲线,极点和极线是很重要的概念。

极点是指在平面上固定一个点P,并取出一条直线L,对于平面上所有点Q,连结P和Q,并延长这条连接线,使其与直线L相交,如果这样的交点存在,则点P就是曲线的极点,直线L就是曲线的极线。

下面证明极线过定点的结论。

假设圆锥曲线的极点为P,极线为L,并且经过点A。

那么,我们需要证明L一定经过一个定点B。

首先,任取曲线上另外一个点Q,并连接PQ。

因为P是极点,所以PQ与极线L垂直,所以PQ的斜率是L的斜率的倒数。

设斜率为m,则可以表示为:m = -1/k其中k是L的斜率。

因为Q和A都在曲线上,所以它们的坐标(xQ,yQ)和(xA,yA)必须满足曲线的方程。

设曲线的方程是F(x,y)=0,则有:F(xQ,yQ) = 0F(xA,yA) = 0由于Q在极线上,所以PQ过点A的中垂线L'也必须经过点Q。

因此,L'的斜率是QA的斜率的相反数,即:k' = - (yA-yQ)/(xA-xQ)而L'与L垂直,所以k'×k=-1。

将k'代入上式可得:(xA-xQ)/(yA-yQ)×k = 1解出k:k = (yA-yQ)/(xA-xQ)将k代入第一式中,可得:m = - (xA-xQ)/(yA-yQ)将m和曲线的方程代入PQ的直线方程中,得到:(y-yQ)/(x-xQ) = - (xA-xQ)/(yA-yQ)×(dF/dx)/(dF/dy)其中dF/dx和dF/dy分别是曲线上点Q处的偏导数。

这是PQ的直线方程,我们要找到L的方程。

由于L是曲线的极线,所以L也要与PQ垂直,即它的斜率也满足:kL = -1/k = - (yA-yQ)/(xA-xQ)将kL带入直线的一般式,有:y - yP = kL(x - xP)代入kL,有:y - yP = - (yA-yQ)/(xA-xQ)×(x - xP)化简之后,可得L的方程:y = - (yA-yQ)/(xA-xQ)×(x - xP) + yP因为Q是曲线上的点,所以可以将曲线的方程代入L的方程中,消去x和y,得到:y = (yA-yQ)/(xA-xQ)×x + (xAyQ-xQyA)/(xA-xQ)这是L的标准式,可以看出它是一个直线。

4圆锥曲线的极点与极线(1)

4圆锥曲线的极点与极线(1)

圆锥曲线的极点与极线1、已知点(2)A -,3在抛物线2:2C y px =的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为A 、12 B 、23 C 、34 D 、432、已知(4)A F ,3,为椭圆的22143x y +=右焦点,过点A 的直线与椭圆在x 轴上方相切于点B 则直线BF 斜率为 A 、12- B 、23- C 、1- D 、43-3、对于抛物线2:4C y x =,我们称满足2004y x <的点()00x y ,在抛物线的内部,则直线00:2()l y y x x =+与抛物线C A 、恰有1个公共点 B 、恰有2个公共点 C 、可能有1个公共点也可能有2个公共点 D 、没有公共点4、已知椭圆22:12x C y +=的两个焦点12F F ,,点00(,)P x y 满足2200012x y <+<,则12PF PF +的取值范围为_____,直线0012x x y y +=与椭圆C 的公共点个数是______5、已知椭圆C 的方程为22143x y +=,过直线:4l x =上任意一点Q 作椭圆C 两条切线,切点分别为A B 、,则原点到直线AB 距离的最大值为_______6、设P 是直线:290l x y ++=上的任一点,过点P 作椭圆229x y +=的两条切线PA PB 、,切点分别为A B 、,则直线AB 恒过定点_____7、已知点P 为24x y +=上一动点,过点P 作椭圆22143x y +=的两条切线,切点分别A B 、,当点P 运动时,直线AB 过定点,该定点的坐标是____________8、已知点P 是抛物线2:4C x y =上一个动点,过点P 作圆()2241x y +-=的两条切线,切点分别为A B 、,则线段AB 长度的最小值为_________9、过椭圆221259x y +=内一点(3)M ,2,做直线AB 与椭圆交于点,A B ,作直线CD 与椭圆交于点,C D ,过,A B 分别作椭圆的切线交于点P ,过,C D 分别作椭圆的切线交于点Q ,则PQ 所在的直线方程为_______。

圆锥曲线的极点与极线问题

圆锥曲线的极点与极线问题

圆锥曲线的极点与极线问题圆锥曲线的极点与极线问题导言圆锥曲线是数学中的一个重要分支,其所涵盖的概念和性质有着深远的研究价值。

其中,圆锥曲线的极点与极线问题是一个具有特殊意义的主题。

在本文中,我将以深度和广度的方式来探讨圆锥曲线的极点与极线,希望能够使读者对这一问题有全面、深刻和灵活的理解。

一、圆锥曲线的基本定义与性质1.1 什么是圆锥曲线圆锥曲线是由一个平面与一个平行于它的不相交的直线切割圆锥所得到的曲线。

根据切割的方式和角度不同,圆锥曲线可以分为椭圆、双曲线和抛物线三类。

1.2 圆锥曲线的焦点与离心率圆锥曲线的焦点是指在其上的特殊点,其具有特殊的几何性质。

离心率是一个衡量圆锥曲线形状的参数,也是圆锥曲线性质的重要指标。

二、极点与极线的基本概念2.1 极点的定义与性质在平面上给定一个圆锥曲线,其直角坐标系中的原点O被称为该圆锥曲线的极点。

极点在圆锥曲线的研究中具有重要的地位,它与曲线的各种性质密切相关。

2.2 极线的定义与性质对于圆锥曲线上的任意一点P,以极点为中心,作直线OP,称为圆锥曲线的极线。

极线是一个与极点相关的直线,它与曲线的位置和特性有着密切的联系。

三、不同类型曲线的极点与极线问题3.1 椭圆的极点与极线对于椭圆,其极点为原点O,极线为过原点O的直线。

椭圆的极点处于其主轴的中点位置,其极线是关于两个焦点的对称直线。

3.2 双曲线的极点与极线对于双曲线,其极点为原点O,极线为过原点O的渐近线。

双曲线的极点处于离心率之间的位置,其极线是关于两个焦点的渐近线。

3.3 抛物线的极点与极线对于抛物线,其极点为其焦点,极线为过焦点的直线。

抛物线的极点位于抛物线的顶点位置,其极线是关于焦点的直线。

四、个人观点与理解圆锥曲线的极点与极线问题是一个十分有趣且具有挑战性的数学问题。

通过研究圆锥曲线的极点与极线,我们能够更深入地理解曲线的性质和特性。

极点是曲线的重要几何特征,它能够从不同的角度揭示出曲线的各种性质。

圆锥曲线极点极线应用篇5

圆锥曲线极点极线应用篇5

圆锥曲线极点极线应用篇5一、引言圆锥曲线是高中数学的重要内容,极点极线是解决圆锥曲线问题的一种重要方法。

本篇文档将详细介绍如何应用极点极线解决圆锥曲线问题。

二、极点极线基本概念在解析几何中,一个点对于一个曲线而言,具有特殊的意义。

这个点被称为曲线的极点,而连接这个点和曲线上任何一点的直线被称为这条曲线的极线。

在圆锥曲线中,这个概念同样适用。

三、应用方法1.点与曲线的关系:通过寻找曲线的极点,可以找到曲线上某个点的位置。

通过已知点和曲线的极线,可以求出未知点的坐标。

2.曲线间的关系:不同曲线的极线可能交于一点,或者两曲线具有相同的极线。

这种情况下,可以通过研究这个共有的极线来研究两个曲线之间的关系。

3.最值问题:在解决最值问题时,可以考虑用极点极线的方法。

通过建立极线方程,可以将问题转化为求函数最值的问题。

四、实例解析1.已知抛物线方程为y^2=4x,求点(2,2)在抛物线上的位置。

解:根据抛物线的定义,可得到抛物线的极点为原点。

因为点(2,2)在抛物线上,所以它的极线与抛物线的交点就是所求。

通过解方程y^2-4y=0,可得到点(2,2)在抛物线上的位置为(1,0)。

2.求椭圆x^2/4+y^2/3=1上的点到直线x+y=0的距离最小时的椭圆方程。

解:这个问题的关键在于找到椭圆的极线和所求直线之间的关系。

椭圆的极线是两条射线,它们和坐标轴构成的两个三角形的面积越大,距离最小。

通过计算,可以得到当椭圆的长轴在$x$轴上时,距离最小。

此时,椭圆的方程为x^2/7+y^2/3=1。

五、总结通过极点极线的方法,我们可以更深入地理解圆锥曲线,找到解决问题的方法。

在解决具体问题时,要灵活运用基本概念和方法,通过建立方程、函数等方法,解决实际问题。

六、扩展阅读1.进一步了解极点和极线的性质和应用,可以阅读相关的数学文献和教材。

2.练习解一些更复杂的问题,以提高自己的解题能力。

3.参考一些优秀的数学解题视频和博客,获取更多的解题思路和方法。

圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线

圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。

同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。

所以称A,B和C,D称为调和共轭。

2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。

若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。

3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。

由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。

4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。

圆锥曲线的极点与极线问题

圆锥曲线的极点与极线问题

圆锥曲线的极点与极线问题
摘要:
一、圆锥曲线的极点与极线的概念与定义
二、圆锥曲线极点与极线的重要结论
三、如何证明圆锥曲线中极点极线的性质
四、极点极线在圆锥曲线解题中的应用
正文:
一、圆锥曲线的极点与极线的概念与定义
圆锥曲线是数学中的一个重要概念,它可以用来描述各种物理现象。

极点与极线是圆锥曲线中的两个重要概念。

极点是指圆锥曲线上某一点的切线与过该点的直径的交点,而极线则是指过圆锥曲线上一点的切线与该点关于直径的对称点的连线。

二、圆锥曲线极点与极线的重要结论
在研究圆锥曲线的极点与极线时,我们可以发现一些重要的结论。

例如,对于椭圆和双曲线,它们的极点与极线总是相互垂直的。

而对于抛物线,其极点与极线则共线。

这些结论对于理解和解决圆锥曲线的相关问题非常有帮助。

三、如何证明圆锥曲线中极点极线的性质
要证明圆锥曲线中极点极线的性质,我们需要运用一些几何和数学知识。

首先,我们可以通过画图和观察来发现一些初步的结论。

然后,我们可以运用数学的证明方法,如代数证明、几何证明等,来证明这些结论的正确性。

四、极点极线在圆锥曲线解题中的应用
在解决圆锥曲线的相关问题时,极点极线的概念和性质可以给我们提供很多帮助。

例如,在求解圆锥曲线的切线问题时,我们可以通过找到极点和极线来简化问题。

在解决圆锥曲线与直线的交点问题时,我们也可以通过极点极线来找到答案。

圆锥曲线的极点与极线问题(一)

圆锥曲线的极点与极线问题(一)

圆锥曲线的极点与极线问题(一)圆锥曲线的极点与极线问题相关问题:•什么是圆锥曲线的极点和极线?•如何求解圆锥曲线的极点和极线的定义?•圆锥曲线的极点和极线有什么应用?•如何通过已知条件求解圆锥曲线上的极点和极线?•圆锥曲线的极点和极线与其他几何图形之间有何联系?解释说明:什么是圆锥曲线的极点和极线?圆锥曲线的极点是指在平面内选择一条直线(称为极线),通过该直线作圆锥曲线上任意一点的平行线,该平行线与直线的交点即为极点。

如何求解圆锥曲线的极点和极线的定义?•对于椭圆和双曲线,极点是无穷远处(在平行于直线与该曲线的交点),极线是直线。

•对于抛物线,极点是抛物线的焦点,极线是渐近线。

圆锥曲线的极点和极线有什么应用?•在几何图形的研究和推导中,通过极点和极线的概念可以简化问题,并有助于解决相关的几何性质与推论。

•在工程和设计领域中,圆锥曲线的极点和极线可以用于确定曲线上特定位置的要素,如焦点位置、切线方向等。

如何通过已知条件求解圆锥曲线上的极点和极线?•对于椭圆和双曲线,可以通过已知的焦点和直线方程,使用平行线性质找到对应的极线和极点。

•对于抛物线,可以通过已知的焦点和直线方程,使用渐近线的性质找到对应的极线和极点。

圆锥曲线的极点和极线与其他几何图形之间有何联系?•极点和极线可以看作是圆锥曲线上的一种特殊构造,与其他几何图形的焦点、渐近线等有类似的性质。

•极点和极线的概念也可以推广到其他几何图形中,例如超越曲线等。

不同类型的曲线可能有不同的极点和极线定义。

以上是关于圆锥曲线的极点与极线问题的相关问题和解释说明。

通过了解这些问题,可以更好地理解和应用圆锥曲线的极点和极线的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的极点与极线在高考中的应用刘定勇(安徽省宁国中学 ,242300)圆锥曲线的极点与极线理论在高考中应用较多,原因有二:其一,有高等数学背景,结论非常完美;其二,运用高中知识解决问题,能够考查学生思维、计算多方面能力.文[1]给出了两个较为简洁的结论:命题1 椭圆12222=+b y a x ,点()00,y x P 对应的极线12020=+b y y a x x .双曲线12222=-b y a x ,点()00,y x P 对应的极线12020=-by y a x x .抛物线px y 22=,点()00,y x P 对应的极线000=+-px y y px .命题 2圆锥曲线中极线共点于P ,则这些极线相应的极点共线于点P 相应的极线.反之亦然.称为极点与相应极线对偶性.以上结论在文[2]中有证明.如图给出椭圆的极点与对应极线的简图:题1、(2010湖北文15).已知椭圆12:22=+y x C 的两焦点为12,F F ,点()00,y x P 满足2200012x y <+<,则|1PF |+2PF |的取值范围为_______,直线1200=+y y x x 与椭圆C 的公共点个数_____.P 在椭圆内 P 在椭圆外解析:第一个问题,依题意知,点P 在椭圆内部.画出图形,由数形结合可得范围为[)22,2.第二个问题,其实是非常容易做错的题目.因为()00,y x P 在椭圆12:22=+y x C 的内部,所以很多学生误以为直线与椭圆一定有两个交点,但直线1200=+y y xx 并不经过()00,y x P .还有学生看到1200=+y y xx 这样的结构,认为是切线,所以判断有一个公共点.事实上,1200=+y y x x 是()00,y x P 对应的极线,()00,y x P 在椭圆12:22=+y x C 的内部,由命题2画出相应极线,此直线与椭圆不可能有交点,故交点数为0个.如果能够用极点与极线理论,本题能够快速解决.而常规方法只能联立方程用判别式判断了.题2、(2010重庆文21)已知以原点O 为中心,(5,0)F 为右焦点的双曲线C 的离心率52e =. (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求OH OG ⋅的值.解析:(I )C 的标准方程为.1422=-y x C 的渐近线方程为.21x y ±= (II )如图,直线44:11`=+y y x x l 和44:122=+y y x x l 上显然是椭圆4422=+y x 的两条切线,由题意点),(E E y x E 在直线44:11`=+y y x x l 和44:122=+y y x x l 上,MN 即是由E 点生成的椭圆的极线.因此直线MN 的方程为.44=+y y x x E EMN 的方程求出后剩下工作属常规计算.设G 、H 分别是直线MN 与渐近线02=-y x 及02=+y x 的交点,由方程组⎩⎨⎧=+=+⎩⎨⎧=-=+,02,4402,44y x y y x x y x y y x x E E E E 及 解得.2224,22,24⎪⎪⎩⎪⎪⎨⎧--=-=⎪⎪⎩⎪⎪⎨⎧+=+=E E N E E N E E C E E C y x y y x x y x y y x x 故44222222E E E E E E E E OG OG x y x y x y x y ⋅=⋅-⋅+-+-.41222EE y x -= 因为点E 在双曲线.44,142222=-=-E E y x y x 有上所以2212 3.4E E OG OH x y ⋅==- 分析:如果是常规方法求直线MN 的方程,只能是观察:由题意点),(E E y x E 在直线44:11`=+y y x x l 和44:122=+y y x x l 上,因此有E E E x x y y x x 211,44=+442=+E y y 故点M 、N 均在直线44=+y y x x E E 上,因此直线MN 的方程为.44=+y y x x E E 应该说很难观察,所以很多学生只能不了了之.题3、(2010江苏18)、在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B ,右焦点为F.设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y .(Ⅰ)设动点P 满足422=-PB PF ,求点P 的轨迹; (Ⅱ)设31,221==x x ,求点T 的坐标; (Ⅲ)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).解析:(Ⅰ)(Ⅱ)很简单,略.(Ⅲ)我们先看看常规做法:点T 的坐标为(9,)m直线)3(12:+=x my TA ,与椭圆联立得)8040,80)80(3(222++--m m m M直线)3(6:-=x my TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N 当12x x ≠时,直线MN 方程为:22222222220)20(380)80(320)20(3202080402020m m m m m m x m m m m m m y +--+-+--=+++++ 令0y =,解得:1x =.此时必过点D (1,0);当12x x =时,直线MN 方程为:1x =,与x 轴交点为D (1,0). 所以直线MN 必过x 轴上的一定点D (1,0).分析:怎么样?目瞪口呆吧.应该说,一点也不难,但是很难算对.如果知道点T 的坐标为()m ,9,事实上T 的轨迹是9=x ,可以看成是一条极线:15091=+y x ,所以它一定过定点D (1,0).题4、已知椭圆C的离心率e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。

(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线x my 1=+与椭圆C 交于P 、Q 两点,直线1A P 与2A Q 交于点S 。

试问:当m 变化时,点S 是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。

解法一:(Ⅰ)设椭圆C 的方程为()2222x y 1a b 0a b +=>>。

…………………1分∵a 2=,c e a ==c =222b a c 1=-=。

……………… 4分∴椭圆C 的方程为222x y 14+=。

……………………………………… 5分(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y =+ 直线2A Q的方程是y =交点为(1S . …………7分,若P 1,,Q ⎛⎛ ⎝⎭⎝⎭,由对称性可知交点为(2S 4,. 若点S 在同一条直线上,则直线只能为:x 4=。

…………………8分以下证明对于任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上。

事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=, 记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。

………… 9分设1A P 与交于点00S (4,y ),由011y y ,42x 2=++得1016y y .x 2=+设2A Q 与交于点00S (4,y ),''由022y y ,42x 2'=--得2022y y .x 2'=- (10)1200126y 2y y y x 2x 2'-=-+-()()()()1221126y my 12y my 3x 2x 2--+=+-()()()1212124my y 6y y x 2x 2-+=+- ()()221212m 12m m 4m 40x 2x 2---++==+-,……12分 ∴00y y '=,即0S 与0S '重合,这说明,当m 变化时,点S 恒在定直线:x 4=上。

13分 解法二:(Ⅱ)取m 0,=得P ,Q 1,⎛⎛ ⎝⎭⎝⎭,直线1A P的方程是y =+直线2A Q的方程是y =交点为(1S . ………………………………………… 7分 取m 1,=得()83P ,,Q 0,155⎛⎫- ⎪⎝⎭,直线1A P 的方程是11y x ,63=+直线2A Q 的方程是1y x 1,2=-交点为()2S 4,1.∴若交点S 在同一条直线上,则直线只能为:x 4=。

……………8分以下证明对于任意的m,直线1A P 与直线2A Q 的交点S 均在直线:x 4=上。

事实上,由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=,记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。

………………9分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22yy x 2,x 2=--消去y,得()()1212y yx 2x 2x 2x 2+=-+-… ①以下用分析法证明x 4=时,①式恒成立。

要证明①式恒成立,只需证明12126y 2y ,x 2x 2=+-即证()()12213y my 1y my 3,-=+即证()12122my y 3y y .=+……………… ②∵()1212226m 6m2my y 3y y 0,m 4m 4---+=-=++∴②式恒成立。

这说明,当m 变化时,点S 恒在定直线:x 4=上。

解法三:(Ⅱ)由22x y 14x my 1⎧+=⎪⎨⎪=+⎩得()22my 14y 4,++=即()22m 4y 2my 30++-=。

记()()1122P x ,y ,Q x ,y ,则1212222m 3y y ,y y m 4m 4--+==++。

…………… 6分 1A P 的方程是()11y y x 2,x 2=++2A Q 的方程是()22yy x 2,x 2=-- ……7分由()()1122y y x 2,x 2y y x 2,x 2⎧=+⎪+⎪⎨⎪=-⎪-⎩得()()1212y y x 2x 2,x 2x 2+=-+- …………………9分即()()()()21122112y x 2y x 2x 2y x 2y x 2++-=+--()()()()21122112y my 3y my 12y my 3y my 1++-=+--1221212my y 3y y 23y y +-=+ 112211232m 2m 3y y m 4m 424.2m 3y y m 4--⎛⎫+-- ⎪++⎝⎭==-⎛⎫-+ ⎪+⎝⎭………………………………12分这说明,当m 变化时,点S 恒在定直线:x 4=上。

相关文档
最新文档