初中数学各种公式(完整版)
完整版)初中数学公式大全

完整版)初中数学公式大全一、基础运算法则1.加法法则:a+b=b+a2. 乘法法则:ab = ba3. 结合律:(a+b)+c = a+(b+c);(ab)c = a(bc)4. 分配律:a(b+c) = ab+ac二、整数运算1. 正整数的乘方:a的n次方:an = a × a × ... × a (n个a 连乘)2.负整数的乘方:a的负n次方:a^(-n)=1/(a^n)3.零的乘方:0的n次方(n为正整数):0^n=04.零的乘方:0的0次方:0^0=1三、代数运算1. 同底数幂相乘:ab^n = (ab)^n2. 积的幂:(ab)^n = a^n × b^n3.商的幂:(a/b)^n=(a^n)/(b^n)4.幂的乘方:(a^n)^m=a^(n×m)5.开方:a^(1/n)=n√a6.负指数的表示:a^(-n)=1/(a^n)四、二次方程1. 标准形式:ax^2+bx+c = 0,其中a≠02. 一元二次方程求根公式:x = (-b±√(b^2-4ac))/(2a)3.解的个数:一元二次方程有两个解时,称为有两个不等实数根;有一个解时,称为有两个相等的实数根;无解时,称为无实数根。
4. 判别式:Δ=b^2-4ac当Δ>0时,方程有两个不等实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根。
五、几何公式1.平行线的性质:平行线两边对应角相等、内错角相等、外错角相等、同位角相等。
2.三角形的内角和:三角形的内角和为180°。
3.三角形的边与角的关系:正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a^2 = b^2 + c^2 - 2bc*cosA4.三角形的两边关系:两边之和大于第三边;两边之差小于第三边。
5.等腰三角形的性质:底角相等,腰相等。
六、平面图形1. 长方形:周长P = 2(l + w),面积S = lw2.正方形:周长P=4a,面积S=a^23. 三角形:周长P = a + b + c,面积S = 1/2bh4.梯形:周长P=a+b1+b2+c5.圆:周长C=2πr,面积S=πr^2七、概率与统计1.事件的概率:P(A)=n/N,其中n是事件A发生的次数,N是事件的可能发生的总次数。
初中数学公式大全完整版可打印

初中数学公式大全完整版可打印一、有理数。
1. 有理数加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,( - 3)+(-5)= - 8。
- 异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:3+( - 5)= - 2,5+( - 3)=2。
- 一个数同0相加,仍得这个数。
例如:0 + 3=3。
2. 有理数减法法则。
- 减去一个数,等于加上这个数的相反数。
即a - b=a+( - b)。
例如:5 - 3 =5+( - 3)=2。
3. 有理数乘法法则。
- 两数相乘,同号得正,异号得负,并把绝对值相乘。
例如:3×5 = 15,( - 3)×(-5)=15,3×(-5)= - 15。
- 任何数同0相乘,都得0。
4. 有理数除法法则。
- 除以一个不等于0的数,等于乘这个数的倒数。
即a÷ b=a×(1)/(b)(b≠0)。
- 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
5. 乘方的定义。
- 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a^n中,a 叫做底数,n叫做指数。
例如:2^3=2×2×2 = 8。
二、整式的加减。
1. 单项式。
- 由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如:3x,-5,a都是单项式。
- 单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如:在单项式3x^2中,系数是3,次数是2。
2. 多项式。
- 几个单项式的和叫做多项式。
其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
例如:2x^2+3x - 1,2x^2、3x、-1都是它的项,-1是常数项。
- 多项式里次数最高项的次数,叫做这个多项式的次数。
初中数学各种公式(完整版)

数学公式及性质(完整版)1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(ab )n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6. 一元二次方程对于方程:ax 2+bx +c =0:①求根公式是x △=b 2-4ac 叫做根的判别式。
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
数学初中全部公式

数学初中全部公式
很多初中生在学习数学时,都需要记忆各种公式。
下面是初中数学全部公式,供大家参考:
1. 一元一次方程:ax+b=cx+d
2. 二元一次方程:ax+by=c,dx+ey=f
3. 一元二次方程:ax+bx+c=0
4. 勾股定理:a+b=c
5. 三角形面积公式:S=1/2×底×高
6. 等腰三角形底角公式:x=1/2×(180-底角)
7. 正弦定理:a/sinA=b/sinB=c/sinC
8. 余弦定理:a=b+c-2bc×cosA
9. 正切定理:tanA=sinA/cosA
10. 相似三角形比例公式:a/b=c/d
11. 等差数列通项公式:an=a1+(n-1)d
12. 等比数列通项公式:an=a1×q
13. 平均数公式:(a+b+c+...)/n
14. 中位数公式:(第n/2个数+第n/2+1个数)/2
15. 众数公式:出现次数最多的数
以上是初中数学全部公式,希望能对大家的学习有所帮助。
- 1 -。
初中数学公式大全

初中数学公式大全一、数与运算1.正负数的乘法规则:若两个数的符号相同,则积为正数,若两个数的符号相异,则积为负数。
2.加法的结合律:对任意三个数a、b、c,有(a+b)+c=a+(b+c)。
3.乘法的结合律:对任意三个数a、b、c,有(ab)c=a(bc)。
4.加法的交换律:对任意两个数a、b,有a+b=b+a。
5.乘法的交换律:对任意两个数a、b,有ab=ba。
6.正数、零和负数的乘法:任何一个数与零相乘都得零。
7.乘法的分配律:对任意三个数a、b、c,有a(b+c)=ab+ac。
8.幂的乘积:任何一个数的n次幂与它的m次幂的乘积等于这个数的n+m次幂,即aⁿ×aᵐ=aⁿ⁺ᵐ。
二、代数式1.加法和减法的性质:若幂相等并且底数相等,则可相加或相减。
2.同底数幂乘法:幂相加,底数不变,即aⁿ×aᵐ=aⁿ⁺ᵐ。
3.同底数幂除法:幂相减,底数不变,即aⁿ⁄aᵐ=aⁿ⁻ᵐ。
4.零指数:任何一个非零数的零次幂都等于1,即a⁰=15.负指数:任何一个非零数的负整数次幂等于其倒数的正整数次幂,即a⁻ⁿ=1⁄aⁿ。
6.幂的倒数:任何一个非零数的倒数的n次幂等于它的n次幂的倒数,即(1⁄a)ⁿ=1⁄aⁿ。
7.乘方的乘方:若幂相乘,则指数相乘,底数不变,即(aⁿ)ᵐ=aⁿᵐ。
8.负的平方根:任何一个非负实数的负平方根不存在。
三、分式1.化简分式:约分法则,分子分母同时除以它们的最大公因数。
2.分子因式与分母因式的约去:对分数的分子与分母同时约去它们的因式。
3.通分:分母相同时可通分,即两个分数的分母相等,化简后的两个分数的分子相加即得结果。
4.分数的乘法:两个分数相乘,只要分子与分母分别相乘即可。
5.分数的除法:两个分数相除,只需要将被除数与除数调换位置,然后进行乘法运算即可。
6.分数的加法与减法:两个分数相加减,先通分再进行加减运算即可。
四、方程与不等式1.一元一次方程的解:对于方程ax+b=0,解为x=-b⁄a。
(完整版)初中数学公式大全(绝对经典)

初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
初中数学全套公式

初中数学全套公式初中数学是义务教育的基础学科,其公式和概念的学习是这门课程的核心部分。
以下是一套完整的初中数学公式,这些公式涵盖了初中数学的大部分内容,对于理解和应用数学概念具有重要意义。
一、代数公式1、乘法公式:(a+b)(a-b)=a²-b²2、完全平方公式:a²+2ab+b²=(a+b)²3、平方差公式:a²-b²=(a+b)(a-b)4、立方和公式:a³+b³=(a+b)(a²-ab+b²)5、立方差公式:a³-b³=(a-b)(a²+ab+b²)6、两数和乘两数差:2(a+b)(a-b)=2a²-2b²7、两数平方和:a²+b²=(a+b)²-2ab8、两数和的平方:(a+b)²=a²+2ab+b²9、两数差的平方:(a-b)²=a²-2ab+b²10、幂的乘方:anbn=(ab)n11、积的乘方:anbn=(ab)n12、分式的约分:同时分子分母除以公因式。
13、提公因式法:一般地,如果想要提取一个多项式的公因式,我们把这个多项式的各项都含有的相同字母因式提到括号外面,将多项式化成积的形式,这种分解因式的方法叫做提公因式法。
14、运用公式法:如果一个式子的值等于几个其他式子的值乘积,那么这个式子就叫公式的原式,这几个其他式子就叫这个公式的因式。
如果把一个公式的所有因式分解出来,那么它们就都叫这个公式的因式分解。
二、几何公式1、勾股定理:在一个直角三角形中,斜边的平方等于两条直角边的平方和。
2、平行线间的距离公式:如果两条直线平行,那么一条直线上任意一点到另一条直线的距离相等。
3、三角形的面积公式:一个三角形的面积等于底边乘以高再除以2。
初中数学各种公式(完整版)

初中数学各种公式(完整版) 初中数学公式大全1.乘法与因式分解① $(a+b)(a-b)=a^2-b^2$② $(a\pm b)^2=a^2\pm 2ab+b^2$③ $(a+b)(a^2-ab+b^2)=a^3+b^3$④ $(a-b)(a^2+ab+b^2)=a^3-b^3$a^2+b^2=(a+b)^2-2ab$a-b)^2=(a+b)^2-4ab$2.幂的运算性质① $a^1=a$⑥ $a^{-n}=\frac{1}{a^n}$② $a^{\frac{1}{n}}=\sqrt[n]{a}$③ $(a^m)^n=a^{mn}$④ $a^m\times a^n=a^{m+n}$⑤ $\frac{a^m}{a^n}=a^{m-n}$⑦ $a^0=1(a\neq 0)$特别地:$a^{\frac{1}{2}}=\sqrt{a}$3.二次根式① $\sqrt{a^2}=a(a\geq 0)$② $|\pm a|=|a|$③ $\sqrt{ab}=\sqrt{a}\sqrt{b}$④ $\sqrt{a+b}=\sqrt{a}\sqrt{b}(\text{其中}a>0,b\geq 0)$4.三角不等式a|-|b|\leq |a\pm b|\leq |a|+|b|(\text{定理})$;加强条件:$||a|-|b||\leq |a\pm b|\leq |a|+|b|$也成立,这个不等式也可称为向量的三角不等式(其中$a$,$b$分别为向量$a$和向量$b$);a+b|\leq |a|+|b|$;$|a-b|\leq |a|+|b|$;$|a|\leq b\iff -b\leq a\leq b$;a-b|\geq |a|-|b|$;$-|a|\leq a\leq |a|$;5.某些数列前$n$项之和1+2+3+4+5+6+7+8+9+\cdots+n=\frac{n(n+1)}{2}$;1+3+5+7+9+11+13+15+\cdots+(2n-1)=n^2$;2+4+6+8+10+12+14+\cdots+(2n)=n(n+1)$;1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+\cdots+n^2=\frac{n(n +1)(2n+1)}{6}$;1^3+2^3+3^3+4^3+5^3+6^3+\cdots+n^3=\frac{n^2(n+1)^2} {4}$;1\times 2+2\times 3+3\times 4+4\times 5+5\times 6+6\times 7+\cdots+n(n+1)=\frac{n(n+1)(n+2)}{3}$;6.一元二次方程对于方程:$ax^2+bx+c=0$:①求根公式是$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,其中$\Delta=b^2-4ac$叫做根的判别式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小。 ②余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA。 ③特殊角的三角函数值:sin30º=cos60º= ,sin45º=cos45º= tan30º= ,tan45º=1,tan60º= 。 ,sin60º=cos30º= ,
x1 + x2 + ...去最小值所得的差来反映这组数据的变化范围,用这种方法 得到的差称为极差,即:极差=最大值-最小值;
第 3 页 共 6 页 3
济南初中数学压轴 (公众号)
--------姜姜老师
③方差:数据 x1 、 x 2 ……, xn 的方差为 s 2 ,
济南初中数学压轴 (公众号)
--------姜姜老师
数学各种公式及性质
1. 乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。 2. 幂的运算性质 ①am×an=am+n;②am÷an=am-n;③(am)n=amn;④(ab)n=anbn;⑤( )n= ⑥a-n=
ax 2 bx c 0 的两个实数根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别
式判定: a 有两个交点 ( 0 ) 抛物线与 x 轴相交; b 有一个交点(顶点在 x 轴上) ( 0 ) 抛物线与 x 轴相切; c 没有交点 ( 0 ) 抛物线与 x 轴相离。 ③平行于 x 轴的直线与抛物线的交点 同②一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等, 设纵坐标为 k ,则横坐标是 ax 2 bx c k 的两个实数根。 ④一次函数 y kx nk 0 的图像 l 与二次函数 y ax 2 bx ca 0 的图像 G 的交点,由 方程组
第 1 页 共 6 页 1
济南初中数学压轴 (公众号)
--------姜姜老师
① a 的符号决定抛物线的开口方向:当 a 0 时,开口向上;当 a 0 时,开口向下;
a 相等,抛物线的开口大小、形状相同。
②平行于 y 轴(或重合)的直线记作 x h .特别地, y 轴记作直线 x 0 。 (3).几种特殊的二次函数的图像特征如下: 函数解析式 开口方向 对称轴
则有
14.
直角三角形中的射影定理 直角三角形中的射影定理:如图:Rt△ABC 中,∠ACB=90o,CD⊥AB 于 D, 则有: (1) CD 2 AD BD (2) AC 2 AD AB (3) BC 2 BD AB
15. 圆的有关性质 (1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦; ③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性 质.注:具备①,③时,弦不能是直径。 (2)两条平行弦所夹的弧相等。 (3)圆心角的度数等于它所对的弧的度数。 (4)一条弧所对的圆周角等于它所对的圆心角的一半。 (5)圆周角等于它所对的弧的度数的一半。 (6)同弧或等弧所对的圆周角相等。 (7)在同圆或等圆中,相等的圆周角所对的弧相等。 (8)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦。、 (9)圆内接四边形的对角互补。 16. 三角形的内心与外心 (1)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点。
AB DE AB DE BC EF 。 , , BC EF AC DF AC DF (2)推论:平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线段成比例。 如 图 : △ABC 中 , DE∥BC , DE 与 AB 、 AC 相 交 与 点 D 、 E , 则 有 : AD AE AD AE DE DB EC , , DB EC AB AC BC AB AC
第 2 页 共 6 页 2
济南初中数学压轴 (公众号)
--------姜姜老师
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 y 轴右侧,则
(6).用待定系数法求二次函数的解析式
b 0。 a
①一般式: y ax 2 bx c .已知图像上三点或三对 x 、 y 的值,通常选择一般式. ②顶点式: y ax h k .已知图像的顶点或对称轴,通常选择顶点式。
2
2
直线 x
b 。 2a
2
②配方法:运用配方的方法,将抛物线的解析式化为 y ax h k 的形式,得到顶点为 ( h , k ),对称轴是直线 x h 。 ③运用抛物线的对称性: 由于抛物线是以对称轴为轴的轴对称图形, 对称轴与抛物线的交点 是顶点。
x1 x2 2
第 4 页 共 6 页 4
济南初中数学压轴 (公众号)
--------姜姜老师
移 5 个单位,则坐标变为 A(7,1) 。 12. 多边形内角和公式 多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º 13. 平行线段成比例定理 (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。 如图:a∥b∥c,直线 l1 与 l2 分别与直线 a、b、c 相交与点 A、B、C 和 D、E、F,
2
③交点式:已知图像与 x 轴的交点坐标 x1 、 x2 ,通常选用交点式: y a x x1 x x 2 。 (7).直线与抛物线的交点 ① y 轴与抛物线 y ax 2 bx c 得交点为(0, c )。 ②抛物线与 x 轴的交点。 二次函数 y ax 2 bx c 的图像与 x 轴的两个交点的横坐标 x1 、 x2 ,是对应一元二次方程
x 0 ( y 轴) x 0 ( y 轴)
2
顶点坐标 (0,0) (0, k ) ( h ,0) (h ,k )
b 4ac b 2 ) , 2a 4a
y ax 2 y ax 2 k y ax h
2
当a 0 时 开口向上 当a 0时 开口向下
xh xh b 2a
2
一组数据的方差越大,这组数据的波动越大,越不稳定。 9. 频率与概率 (1)频率 频率= 频数 ,各小组的频数之和等于总数,各小组的频率之和等于 1,频率分布直方图中各
总数
个小长方形的面积为各组频率。 (2)概率 ①如果用 P 表示一个事件 A 发生的概率,则 0≤P(A)≤1; P(必然事件)=1;P(不可能事件)=0; ②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的 概率。 ③大量的重复实验时频率可视为事件发生概率的估计值; 10. 锐角三角形 ①设∠A是△ABC的任一锐角,则∠A的正弦:sinA= ∠A的正切:tanA= .并且sin2A+cos2A=1。 ,∠A的余弦:cosA= ,
④斜坡的坡度:i=
铅垂高度 = .设坡角为α,则i=tanα= 。 水平宽度
11. 平面直角坐标系中的有关知识 (1)对称性:若直角坐标系内一点 P(a,b) ,则 P 关于 x 轴对称的点为 P1(a,-b) ,P 关于 y 轴对称的点为 P2(-a,b) ,关于原点对称的点为 P3(-a,-b) 。 (2)坐标平移:若直角坐标系内一点 P(a,b)向左平移 h 个单位,坐标变为 P(a-h,b) , 向右平移 h 个单位,坐标变为 P(a+h,b) ;向上平移 h 个单位,坐标变为 P(a,b+h) ,向 下平移 h 个单位,坐标变为 P(a,b-h).如:点 A(2,-1)向上平移 2 个单位,再向右平
y ax h k
y ax 2 bx c
(4).求抛物线的顶点、对称轴的方法
x
(
b 4ac b 2 b 4ac b 2 ( , ) ①公式法: y ax bx c a x ,∴顶点是 ,对称轴是 2a 4a 2a 4a
Ax1, 0,Bx2, 0 ,则 AB x1 x2
8. 统计初步 (1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽 取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出 现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处 在最中间的一个数(或两个数的平均数)叫做这组数据的中位数. (2)公式:设有 n 个数 x1,x2,…,xn,那么: ①平均数为: x =
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。 5. 一次函数 一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标,称为截距)。 ①当k>0时,y随x的增大而增大(直线从左向右上升); ②当k<0时,y随x的增大而减小(直线从左向右下降); ③特别地:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点。 6. 反比例函数 反比例函数y= (k≠0)的图象叫做双曲线。 ①当k>0时,双曲线在一、三象限(在每一象限内,从左向右降); ②当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升)。 7. 二次函数 (1).定义:一般地,如果 y ax 2 bx c(a, b, c 是常数, a 0) ,那么 y 叫做 x 的二次函数。 (2).抛物线的三要素:开口方向、对称轴、顶点。