解一元一次方程等式的性质与方程的简单变形

合集下载

新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1

新华东师大版七年级数学下册《6章 一元一次方程  6.2 解一元一次方程  等式的性质与方程的简单变形》教案_1

1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。

华东师版七年级数学下教学工作总结

华东师版七年级数学下教学工作总结

华东师版七年级数学下教学工作总结2.数学七年级下华东师范大学出版社目录概论第6章一元一次方程6.1 从实际问题到方程6.2 解一元一次方程1.等式的性质与方程的简单变形2.解一元一次方程阅读材料丢番图的墓志铭与方程6.3 实践与探索阅读材料2=3吗小结复习题第7章二元一次方程组7.1 二元一次方程组和它的解7.2 二元一次方程组的解法*7.3 三元一次方程组及其解法7.3 实践与探索阅读材料鸡兔同笼小结复习题第8章一元一次不等式8.1 认识不等式8.2 解一元一次不等式1.不等式的解集2.不等式的简单变形3.解一元一次不等式8.3 一元一次不等式组阅读材料等号与不等号的由来小结复习题综合与实践球赛出线问题第9章多边形9.1 三角形1.认识三角形2.三角形的内角和与外角和3.三角形的三边关系9.2 多边形的内角和与外角和9.3 用正多边形铺设地面1.用相同的正多边形2.用多种正多边形阅读材料多姿多彩的图案小结复习题第10章轴对称、平移与旋转10.1 轴对称1.生活中的轴对称阅读材料剪五角星2.轴对称的再认识3.画轴对称图形4.设计轴对称图形阅读材料Times and Dates 10.2 平移1.图形的平移2.平移的特征10.3 旋转1.图形的旋转2.旋转的特征3.旋转对称图形阅读材料古建筑中的旋转对称图形——从敦煌洞窟到欧洲教堂10.4 中心对称10.5 图形的全等小结复习题综合与实践图案设计数学实验附图方格图格点图初一(七年级)下册数学班教学总结本学期,本人担任七年级166班数学学科的教学工作。

一学期来,本人以学校及各处组工作计划为指导;以加强师德师风建设,提高师德水平为重点,以提高教育教学成绩为中心,以深化课改实验工作为动力,认真履行岗位职责,较好地完成了工作目标任务,现将一学期来的工作总结如下:一、加强学习,努力提高自身素质一方面,认真学习教师职业道德规范、“三个代表”重要思想,不断提高自己的道德修养和政治理论水平;另一方面,认真学习新课改理论,努力提高业务能力,参加自学考试,努力提高自己的学历水平。

2024春七年级数学下册第六章一元一次方程6.2解一元一次方程1等式的性质与方程的简单变形第3课时

2024春七年级数学下册第六章一元一次方程6.2解一元一次方程1等式的性质与方程的简单变形第3课时
的题目如图所示,他运用初中所学的数学知识,
很快就完成了这个游戏,则m=
39 .

【点拨】
设第1列中间的数为x,
则三个数之和为16+4+x=20+x,
∴m=16+13+10=39,故答案为39 .
易错点忽视方程的变形规则2中不等于0的条件而致错
6.若a,b互为相反数,则关于x的方程ax+b=0(a≠0)的解为
( A )
A.x=1
B.x=-1
C.x=0.5
D.任何数
利用方程的变形规则解方程
7.(母题:教材P8练习T1)解下列方程.
(1)7x=3x-6;
【解】7x=3x-6,移项,得7x-3x=-6,合并同类

项,得4x=-6,系数化为1,得x=- .

(2)2x-1=7+x;
【解】2x-1=7+x,移项,得2x-x=7+1,合并同类
a2+2ab,如3※(-2)=32+2×3×(-2)=-3.
(1)试求(-2)※3的值;
【解】(-2)※3=(-2)2+2×(-2)×3=4-12=-8.
(2)若(-5)※x=-2-x,求x的值.
【解】由(-5)※x=-2-x,得(-5)2+2×(-5)x=-2-x,
25-10x=-2-x,移项,得x-10x=-2-25,合并同类
=2有相同的解,则m等于( B )
A.-2
B.2
C.-3
D.3
5.[2023·德阳]在初中数学文化节游园活动中,被称为“数学
小王子”的王小明参加了“智取九宫格”游戏比赛,活动
规则是:在九宫格中,除了已经填写的三个数之外的每一
个方格中,填入一个数,使每一横行、每一竖列以及两条
对角线上的3个数之和分别相等,且均为m.王小明抽取到

一元一次方程讲义

一元一次方程讲义

一元一次方程一、等式及其性质1、等式用等号表示相等关系的式子叫等式。

如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。

注意:等式中一定含有等号。

2、等式的性质等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。

a=b ,那么a ±c=b ±c等式性质2 等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

a=b ,那么ac=bc ;如果a=b ,那么a /c=b /c (c ≠0)。

注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。

思考:回答下列问题:(1)从a+b=b+c ,能否能到a=c ,为什么?(2) 从a-b=b-c ,能否能到a=c ,为什么?(3) 从ab=bc ,能否能到a=c ,为什么?(4) 从a/b=c/b ,能否能到a=c ,为什么?(5)从xy=1,能否能到x=1/y ,为什么?二、解一元一次方程的步骤:①去分母; ⇐(没有分母的项不要漏乘;去掉分数线,同时要把分子加上括号) ②去括号; ⇐(当括号外面是负号,去掉括号后,要注意变号)③移项; ⇐(移项要注意变号)④合并同类项; ⇐(如果方程中有同类项,一定要合并同类项)⑤系数化为1; ⇐(记得每一项都要除系数) 例:解一元一次方程3122133---=+x x x三、一元一次方程解的实际应用1、列方程解应用题的步骤(1)审:明确已知什么,求什么及基本关系。

找出能表示题目全部含义的相等关系(2)设:设未知数。

可直接设,也可间接设,要尽量使列出的方程简单。

①直接设未知数:题目求什么就设什么。

②间接设未知数:设的未知数不是题目直接求的量。

③设辅助未知数:所设未知数仅作为题目中量与量之间关系的桥梁,它在解方程的过程中会自然消去(3)列:根据等量关系列方程。

(4)解:解方程(5)验:检验方程的解和解是否符合实际问题。

华师版七年级数学下册优秀课件 第6章 一元一次方程 解一元一次方程 第2课时 用方程的变形规则解方程

华师版七年级数学下册优秀课件 第6章 一元一次方程 解一元一次方程 第2课时 用方程的变形规则解方程

知识点❸ 将未知数的系数化为 1 4.由 2x-1=0 得到 x=12 ,可分两步,按步骤完成下列填空: 第一步:根据方程的变形规则__1__,方程两边_都__加__上__1_,得到 2x=1;
第二步:根据方程的变形规则__2__,方程两边都__乘 ___以__12__(或__都__除__以___2_),得到 x =12 .
11.小红在解关于x的方程3a=2x+15时,在移项的过程中2x没有改变符号, 得到的方程的解为x=3,求a的值及原方程的解.
解:由题意得3a+2x=15,把x=3代入得3a+6=15,解得a=3,所以原方程 为9=2x+15,解得x=-3
C.由12 y=2,得 y=4
D.由14 x+1=0,得 x=3
7.(教材 P6 例 1、例 2 变式)解方程:
(1)4x=3x-5; (2)-32 x=32 .
解:x=-5解:x=-1源自8.方程3x-4=1+2x,移项,得3x-2x=1+4,也可以理解为方程两边同时
( A) A.加上(-2x+4) B.减去(-2x+4) C.加上(2x+4) D.减去(2x+4) 9.(南阳邓州市期中)如果3ab2m-1与9abm+1是同类项,那么m等于(A ) A.2 B.1 C.-1 D.0
10.已知方程12 x=-2 的解比关于 x 的方程 5x-2a=0 的解大 2,求 a 的值.
解:由12 x=-2,得 x=-4,因为方程12 x=-2 的解比关于 x 的方程 5x- 2a=0 的解大 2,所以方程 5x-2a=0 的解为 x=-6,所以 5×(-6)-2a=0, 所以 a=-15
5.下列解方程过程中“系数化为 1”正确的是( D ) A.由 4x=-5,得 x=-45 B.由 3x=-12 ,得 x=-32 C.由 0.3x=1,得 x=130 D.由-0.5x=-12 ,得 x=1

解一元一次方程—方程的简单变形

解一元一次方程—方程的简单变形

用等式的性质解一元一次方程
例2 解下列方程: 2 解下列方程
(1) 4 x = –1 + 3 x (2)
x = –1
用等式的性质解一元一次方程
(举一例)解:(1)两边都减去3x,得 4x-3x=-1+3x-3x 合并同类项,得 x=-1
检验: 把x=-1代入方程4x=-1+3x中, 左边=4×(-1)=-4,右边=-1+3×(-1)=-4 因为左边=右边,所以x=-1是方程的解。
1xx2623xx34xx312xx346xx221xx8xx3xx6xx13这节课我们利用天平原理得出了等式的这节课我们利用天平原理得出了等式的两个性质并初步学习了用等式的两个性质两个性质并初步学习了用等式的两个性质两个性质并初步学习了用等式的两个性质两个性质并初步学习了用等式的两个性质解一元一次方程
等式的基本性质2: 等式的基本性质 : 等式两边都乘或除以同一 等式两边都乘 除以同一 个不等于0的数, 个不等于 的数,所得的结 的数 果仍是等式。 果仍是等式。
用等式的性质解一元一次方程
例1 解下列方程 1 解下列方程: (1) x + 5 = 2 (2) –2 x = 4
把求出的解代 入原方程,可 怎样检验 以检验解方程 解方程是 是否正确 否正确?
解 题 后 的 反 思
1.你是怎么解的?每一步的依据是什么? 还有其他解法吗? 2.怎样才叫做“方程解完了”? 3.使用等式的两个性质对方程两边进行 “同加减”、“同乘除”的目的是什么? 求方程的解就是将方程变形为x = a x a的形式
小 结:
问题一:能这样解方程吗?下面的解法错在 哪里? 解方程 4x = 2x x x 解: 方程两边都除以x , 得 4=2 x 问题二:你能利用等式性质把“-1= x”变形 为 “x = -1 ”吗? x

6.2.1等式的性质与方程的简单变形

6.2.1等式的性质与方程的简单变形

b
等式的左边
a
等式的右边
等号
a
b
+

a c c
c
b
c
等式的基本性质1:等式两边都加上(或都减去)同一个数 或同一个整式,所得结果仍是等式. 如果a=b,那么a±c=b±c
a
b
a a a
×3 ?
b b b
÷3 ?
等式的基本性质2:等式两边都乘以(或都除以)同一
个数(除数不能为0),所得结果仍是等式.
砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1
个砝码A与 个砝码C的质量相等.
【解析】由题意得A=B+C,A+B=3C,解得A=2C,即1≠0 4.如果a=b, 且 ,则c应满足的条件是_________. c c
5.解方程
(1)4x - 2 = 2; x=1 1 (2) x + 2 = 6. x=8 2
不正确.左边减去6,右边加上6.运算符号不一致.
(3)由m=n,得m-2x2=n-2x2
正确.依据:等式基本性质1:等式两边同时减去2x2.
(4)由2x=x-5,得2x+x=-5
不正确.左边加x,右边减去x.运算符号不一致
(5)由x=y,y=5.3,得x=5.3
正确.等式的传递性.
(6)由-2=x,得x=-2
3 5 两边都除以 ,得 y 2 3
解:(1) 10m+5= 17m-5-2m
移项,得
10m - 17m+2m = -5 -5

-5m = -10
m = 2
两边都除以-5得
• • • • •
解下列方程: (1) 4x = 3x-4 (3) 3x+2= 4x

七年级数学下第6章一元一次方程6.2解一元一次方程6.21等式的性质与方程的简单变形第2课时

七年级数学下第6章一元一次方程6.2解一元一次方程6.21等式的性质与方程的简单变形第2课时

(1)由-3-x=5,得x=5-3.
(2)由4x=-8,得x= 1 .
2
(3)由 1 y =1,得y=-2.
2
(4)由3=-x-2,得x=-2+3.
A.1个
B.2个
C.3个
D.4个
【解析】选A.(1)由-3-x=5,应得x=-5-3;
(2)由4x=-8,应得x=-2; (3)由 1 y =1,得y=-2,正确;
A.由3= 5 x , 得 5 x =3
2
2
B.由6x=3+5x,得6x=5x+3
C.由2x=-1,得x= 1
2
D.由2x-3=x+5,得2x-x=5+3
【解析】选D.移项是将某项从方程的一边移到方程的另一边, 移项需要改变符号.A项没有改变符号;B项没有将某项从方程 一边移到方程的另一边;C项是将系数化为1,不属于移项;D 项的变形是移项.
3
【总结提升】解决方程变形问题的三个步骤 1.观察:观察对比方程的前后变化情况. 2.依据:确定变形的依据. 3.变形:根据变形规则准确变形,在对方程变形时应做到: ①方程两边不能同时乘以0;②变形后的结果是以等号为界, 左边为含未知数的整式,右边是常数项.
知识点 2 利用方程的变形规则解方程 【例2】解下列方程: (1) 1 x -2=7.
33
可得 x 4x 5;
3
3
5 4x, 3
(3)根据方程变形规则1,方程7-6x=5-4x两边同时加4x-7,
可得-6x+4x=5-7;
(4)根据方程变形规则1,方程
1 x 可1 ,得
22
x 1x 5 1.
2
2
x1 两1x边同5 时加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档