开封市中考数学二模试卷

合集下载

河南省开封市中考数学二模试卷

河南省开封市中考数学二模试卷

河南省开封市中考数学二模试卷姓名:________ 班级:________ 成绩:________ 一、选择题 (共12题;共24分)1. (2分)除以一个数的商是-1,这个数是()A .B .C .D .2. (2分)2cos60°的值是()A .B .C .D . 13. (2分)(2017·武汉模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2012·鞍山) 据分析,到2015年左右,我国纯电驱动的新能源汽车销量预计达到250000辆,250000用科学记数法表示为()A . 2.5×106B . 2.5×104C . 2.5×10﹣4D . 2.5×1055. (2分)(2017·莲池模拟) 下列四幅图均由五个全等的小正方体堆成,其中主视图与其他三个不同的是()A .B .C .D .6. (2分)(2018·昆明) 黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算﹣1的值()A . 在1.1和1.2之间B . 在1.2和1.3之间C . 在1.3和1.4之间D . 在1.4和1.5之间7. (2分) (2020八下·永春期末) 计算的结果为()A .B .C .D .8. (2分)三角形两边的长分别是4和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的周长是()A . 20B . 20或16C . 16D . 18或219. (2分) A为数轴上表示-1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为()A . 3B . 1C . -3D . 1或-310. (2分)对反比例函数,下列说法不正确的是()A . 它的图像在第一、三象限B . 点(-1,-4)在它的图像上C . 当x<0时,y随x的增大而减小D . 当x>0时,y随x的增大而增大11. (2分)(2017·市中区模拟) 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A . y=x+5B . y=x+10C . y=﹣x+5D . y=﹣x+1012. (2分)下列抛物线中,在开口向下的抛物线中开口最大的是()A . y=x2B . y=﹣ x2C . y= x2D . y=﹣ x2二、填空题 (共6题;共20分)13. (1分) (2019七下·港南期中) 计算: =________.14. (1分) (2020八下·南康月考) 计算: ________.15. (1分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:30≤t≤3535<t≤4040<t≤4545<t≤50合计公交车用时公交车用时的频数线路A59151166124500B5050122278500C4526516723500早高峰期间,乘坐________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.16. (1分) (2017八上·东台期末) 如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y 轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标________.Array17. (1分)如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是________ (填写序号).18. (15分)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.(1) P、Q两点从出发开始到几秒时,四边形APQD为长方形?(2) P、Q两点从出发开始到几秒时?四边形PBCQ的面积为33cm2;(3) P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.三、解答题 (共7题;共51分)19. (5分)(2018·汕头模拟) 解不等式组,并将解集在数轴上表示出来.20. (11分)(2020·蠡县模拟) 某学校组织了一次体育测试,测试项目有A“立定跳远”、B“掷实心球”、C“仰卧起坐”、D“100米跑”、E“800米跑”.规定:每名学生测试三项,其中A、B为必测项目,第三项在C、D、E中随机抽取,每项10分(成绩均为整数且不低于0分).甲乙(1)完成A、B必测项目后,用列表法,求甲、乙两同学第三项抽取不同项目的概率;(2)某班有6名男生抽到了E“800米跑”项目,他们的成绩分别(单位:分)为:x , 6,7,8,8,9.已知这组成绩的平均数和中位数相等,且x不是这组成绩中最高的,则x=________;(3)该班学生丙因病错过了测试,补测抽到了E“800米跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比原来的平均数小,则丙同学“800米跑”的成绩为多少?21. (5分)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.求证:AE平分∠CAB;22. (5分)(2017·揭西模拟) 如图,某校数学兴趣小组为测得大厦AB的高度,在大厦前的平地上选择一点C,测得大厦顶端A的仰角为30°,再向大厦方向前进80米,到达点D处(C,D,B三点在同一直线上),又测得大厦顶端A的仰角为45°,请你计算该大厦的高度.(精确到0.1米,参考数据:≈1.414,≈1.732)23. (15分)(2017·湖州竞赛) 如图,直线y=kx-3与x轴、y轴分别交于点B,C, = .(1)求点B坐标和k值;(2)若点A(x,y)是直线y=kx-3上在第一象限内的一个动点,当点A在运动过程中,试写出△AOB的面积S 与x的函数关系式(不要求写自变量范围);并进一步求出点A的坐标为多少时,△AOB的面积为?(3)在上述条件下,x轴上是否存在点P,使△AOP为等腰三角形?若存在,请写出满足条件的所有P点坐标;若不存在,请说明理由.24. (5分)如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形纸片的两条对边上,如果∠MEF=90°,∠EMF=30°,AB∥CD,∠1=28°,求∠2的度数.25. (5分) (2017九上·东丽期末) 已知:抛物线经过、两点,顶点为.求:(Ⅰ)求,的值;(Ⅱ)求△ 的面积.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共20分)13-1、14-1、15-1、16-1、17-1、18-1、18-2、18-3、三、解答题 (共7题;共51分) 19-1、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、25-1、。

河南省开封市中招第二次模拟考试数学试卷及答案

河南省开封市中招第二次模拟考试数学试卷及答案

河南省开封市中招第二次模拟考试数学试题考生注意:1.本试卷共8页,三大题,满分120分,考试时间100分钟。

2.请用黑色笔直接答在答题卡上。

3.答卷前将密封线内的项目填写清楚。

一、选择题(本大题共8题,每小题3分.共24分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上。

1.|-3|的相反数是 ( ) A .3 B .-3 C .31 D .-31 2. ,我国筹备成立亚洲基础设旌银行(亚投行)。

据统计,至年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000 美元基建,将8 000 000 000 000用科学记效法表示应为 ( ) A . 08×1013 B .8×l013 C .8×1012 D .80×l011 3.下列几何体的主视图是三角形的是 ( )4.如右图,△ABC 中,∠A=90°,点D 在AC 边上,DE ∥BC ,若 ∠1=35°,则∠B 的度数为 ( ) A .25° B .35° C .55° D .65° 5.下列计算正确的是A . 3a-2a=lB . a 2 +a 5 =a 7C . (ab)3一ab 3D . a 2· a 4 =a 6 6.如右图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧, 交x 袖于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于 MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标 为(2a ,b+1),则a 与b 的数量关系为 ( ) A .a-b B .2a+b=-1 C .2a- b=l D .2a+b=l7.如右图,在菱形ABCD 中.AB=5,对角线AC=6.若过点A 作AE ⊥ BC ,垂足为E ,则AE 的长为 ( ) A .4 B .5 C .512 D .524, 8.如右图矩形ABCD 中.AD=8cm .AB= 6cm.动点E 从点C 开始 沿边CB 向点B 以2cm /s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止,如 图可得到矩形CFHE .设运动时间为x(单位:s).此时矩形ABCD去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图 象表示大致是下图中的 ( )二、填空题(本大题共有7题.每小题3分,共21分) 9.-32+38-+()2-5= .10.分式方程3932-+-x xx =1的解是 11.如右图,点B 在x 轴上,∠ABO=90°,∠A= 30°,OA=4,将 △OAB 绕点O 按顺时针方向旋转120°得到△OA'B ’,则点A ’ 的坐标是 。

2024年河南省开封市九年级中招第二次模拟考试数学试题(解析版)

2024年河南省开封市九年级中招第二次模拟考试数学试题(解析版)

2024 年中招第二次模拟考试数 学 试 题注意事项:1.本试题卷共6页,三个大题,满分 120分,考试时间 100分钟.2.试题卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面指定的位置.一、选择题(每小题3分,共30分)下列各题均有四个答案,其中只有一个是正确的.1.下列各数中,与相加等于0的数是( )A. 2 B. C.D. 【答案】B 【解析】【分析】此题考查了绝对值,有理数的加法,正确掌握绝对值的性质是解题关键.直接利用绝对值的性质化简,再利用有理数的加法得出答案.【详解】解:∵,∴与相加等于0的数是.故选:B .2. 如图所示是一个物体的三视图,则这个物体可以是( )A. B.2-2-1212-22-=2-2-C. D.【答案】C 【解析】【分析】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 根据三视图的定义逐项分析即可.【详解】A .左视图不符合题意,故不正确;B .俯视图与左视图与题意不符,故不正确;C .符合题意,正确;D .俯视图不符合题意,故不正确.故选C .3. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量仅有克,数据用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查了科学记数法,科学记数法的表现形式为的形式,其中,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:,故选:C .4. 将一副三角尺如图摆放,点 D 在 上,延长交的延长线于点F ,,则的度数是()0.0000000760.00000007670.7610-⨯77.610-⨯87.610-⨯97610-⨯10n a ⨯110a ≤<80.0000000767.610-⨯=AC EA CB 903045ABC ADE C E ∠=∠=︒∠=︒∠=︒,,F ∠A. B. C. D. 【答案】B 【解析】【分析】本题考查三角板中的角度计算,直角三角形的性质等知识,根据直角三角形互余及平角的定义即可求解.【详解】解:如图,,,,,,,,.故选:B .5. 数形结合是我们解决数学问题常用的思想方法.如图,一次函数与 (m ,n 为常数,)的图象相交于点,则不等式的解集在数轴上表示正确的是( )10︒15︒20︒25︒30,90C ABC ∠=︒∠=︒ 60BAC ∴∠=︒45,90E ABC ∠=︒∠=︒ 45EAD ∴∠=︒180FAB BAC EAD ∠+∠+∠=︒ 180604575FAB ∴∠=︒-︒-︒=︒90,90ABF F FAB ∠=︒∠+∠=︒ 907515F ∠=︒-︒=︒=1y x --y mx n =+0m ≠(1)2-,1x mx n --<+A. B. C.D.【答案】A 【解析】【分析】本题考查的是一次函数与一元一次不等式,在数轴上表示不等式的解集,能利用数形结合求出不等式的解集是解题的关键.直接根据一次函数的图象即可得出结论.【详解】解:由一次函数的图象可知,当时,一次函数的图象在一次函数的图象的下方,关于的不等式的解集是.在数轴上表示的解集,只有选项A 符合,故选:A6. 如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有 ( )A. 1种B. 2种C. 4种D. 无数种【答案】D 【解析】【分析】根据正方形的性质即可解答.【详解】解:由正方形的对称性可知,只要将十字架交点放在正方形的中心,转动任意角度,都能将正方形分成面积相等的四部分,则修路的方法有无数种,故选:D .【点睛】本题考查了正方形的性质,解题关键在于理解正方形的性质.7. 若关于x 的一元二次方程 有两个不相等的实数根,则a 的值可以是( )A.B. 0C.D. 【答案】A 【解析】【分析】本题考查了一元二次方程根的情况,根据一元二次方程根的情况,可得,解出的1x >=1y x --y mx n =+∴x 1x mx n --<+1x >1x >²210ax x --=1-2-440a ∆=+>a取值范围,即可进行判断.【详解】解:根据题意,得,解得,,,故选:A .8. 小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A. B.C. D.【答案】A 【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分钟,路程600米,s 从0增加到600米,t 从0到10分,对应图像为在凉亭休息10分钟,t 从10分到20分,s 保持600米不变,对应图像为()441440a a ∆=-⨯-=+>1a >-0a ≠ a ∴从凉亭到公园,用时间10分钟,路程600米,t 从20分到30分,s 从600米增加到1200米,对应图像为故选:A .【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.9. 如图,点是反比例函数的图象与的一个交点,图中阴影部分的面积为,则反比例函数的解析式为( )A. B. C. D. 【答案】D 【解析】【分析】本题考查反比例函数图象的对称性的知识点,根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据在反比例函数的图象上,以及在圆上,即可求得的值.【详解】解:设圆的半径是,根据圆的对称性以及反比例函数的对称性可得:阴影部分的面积等于圆的面积的,∴,),Aa ky x=O 4π2y x=y =4y x=y =14A k r 142144r ππ=解得:.∵点是反比例与在第三象限的一个交点,.∴且∴,∴,则反比例函数的解析式是:故选D .10. 如图,在中,,,,点 P 从点A 出发,沿向点C 以的速度运动,同时点 Q 从点C 出发,沿向点B 以的速度运动(当点 Q 运动到点 B 时,点 P ,Q 同时停止运动).在运动过程中,四边形的面积最小为( )A.B.C.D.【答案】C 【解析】【分析】本题考查了二次函数的应用,勾股定理,列函数关系是解题的关键.先根据勾股定理求出的长,再设点 P 运动时间为t ,四边形的面积为y ,根据题意表示出y 与t 的函数关系式,进一步利用二次函数的性质即可求解.【详解】解:由题可知,是直角三角形,∴,设点 P 运动时间为t ,四边形的面积为y ,则,4r =),Aa ky x=O 0a <2k =24OA r a ====2a =-()22k =-=y =ABC 90C ∠=︒4cm BC =5cm AB =AC 1cm/s CB 2cm/s PABQ 215cm 229cm 22154cm 29cm 4AC PABQ ABC 3AC ==PABQ 1122y AC BC CQ CP =⋅⋅-⋅⋅∴,则当时,y 最小为.故选:C .二、填空题(每小题3 分,共15 分)11. 北京冬季里某一天的气温为,的含义是 ________ .【答案】零下【解析】【分析】本题考查了负数的定义,根据温度的定义,联系生活,想想我们看过的天气预报,从而想到含义.【详解】解:含义是零下.故答案为:零下.12. 不等式组 的正整数解的和为 ________.【答案】3【解析】【分析】本题考查了解一元一次不等式组,熟练运用不等式性质解一元一次不等式是解题的关键.先求出不等式组的解集,再确定正整数解,最后进行计算即可.【详解】解:解不等式①,得解不等式②,得∴不等式组的解集为:∴正整数解为1,2即故答案为:3.13. 某校“综合与实践”小组为了解全校2400名学生的读书情况,随机抽取部分学生进行问卷调查,绘制了如图所示的统计图:()21131534232224y t t t ⎛⎫=⨯⨯-⋅⋅-=-+ ⎪⎝⎭32t =1543~3-℃℃3-℃3℃3℃3℃123212x x -≥-⎧⎪⎨+>-⎪⎩123212x x -≥-⎧⎪⎨+>-⎪⎩①②2x ≤4x >-42x -<≤123+=调查内容为:您平均每周阅读课外书的时间大约是(以下四个选项只能单选,每项含最小值,不含最大值)_________A .8小时及以上B .6~8小时C .4~6小时D .0~4 小时估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为 _______________ 名【答案】1152【解析】【分析】本题主要考查了用样本估计总体,扇形统计图,用2400乘以样本中平均每周阅读课外书时间在“6小时及以上”的人数占比即可得到答案.【详解】解:名,∴估计该校2400名学生中,平均每周阅读课外书时间在“6小时及以上”的人数为名故答案为:.14. 我国古代《四元玉鉴》中记载二果问价问题,其内容如下:九百九十九文钱,甜果苦果买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x 个,买苦果y 个,根据题意所列方程组是______.【答案】【解析】【分析】设买甜果x 个,买苦果y 个,根据“九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果”,列出方程组,即可求解.【详解】解:设买甜果x 个,买苦果y个,根据题意得:()240016%32%1152⨯+=11521152100011499997x y x y +=⎧⎪⎨+=⎪⎩.故答案为:【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确列出方程组是解题的关键.15. 如图所示,在中,,,是的中位线,是边上一点,,是线段上的一个动点,连接,相交于点.若是直角三角形,则的长是__________ .【答案】或【解析】【分析】由图可知,在中,的度数是一个定值,且不为直角.故当或时,是直角三角形.因此,本题需要按以下两种情况分别求解.当和当两种情况求解即可.【详解】∵,∴,,当时,则.过点作,垂足为.如图100011499997x y x y +=⎧⎪⎨+=⎪⎩100011499997x y x y +=⎧⎪⎨+=⎪⎩ABC 45A B ∠∠==︒16AB =EF ABC D AB 2AD =P DB EP DF O DOP OE 165ODP ODP ∠ODP ∠90OPD ∠=︒90DOP ∠=︒ODP 90OPD ∠=︒90DOP ∠=︒45A B ∠∠==︒180454590ACB ∠=︒-︒-︒=︒CA CB =①90OPD ∠=︒EP AB ⊥F FN AB ⊥N ()∵在中,,,,,∴在中,∵是中位线,∴∴在中,,∵,,,∴.∵,,∴在中,,∵是的中位线,,∴,,∴,即,∴,∴在中,.当时,则.过点作,垂足为.如图∵,,的Rt CAB 90C ∠=︒CA CB =16AB =45A B ∠∠==︒Rt CAB cos cos 4516AC BC AB A AB ==⋅=⋅︒==EF CAB 1122BF BC ==⨯=Rt BNF sin sin 454BN FN BF B BC ==⋅=⋅︒==2AD =16AB =4NB =162410DN AB AD NB =--=--=4FN =10DN =Rt DNF 42tan 105FN FDN DN ∠===EF CAB 16AB =1116822EF AB ==⨯=EF AB ∥EFD FDN ∠∠=EFO FDN ∠∠=2tan tan 5FDN EFO ∠=∠=Rt OEF 216tan 855OE EF EFO =⋅∠=⨯=②90DOP ∠=︒EP DF ⊥F FN AB ⊥N ()4FN =10DN =∴在中,,∴在中,,∵,∴,∵,∴在中,综上所述,的长是.故答案为:.【点睛】在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解.另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、解答题(本大题共8个小题,共75分)16. 先化简,再求值∶ 其中.解:原式……解:原式……乙同学(1)甲同学解法的依据是 ,乙同学解法的依据是 ;(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.Rt DNF DF ===Rt DNF sin FN NDF DF ∠===EFO FDN ∠∠=5sin sin 13DEO EMF ∠=∠=10EF =Rt EOF sin 8OE EF EFO =⋅∠==EO 16516521,11x x x x x x -⎛⎫+⋅ ⎪-+⎝⎭1.x =()()()()()()21111111x x x x x x x x x x⎡⎤+--=+⋅⎢⎥-++-⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅--【答案】(1)②,③(2)见解析【解析】【分析】本题考查了分式的混合运算,根据题目的特点,灵活选用合适的解法是解题的关键.(1)甲同学的解法两个分式先通分依据是分式的基本性质,乙同学根据乘法分配律先算乘法,后算加法,这样简化运算,更简便了.(2)选择甲同学的解法,先通分,再约分化简即可;选择乙同学的解法,先因式分解,再约分,最后进行加法运算即可.【小问1详解】甲同学解法的依据是分式的基本性质,乙同学解法的依据是乘法分配律,故答案为:②,③;【小问2详解】选择甲同学的解法.原式 ;或选择乙同学的解法原式当时,原式17. 2024年3月25日,是第29个全国中小学生安全教育日,为切实增强同学们的安全防范意识和避险能力,保障学生安全,提高学生面临突发安全事件自救自护应变能力,某校在 3月份开展了一系列的安全知识讲座以及相应的安全演练,为了解学生对“安全知识”的掌握情况.学校分别从八年级和九年级随机抽取各40名学生进行测试,并收集了这些学生的测试成绩,整理和分析,研究过程中的部分信息如下:信息一:安全知识测试题共10道题目,每题10分;信息二:九年级成绩的频数分布直方图如下:()()()()()()2111.1111x x x x x x x x x x⎡⎤+--=+⎢⎥-++-⎢⎥⎣⎦()()222212211x x x x x x x x x x x ⎡⎤++--=⋅==⎢⎥-+⎢⎥⎣⎦221111x x x x x x x x--=⋅+⋅-+()()()()111111x x x x x x x x x x+-+-=⋅+⋅-+112x x x =++-=1x=-)212=-=-信息三:八年级平均成绩的计算过程如下:(分)信息四:统计量平均数中位数众数方差九年级82.580n 八年级80.5m 70根据以上信息,解答下列问题:(1) , ;(2)你认为哪个年级的成绩更加稳定?请说明理由;(3)在本次测试中,九年级甲同学和八年级乙同学的成绩均为80分,你认为两人在各自年级中谁的成绩排名更靠前?请说明理由.(4)学校安排七年级主办一期安全知识宣传板报,要求从A .交通安全,B .食品安全,C .消防安全,D .网络与信息安全,E .心理健康与安全中选择两个主题,请用列表或画树状图的方法求七年级选择D 和E 的概率.【答案】(1)75;80(2)九年级的成绩更稳定,理由见解析(3)乙同学的成绩在自己年级排名更靠前,理由见解析(4)七年级选择D 和E 的概率为.【解析】【分析】本题考查列表法或树状图法,以及方差的意义、众数和中位数等知识.(1)根据中位数和众数的定义求解即可;6037017803909100880.5317398⨯+⨯+⨯+⨯+⨯=++++118.75174.75m =n =110(2)根据方差的意义求解即可;(3)根据中位数的意义求解即可;(4)先画树状图,再由概率公式解题即可.【小问1详解】解:八年级成绩第20和21个数分别为:70和80,则八年级成绩的中位数,九年级成绩,80分出现了14次数,次数最多,九年级成绩的众数,故答案为:75;80;【小问2详解】解:九年级1班的成绩更稳定,九年级成绩的方差为,八年级成绩的方差为,九年级方差八年级的方差,九年级的成绩更稳定;【小问3详解】解:九年级成绩的中位数为80,八年级成绩的中位数为75,而甲同学成绩小于该班成绩中位数,而乙同学成绩大于该班成绩中位数,乙同学成绩在该班成绩的排名更靠前;【小问4详解】解:画树状图如下:所有等可能的结果数有20种,其中七年级选择D 和E 的结果数有2个,七年级选择D 和E 的概率为.18. 如图,内接于,是的直径,D 是的中点,连接.7080752m +==80n = 118.75174.75∴<∴ ∴212010==ABC O AB O BCAD(1)请用无刻度的直尺和圆规,过点D 作直线l 垂直于直线(保留作图痕迹,不写作法).(2)若(1)中所作的直线l 与直线交于点E ,与的延长线交于点F .①判断直线与的位置关系,并说明理由.②若,的长为 .【答案】(1)见解析(2)①直线与相切,理由见解析;②【解析】【分析】(1)根据垂线的作图方法画图即可;(2)①连接交于点G ,证明四边形是矩形得,可证直线与相切;②证明,结合可求出,,从而,利用锐角三角函数求出,可得半径,然后根据弧长公式求解即可.【小问1详解】如图,直线l 即为所求,【小问2详解】①如图,连接交于点G ,∵是的直径,∴.∵,∴.∵D 是的中点,AC AC AB EF O DF DA =DE =AD EF O 43πOD BC CEDG 90ODE ∠=︒EF O AFD BAD CAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒120AOD ∠=︒4AB =OD BC AB O 90ACB ∠=︒EF AC ⊥90CED ∠=︒ BC∴,∴四边形是矩形,∴,.∵是的半径,∴直线与相切;②∵D 是的中点,∴.∵,∴,∵,∴,∴,∴.∵,∴,,∴,∴.∵,∴,∴,∴的长为∶.【点睛】本题考查了尺规作图,矩形的判定与性质,垂径定理,切线的判定,等边三角形的判定与性质,解直角三角形,以及弧长公式,正确作出辅助线是解答本题的关键.19. 水龙头关闭不严会造成滴水,为了调查漏水量与漏水时间的关系,某兴趣小组进行以下试验与探究:试验:在滴水的水龙头下放置一个能显示水量的容器量筒,每记录一次容器中的水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表中的一组数据.时间510152025…OD BC ⊥CEDG 90ODE ∠=︒CG DE ==OD O EF O BCBAD CAD ∠=∠OD BC ⊥2BC CG ==DF DA =AFD BAD ∠=∠AFD BAD CAD ∠=∠=∠2ADE BAC BAD ∠=∠=∠90ADE CAD ∠+∠=︒30AFD BAD CAD ∠=∠=∠=︒60BAC ∠=︒260BOD BAD ∠=∠=︒120AOD ∠=︒sin BC BAC AB∠=4AB ==2OA OB == AD 120241803ππ⨯=5min t/min水量173247a 77…(1)探究:根据上表中的数据,请判断和 (,为常数)哪个解析式能准确的反映水量y 与时间t 的函数关系?求出该解析式并写出漏记的a 值;(2)应用:①兴趣小组用量筒进行测量,请估计在第30分钟量筒是否滴满?②成年人每天大约需饮水,请估算这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用天数.【答案】(1)(2)①的量筒没有装满;②81天【解析】【分析】本题考查了反比例函数的应用,以及一次函数的应用,正确列出函数解析式是解答本题的关键.(1)根据表格中的数据特点分析即可;(2)把代入求出y 的值,与比较即可;②求出30天的漏水量,进而可判断可供一位成年人饮用天数.【小问1详解】∵,∴表中的数据不符合.观察表格, 可发现时间t 每增加5分钟, 水量y 增加15mL , 故可得 能正确反映水量y 与时间t 的函数关系.把和代入得,解得 ,∴水量y 与时间t 函数关系.把代入得【小问2详解】的y/mL ()110k y k t≠=2y k t b =+20k ≠2k 100mL 1600mL 32,62y t a =+=100mL 30t =32y t =+100mL 5171032⨯≠⨯()110k y k t≠=y k t b =+₂5,17t y ==10,32t y ==2y k t b =+225171032k b k b +=⎧⎨+=⎩232k b =⎧⎨=⎩32y t =+20,t y a ==32y t =+320262a =⨯+=①把代入得∵∴的量筒没有装满②∵由函数解析式可知每分钟的滴水量为,∴30天滴水量, (天)答:这个水龙头一个月(按30天计)的漏水量可供一位成年人饮用81天.20. 如图①所示的手机平板支架由托板,支撑板和底座构成,如图所示图②是其侧面结构示意图.已知托板长,支撑板长,,托板固定在支撑板顶端点C 处,可绕C 点旋转,支撑板可绕点D 转动.(结果精确到)(1)若,点A 到底座的距离是;(2)为了观看舒适,在(1)中的调整成.再将绕点D 顺时针旋转,恰好使点B 落在直线上,则顺时针旋转旋转的角度为 ,此时点A 到底座的距离与(1)中相比是增大了还是减小了?增大或减小了多少?【答案】(1)(2)30,此时点到底座的距离与(1)中相比减小了.【解析】【分析】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.(1)过点C 作, 垂足为N , 过点A 作,交的延长线于点M ,过点C 作,垂足为F ,则四边形是矩形,从而可得,先在中, 求出的长, 再在中,求出,然后进行计算即可解答;(2)根据题意先画出图形, 然后在中,利用锐角三角函数求出,然后进行计算30t =32y t =+330292y =⨯+=92100<100mL 3mL ()3024603129600mL ⨯⨯⨯=129600160081÷=150mm AB =m CD =60mm BC =AB CD 0.1mm 2.24≈≈≈7560DCB CDE ∠=︒∠=︒,DE mm 75DCB ∠=︒90︒CD DE CD ︒DE 153.5A DE 23.7 mm CN DE ⊥AM DE ⊥ED CF AM ⊥CFMN ,90FM CN FCN =∠=︒Rt CDN △CN Rt AFC △AF Rt DCB △30CDB ∠=︒即可解答.【小问1详解】解:过点作,垂足为,过点作,交的延长线于点,过点作,垂足为,如图:则四边形是矩形,∴,∵,,∴,在中, ,∴,∵,∴,∵,∴,∴,在中,,,∴点到直线的距离为,故答案为:.【小问2详解】解:如图:过点作于点,C CN DE ⊥N A AM DE ⊥ED M C CF AM ⊥F CFMN ,90FM CN FCN =∠=︒150mm AB =60mm BC =90mm AC AB BC =-=Rt CDN△60CD CDE =∠=︒sin6090mm,CN CD ∴=⋅︒==90mm FM CN ==90CND ∠=︒90906030DCN CDN ∠=︒-∠=︒-︒=︒75DCB ∠=︒45BCN DCB DCN ∠=∠-∠=︒180180904545ACF FCN BCN ∠=︒-∠-∠=︒-︒-︒=︒Rt AFC △90mm AC=sin459063.5mm,AF AC ∴=⋅︒==≈9063.5153.5mm AM AF FM ∴=+=+=A DE 153.5mm 153.5A AM DE ⊥M∵,在中,∴旋转的角度为在,∴,∵在中,,∴,∵,∴此时点到底座的距离与(1)中相比减小了.21. 习近平总书记说,读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,决定购买获得茅盾文学奖的甲、乙两种书.已知每本甲种书比每本乙种书多元,若购买相同数量的甲、乙两种书分别需花费元和元.(1)求甲、乙两种书的单价.(2)如果学校决定再次购买甲、乙两种书共本,总费用不超过元,那么该校最多可以购买甲种书多少本?【答案】(1)甲、乙两种书的单价分别为元、元(2)该校最多购买本甲种书【解析】【分析】本题主要考查了分式方程及不等式的应用,读懂题意,正确找出相等关系和不等关系是解题的关键.90DCB ∠=︒Rt DCB△60mm,DC BC ==tan BC CDB CD ∴∠===30,CDB ∴∠=︒CD 603030,=︒-︒=︒Rt DCB △30,CDB ∠=︒9060ABM CDB ∠=︒-∠=︒Rt AMB △150mm AB=sin6015075 1.73129.8mm AM AB =⨯︒==≈⨯≈153.5129.823.7mm -=A DE 23.7mm 10175012501002800352530设甲种书的单价为元,则乙种书的单价为元,根据购买相同数量的甲、乙两种书分别需花费元和元求解即可;设该校购买了甲种书本,则购买了乙种书本,根据购买甲、乙两种书共本,总费用不超过元,列不等式求解即可.【小问1详解】解:设甲种书的单价为元,则乙种书的单价为元,由题意得解得经检验,是原分式方程的解,且符合实际.∴答:甲、乙两种书的单价分别为元、元.【小问2详解】解:设该校购买了甲种书本,则购买了乙种书本,则,解得∶∴该校最多购买本甲种书.22. 根据以下素材,探索并完成任务.探究汽车刹车性能“道路千万条,安全第一条”.刹车系统是车辆行驶安全重要保障,某学习小组研究了刹车性能的相关问题(反应时间忽略不计).素材1刹车时间:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的时间.刹车距离:驾驶员从踩下刹车开始到汽车完全停止,汽车所行驶的距离.汽车研发中心设计一款新型汽车,某兴趣小组成员记录了模拟汽车在公路上以某一速度匀速行驶时的刹车性能测试数据,具体如下:刹车后汽车行驶时间1234素材2刹车后汽车行驶距离27486372素材3该兴趣小组成员发现:()1x ()10x -17501250()2m ()100m -1002800x ()10x -1750125010x x =-35x =35x =10351025x -=-=3525m ()100m -()3525 100 2800m m +-≤30m ≤30()s t ()m y①刹车后汽车行驶距离y (单位:)与行驶时间t (单位:)之间具有函数关系(、a 、b 为常数);②刹车后汽车行驶距离y 随行驶时间t 的增大而增大,当汽车刹车后行驶的距离最远时,汽车完全停止.问题解决:请根据以上信息,完成下列任务.任务一:求 y 关于t 函数解析式.任务二:汽车司机发现正前方处有一个障碍物在路面,立刻刹车,判断该车在不变道的情况下是否会撞到障碍物?请说明理由.【答案】任务一 :;任务二:该车在不变道的情况下不会撞到障碍物.理由见解析【解析】【分析】本题考查二次函数的应用,理解题意,掌握待定系数法是解题的关键.(1)利用待定系数法即可求出y 关于t 的函数解析式;(2)求出(1)中函数的最大值,与比较,即可解决问题.【详解】解∶任务一 :将、代入 得 解得 ∴y 关于 t 的函数解析式为任务二:不会∴当时, 汽车停下, 行驶了,∵∴该车在不变道的情况下不会撞到障碍物.23. 综合与实践问题情境:“综合与实践”课上,李老师进行如下操作,将图①中的矩形纸片沿着对角线剪开,得到两个全等的三角形纸片,表示为和,其中,将和按图②所示的方式摆放,其中点B 与点G 重合(标记为点B ),并将绕点B 旋转,直线、相交于的m s ²y at bt =+0a ≠90m 2330y t t =-+90m ()1,27()2,48²y at bt=+27,4842,a b a b =+⎧⎨=+⎩330.a b =-⎧⎨=⎩2330.y t t =-+()223303575y t t t =-+=--+ 5t =75m 7590<ACB △DEG △90ACB DEG ∠=∠=︒A D ∠=∠ACB △DEG △DEG △DE AC点F .初探发现:(1)如图②,猜想,数量关系是 .深入探究:(2)李老师将图②中的绕点B 继续旋转.①“善思”小组提出猜想:旋转过程中,当点E 落在的内部,如图③,线段,,有一定的数量关系,请你写出他们的猜想,并说明理由.②“智慧”小组也提出:在旋转的过程中,当时,过点A 做于点H ,若给出,,可以求出的长.请你思考此问题,直接写出结果.【答案】(1)(2)①,理由见解析;②或3【解析】分析】(1)通过来证明即可求解.(2)①主要利用推出,进行等量变换即可.②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N ,通过推出,进而得到,利用勾股定理和即可求出,的值,再通过即可求解.Ⅱ.当在下方时,通过,,【CF EF DEG △ACB △AF EF ED DEG △CBE BAC ∠=∠AH DE ⊥3BC =4AC =AH CF EF =AF EF ED +=95ACB DEG △≌△()Rt Rt HL BCF BEF △△≌ACB DEG △≌△AF FC DF EF +=-BE BC AB DE MN DB ⊥BD ACB DEG △≌△DBM D Ð=ÐND NB =cos DN DE D DM DB ∠==AM BM AMH BME △∽△BE BC AB HE ∥AH BE ∥证明四边形是矩形即可求出.小问1详解】解:连接,∵∴,∴∴∴故答案为:.【小问2详解】①由(1)可知∵∴∴∴∴②Ⅰ.当在上方时,设与交点为M ,过点M 作交于点N∵∴,,,【90E H ∠=∠=︒AHEB BF ACB DEG△≌△CB EB =90C DEB ∠=∠=︒90BEF ∠=︒()Rt Rt HL BCF BEF △△≌CF EF=CF EF =CF EF=ACB DEG△≌△AC DE=AF FC DF EF+=-AF EF DF FC DF EF DE+=-=-=AF EF ED+=BE BC AB DE MN DB ⊥BD ACB DEG△≌△CAB D ∠=∠ABC DGE ∠=∠3EG BC ==4DE AC ==∴∴∵∴∴∵∴由勾股定理可得∴∵∴∴∴∵,,∴∴∴Ⅱ.当在下方时,如图:∵∴,, ∴ABC ABE DBE ABE∠-∠=∠-∠CBE DBM∠=∠CBE BAC∠=∠DBM DÐ=ÐMD MB=MN DB⊥ND NB=5AB ==115222ND BD AB ===cos DN DE D DM DB ∠==258DN DB DM DE ⋅==258MD MB ==2515588AM AB BM =-=-=AH DE ⊥BE DE ⊥AMH BME∠=∠AMH BME△∽△AH AM BE DM=153982558AM BE AH BM ⨯⋅===BE BC ACB DEG△≌△CAB EDG ∠=∠ABC DGE ∠=∠ABC DBC DBE DBC∠-∠=∠-∠∴∵∴∴∵,,∴∴∴四边形是矩形∴【点睛】本题考查了全等三角形的性质、相似三角形的性质与判定、勾股定理、三角函数的应用、矩形的性质和判定,适当添加辅助线构造相似三角形是解题的关键.ABD EBC∠=∠CBE BAC∠=∠ABD EDG∠=∠AB HE∥AH DE ⊥BE DE ⊥90E H ∠=∠=︒AH BE∥AHEB 3AH BE ==。

开封市中考数学二模考试试卷

开封市中考数学二模考试试卷

开封市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个潜水员从水面潜入水下60米,然后又上升32米,此时潜水员在()A . 水下28米B . 水下32米C . 水下60米D . 水下92米2. (2分) (2017·西安模拟) 如图,下面几何体由四个大小相同的小立方块组成,则它的左视图是()A .B .C .D .3. (2分)(2020·杭州模拟) 截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为()A . 0.38×106B . 3.8×105C . 38×104D . 3.8×1064. (2分)(2018·遵义模拟) 函数y=+中自变量x的取值范围是()A . x≤2B . x≠-1C . x≤2且x≠0D . x≤2且x≠-15. (2分) (2016八上·海盐期中) 下列图形中,不是轴对称图形的是()A . 线段B . 角C . 等腰三角形D . 有30°角的直角三角形6. (2分)若A为一数,且A=25×76×114 ,则下列选项中所表示的数,何者是A的因子?()A . 24×5B . 77×113C . 24×74×114D . 26×76×1167. (2分)(2019·十堰) 一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分■■则被遮盖的两个数据依次是()A .B .C .D .8. (2分)如图,在中,AB=AC=8,∠A=36°,BD平分交AC于点D,则AD=()A . 4B . 4 -4C . -4 +4D . 4 -4或-4 +49. (2分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分)(2020·河北模拟) 已知抛物线与x轴没有交点,则函数的大致图象是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为________.12. (1分)如x+m与2x+3的乘积中不含x的一次项,则m的值为________ .13. (1分) (2016九上·大悟期中) 在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则点(a,b)在第________象限.14. (1分)如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是________.三、计算题 (共2题;共15分)15. (10分) (2019七下·交城期中)(1)计算(2)求满足条件的x值16. (5分) (2019八上·武汉月考) 化简求值: ,其中a=2,b=-1.四、综合题 (共12题;共80分)17. (7分)(2017·河西模拟) 八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为________度,该班共有学生________人,训练后篮球定时定点投篮平均每个人的进球数是________.(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树状图的方法求恰好选中两名男生的概率.18. (2分)(2016·达州) 如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.以轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航向,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)19. (10分) (2018八下·扬州期中) 如图在平面直角坐标系xOy中,函数()的图象与一次函数的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图像直接写出使得的的取值范围;(3)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.20. (15分)(2012·扬州) 如图1,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H.(1)直接写出点E的坐标:________.(2)求证:AG=CH.(3)如图2,以O为圆心,OC为半径的圆弧交OA与D,若直线GH与弧CD所在的圆相切于矩形内一点F,求直线GH的函数关系式.(4)在(3)的结论下,梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,求⊙P的半径.21. (1分)若关于x的一元二次方程(a≠0)的一个解是,则的值是________22. (1分) (2019八上·嘉荫期末) 当 ________时,关于的分式方程无解23. (1分)(2020·黄冈模拟) 如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EA G=45°;②若DE= a,则AG∥CF;③若E为CD的中点,则△GFC的面积为 a2;④若CF=FG,则;⑤BG•DE+AF•GE =a2.其中正确的是________.(写出所有正确判断的序号)24. (1分)(2017·连云港模拟) 如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为________.25. (1分)(2020·青浦模拟) 小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB =5,DE=4,DF=8,那么AG=________.26. (15分) (2016八下·和平期中) 如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,且线段OA、OC(OA>OC)是方程x2﹣18x+80=0的两根,将边BC折叠,使点B落在边OA 上的点D处.(1)求线段OA、OC的长;(2)求直线CE与x轴交点P的坐标及折痕CE的长;(3)是否存在过点D的直线l,使直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.27. (11分) (2019七上·海安期末) 如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF.将∠BEF 对折,点B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)判断直线EN,ME的位置关系,并说明理由;(2)设∠MEN的平分线EP交边CD于点P,∠MEN的一条三等分线EQ交边CD于点Q.求∠PEQ的度数.28. (15分)(2016·西安模拟) 已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题 (共2题;共15分)15-1、15-2、16-1、四、综合题 (共12题;共80分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。

河南省开封市中考数学二模试卷

河南省开封市中考数学二模试卷

河南省开封市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)﹣2的相反数是()A . 2B . ﹣2C .D . -2. (2分)(2011·常州) 下列计算正确的是()A . a2•a3=a6B . y3÷y3=yC . 3m+3n=6mnD . (x3)2=x63. (2分)(2019·河北) 图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x , S左=x2+x ,则S俯=()A . x2+3x+2B . x2+2C . x2+2x+1D . 2x2+3x4. (2分) (2017七下·商水期末) 若关于x的一元一次不等式组有解,则m的取值范围为()A .B . m≤C .D . m≤5. (2分)(2020·鹤壁模拟) 下列说法正确的是()A . 为了解我国中学生课外阅读的情况,应采取全面调查的方式B . 一组数据1,2,5,5,5,3,3的中位数和众数都是5C . 抛掷一枚硬币100次,一定有50次“正面朝上”D . 若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6. (2分) (2020七下·厦门期末) 如图,OC是∠AOB的平分线,直线.若∠AOB=100°,则∠1=()A . 100°B . 50°C . 130°D . 25°7. (2分) (2019八上·长宁期中) 反比例函数的图象如图所示,以下结论:① 常数m <-1;② 在每个象限内,y随x的增大而增大;③ 若A(-1,h),B(2,k)在图象上,则h<k;④ 若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是()A . ①②B . ②③C . ③④D . ①④8. (2分)如图,△ABC中,点DE分别是ABAC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A . 3个B . 2个C . 1个D . 0个9. (2分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A . 2015πB . 3019.5πC . 3018πD . 3024π10. (2分)下列图形都是由同样大小的黑色三角形按一定规律所组成的,其中第①个图形中一共有个黑色三角形,第②个图形中一共有个黑色三角形,第③个图形中一共有个黑色三角形,…,按此规律排列下去,第⑧个图形中黑色三角形的个数是()A .B .C .D .二、二.填空题 (共8题;共8分)11. (1分)(2015·杭州) 分解因式:m3n﹣4mn=________.12. (1分)七(2)班全体同学准备分成几个小组比赛,若每组7人,就多出3人,若每组8人,就会少5人,若设七(2)班共有x名同学,共分为y个小组,则可列方程组________13. (1分) (2016九下·黑龙江开学考) 太阳的半径约是69000千米,用科学记数法表示约是________千米.14. (1分)(2020·攀枝花) 如图是某校参加各兴趣小组的学生人数分布扇形统计图,已知参加课程兴趣小组的人数为120人,则该校参加各兴趣小组的学生共有________人.15. (1分)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C',连接AA′,若∠1=25°,则∠BAA'的度数是________.16. (1分)已知a、b、c是三角形三边长,且c=5,a、b满足关系式,则△ABC的形状是________三角形.17. (1分)如图,在△ABE中∠AEB=90°,AB=,以AB为边在△ABE的同侧作正方形ABCD,点O为AC 与BD的交点,连接OE,OE=2,点P为AB上一点,将△APE沿直线PE翻折得到△GPE,若PG⊥BE于点F,则BF=________18. (1分) (2017七上·甘井子期末) 如图,点A位于点O北偏西________.三、解答题 (共8题;共83分)19. (20分)计算:(1)a2•a4+(﹣a2)3(2) 4﹣(﹣2)﹣2﹣32÷(3.14﹣π)0(3)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(4)()2012×(﹣3)2013 .20. (5分)先化简再求值:当x= 时,求• ÷ 的值.21. (5分)(2018·舟山) 如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。

河南省开封市中考数学二模考试试卷

河南省开封市中考数学二模考试试卷

河南省开封市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)关于x的方程x2﹣4=0的根是()A . 2B . -2C . 2,﹣2D . 2,2. (2分) (2019九上·玉田期中) 如图,在中,,则的值是()A .B .C .D .3. (2分)若函数的图象经过点(3,-4),则它的图象一定还经过点()A . (3,4)B . (2,6)C . (-12,1)D . (-3,-4)4. (2分)(2019·北京模拟) 如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A . 40°B . 50°C . 80°D . 100°5. (2分)抛物线y=(x+3)2-2的对称轴是()A . 直线x=3B . 直线x=-3C . 直线x=-2D . 直线x=26. (2分)设P是函数y=在第一象限的图像上任意一点,点P关于原点的对称点为P',过P作PA平行于y轴,过P'作P'A平行于x轴,PA与P'A交于A点,则△PAP'的面积()A . 等于2B . 等于4C . 等于8D . 随P点的变化而变化7. (2分)(2018·安徽模拟) 据调查,2014年5月某市的平均房价为7600元/m2 , 2016年同期将达到8200元/m2 ,假设这两年该市房价的年平均增长率为x,,根据题意,所列方程为()A . 7600(1+x%)2=8200B . 7600(1-x%)2=8200C . 7600(1+x)2=8200D . 7600(1-x)2=82008. (2分) (2016九上·江北期末) 下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A . 4B . 3C . 2D . 19. (2分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A . 2B . 3C . 4D . 510. (2分)(2016·石峰模拟) 如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1 ,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.正确的是()A . ①③B . ②③C . ②④D . ③④二、填空题 (共4题;共4分)11. (1分) (2017八下·福州期中) 关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则a的值为________.12. (1分)(2017·眉山) 已知反比例函数y= ,当x<﹣1时,y的取值范围为________.13. (1分) (2018九上·丰润期中) 抛物线y=﹣ x2﹣x的顶点坐标是________.14. (1分)(2019·道外模拟) 如图,AB为⊙O的直径,CD为⊙O的弦,连接AC、AD,若∠BAC=27°,则∠ADC的度数为________度.三、计算题 (共2题;共15分)15. (10分)(2017·凉州模拟) 计算:.16. (5分) 2x2-4x+5=0四、综合题 (共12题;共81分)17. (5分)(2017·玄武模拟) 如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈ ,cos35°≈ ,tan35°≈ ,≈1.7)18. (10分) (2019九上·柘城月考) 如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y 轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△ACP为直角三角形?若存在,有几个?写出所有符合条件的点P的坐标;若不存在,说明理由.19. (10分)如图,点A(m,6)、B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.(1)求m、n的值并写出该反比例函数的解析式.(2)点E在线段CD上,S△ABE=10,求点E的坐标.20. (10分) (2017九上·慈溪期中) 如图,AE是△ABC外接圆O的直径,连结BE,作AD⊥BC于D.(1)求证:△ABE∽△ADC;(2)若AB=8,AC=6,AE=10,求AD的长.21. (1分)(2018·金乡模拟) 如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.22. (1分)(2017·呼兰模拟) 抛物线y=x2﹣2x﹣1的对称轴为________.23. (1分) (2018九上·福田月考) 设a,b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为________.24. (2分) (2019九上·郑州期中) 如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A′,当△A′FC为以FC为直角边的直角三角形时,对应的MA的长为________.25. (1分) (2018九上·衢州期中) 如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D两点,点E为⊙O上一动点,CF⊥AE于F,则弦AB的长度为________;点E在运动过程中,线段FG 的长度的最小值为________.26. (15分)(2018·弥勒模拟) 如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.27. (15分)如图,AB是半圆圆O的直径,C是弧AB的中点,M是弦AC的中点,CH⊥BM,垂足为H.求证(1)∠AHO=90°(2)求证:CH²=AH⋅OH.28. (10分) (2019九上·西城期中) 在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A 在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题 (共2题;共15分)15-1、16-1、四、综合题 (共12题;共81分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

河南省开封市中考数学二模考试试卷

河南省开封市中考数学二模考试试卷

河南省开封市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·高邮模拟) 1不是﹣1的()A . 相反数B . 绝对值C . 倒数D . 平方数2. (2分)(2018·万全模拟) 下列运算正确的是()A . 3a﹣a=3B . a3÷a3=aC . a2•a3=a5D . (a+b)2=a2+b23. (2分)(2017·深圳模拟) 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A . 3.4×10﹣9B . 0.34×10﹣9C . 3.4×10﹣10D . 3.4×10﹣114. (2分)不等式组的解集在数轴上表示为()A .B .C .D .5. (2分) (2019八下·岑溪期末) 如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A . 1B . 2C . 3D . 46. (2分) (2016七上·龙海期末) 把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分染成红色,那么红色部分的面积为()A . 21B . 24C . 33D . 377. (2分)若m为不等于零的实数,则关于x的方程x2+mx﹣m2=0的根的情况是()A . 有两个相等的实数根B . 有两个不等的实数根C . 有两个实数根D . 无实数根8. (2分) (2019九上·鄂尔多斯期中) 某商品原价为200元,为了吸引更多顾客,商场连续两次降价后售价为162元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A .B .C .D .9. (2分) (2015七上·海南期末) 如图,B处在A处的西南方向,C处在A处的南偏东15°方向,若∠ACB=90°,则C处在B处的()A . 北偏东75°方向B . 北偏东65°方向C . 北偏东60°方向D . 北偏东30°方向10. (2分)(2017·潮安模拟) 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF是()A . 4.8B . 5C . 6D . 7.2二、填空题 (共3题;共3分)11. (1分) (2017八下·弥勒期末) 因式分解:2x2﹣8=________.12. (1分) (2017八下·如皋期中) 已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第________象限.13. (1分)(2016·永州) 已知反比例函数y= 的图象经过点A(1,﹣2),则k=________.三、解答题 (共10题;共70分)14. (1分)(2018·鄂尔多斯模拟) 如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF 于N,若DN=1,BM=2,那么MN=________.证明:DN2+BM2=MN2 .15. (5分) (2018九上·于洪期末) 计算: .16. (5分) (2017七下·莒县期末) 七月份某学校计划在七年级开展数学竞赛,去某商店购买奖品,买50支钢笔和20个笔记本需用1200元,买40支同款钢笔和30个同款笔记本需用1100元,老板说下周店庆将对商品打折促销,如果买60支同款钢笔和10个同款笔记本只需花1000元,比不打折少花多少钱?17. (6分)已知M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,.(1)计算:M(5)+M(6)(2)求2M(2016)+M(2017)的值.(3)猜想2M(n)与M(n+1)的关系并说明理由.18. (2分)如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在2的条件下,AC边扫过的面积是________ .19. (5分) (2019九上·西城期中) 2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,,,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,,求此时观光船到大桥段的距离的长(参考数据:,,,,,).20. (10分) (2016八上·鞍山期末) 如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABCM的面积.21. (11分)(2019·哈尔滨模拟) 哈十七中学为了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,请根据两幅统计图中的信息,回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若九年级共有500名学生,请你估计九年级学生中体能测试结果为D等级的学生有多少名?22. (10分) (2019七上·鄞州期末) 已知:如图,长方形ABCD中,AB=4,BC=8,点M是BC边的中点,点P 从点A出发,沿着AB方向运动再过点B沿BM方向运动,到点M停止运动,点Q以同样的速度从点D出发沿着DA方向运动,到点A停止运动.设点P运动的路程为x(1)当x=2时,线段AQ的长是 ________(2)当点P在线段AB上运动时,图中阴影部分的面积会发生改变吗?请你作出判断并说明理由;(3)在点P,Q的运动过程中,是否存在某一时刻,使得BP= DQ?若存在,求出点P的运动路程,若不存在,请说明理由.23. (15分) (2018八上·江都期中) 如图:(1)【问题背景】如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE ≌△AFG,从而得出什么结论.(2)【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏东60°的A处,舰艇乙在指挥中心南偏西20°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以30海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,1小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O之间夹角∠EOF=70°,试求此时两舰艇之间的距离.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4、答案:略5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共3题;共3分)11-1、12-1、13-1、三、解答题 (共10题;共70分)14、答案:略15-1、16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、20、答案:略21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共11 页。

开封市数学中考二模试卷

开封市数学中考二模试卷

开封市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) 5的倒数是()A . ﹣5B . 5C .D .2. (2分) (2016八下·黄冈期中) 下列式子没有意义的是()A .B .C .D .3. (2分)(2014·来宾) 将分式方程 = 去分母后得到的整式方程,正确的是()A . x﹣2=2xB . x2﹣2x=2xC . x﹣2=xD . x=2x﹣44. (2分)一组数据3,2,x,1,2的平均数是2,则这组数据的中位数和众数分别是()A . 3,2B . 2,1C . 2,2.5D . 2,25. (2分) (2019八上·安康月考) 已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是().A .B .C .D .6. (2分) (2019八下·陆川期中) 下列说法中正确的是()A . 两条对角线互相垂直的四边形是菱形B . 两条对角线互相平分的四边形是平行四边形C . 两条对角线相等的四边形是矩形D . 两条对角线互相垂直且相等的四边形是正方形7. (2分)用半径为2cm的半圆围成一个圆锥的侧面,这个圆锥的底面半径为()A . 1cmB . 2cmC . πcmD . 2πcm8. (2分)(2017·黄冈) 已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A . 30°B . 35°C . 45°D . 70°9. (2分) (2020九上·岐山期末) 如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A . 四边形AEDF是平行四边形B . 若∠BAC=90°,则四边形AEDF是矩形C . 若AD⊥BC且AB=AC,则四边形AEDF是菱形D . 若AD平分∠BAC,则四边形AEDF是矩形10. (2分)(2017·孝感模拟) 如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A . (2,﹣1)或(﹣2,1)B . (8,﹣4)或(﹣8,﹣4)C . (2,﹣1)D . (8,﹣4)二、填空题 (共8题;共10分)11. (1分)(2017·蜀山模拟) 把多项式4x2y﹣4xy2﹣x3分解因式的结果是________.12. (1分)(2019·海门模拟) 国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.000002米,将数字0.000002用科学记数法表示________.13. (1分)若点(2,1)在双曲线上,则k的值为________ .14. (1分) (2019八下·吉林期末) 分式与的最简公分母是________.15. (2分)如图,点A1 , A2 , A3 , A4 ,…,An在射线OA上,点B1 , B2 , B3 ,…,Bn―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1 ,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1 ,△A1A2B1 ,△A2A3B2 ,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2 ,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为________ ;面积小于2014的阴影三角形共有________ 个.16. (2分) (2019七上·宜兴月考) 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最少是________个.17. (1分) (2017九上·忻城期中) 如图,点p在反比例y= 的图象上,且OP=4,过点P作PA x 轴于点A,则△OPA的周长等于________.18. (1分)如图,在□ABCD中,点P为边AB上的一点,E,F分别是PD,PC的中点,CD=2.则①EF=________;②设△PEF,△PAD,△PBC的面积分别为S、S1、S2 .已知S=3,则S1+S2=________ .三、解答题 (共10题;共98分)19. (10分)计算(1)(x+5)(x﹣1)+(x﹣2)2(2)(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b)20. (10分) (2019九下·徐州期中)(1)解方程:x2﹣2x﹣1=0.;(2)解不等式组:21. (10分) (2016九上·海淀期中) 在菱形ABCD中,∠BAD=α,E为对角线AC上的一点(不与A,C重合),将射线EB绕点E顺时针旋转β角之后,所得射线与直线AD交于F点.试探究线段EB与EF的数量关系.小宇发现点E的位置,α和β的大小都不确定,于是他从特殊情况开始进行探究.(1)如图1,当α=β=90°时,菱形ABCD是正方形.小宇发现,在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分线的性质可知EM=EN,进而可得△EMF≌△ENB,并由全等三角形的性质得到EB与EF的数量关系为________.(2)如图2,当α=60°,β=120°时,①依题意补全图形;②请帮小宇继续探究(1)的结论是否成立.若成立,请给出证明;若不成立,请举出反例说明;(3)小宇在利用特殊图形得到了一些结论之后,在此基础上对一般的图形进行了探究,设∠ABE=γ,若旋转后所得的线段EF与EB的数量关系满足(1)中的结论,请直接写出角α,β,γ满足的关系:________22. (2分)(2019·上虞模拟) “腹有诗书气自华,阅读路伴我成长”,我区某校学生会以“每天阅读1小时”为问卷主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅末完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)把折线统计图(图1)补充完整;(2)该校共有学生1200名,请估算最喜爱科普类书籍的学生人数.23. (6分)(2020·连云模拟) 某中学为迎接国庆七十周年,矩形了“祖国在我心中”演讲比赛,经预赛,七、八年级各有一名同学进入决赛,九年级有2名同学进入决赛:(1)九年级同学获得第一名的概率;(2)求九年级同学获得前两名的概率.24. (10分)(2020·甘肃) 如图,圆O是的外接圆,其切线与直径的延长线相交于点E,且 .(1)求的度数;(2)若,求圆O的半径.25. (10分) (2018九上·洛宁期末) “天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?26. (15分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开封市中考数学二模试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共6题;共12分)
1. (2分)对于单项式﹣24x2y2z的系数、次数,下列说法正确的是()
A . 系数为﹣2,次数为9
B . 系数为﹣16,次数为5
C . 系数为﹣24 ,次数为4
D . 系数为﹣2,次数为5
2. (2分)(2017·台湾) 计算6x•(3﹣2x)的结果,与下列哪一个式子相同()
A . ﹣12x2+18x
B . ﹣12x2+3
C . 16x
D . 6x
3. (2分)(2019·福州模拟) 下列各式的运算或变形中,用到分配律的是()
A . 2 ×3 =6
B . (ab)2=a2b2
C . 由x+2=5得x=5﹣2
D . 3a+2a=5a
4. (2分)(2020·上海模拟) 关于抛物线的判断,下列说法正确的是()
A . 抛物线的开口方向向上
B . 抛物线的对称轴是直线
C . 抛物线对称轴左侧部分是下降的
D . 抛物线顶点到轴的距离是2
5. (2分)(2020·上海模拟) 如果从货船A测得小岛B在货船A的北偏东30°方向500米处,那么从小岛B 看货船A的位置,此时货船A在小岛B的()
A . 南偏西30°方向500米处
B . 南偏西60°方向500米处
C . 南偏西30°方向米处
D . 南偏西60°方向米处
6. (2分)(2020·上海模拟) 下列命题中,假命题是()
A . 顺次联结任意四边形四边中点所得的四边形是平行四边形
B . 顺次联结对角线相等的四边形四边中点所得的四边形是菱形
C . 顺次联结对角线互相垂直的四边形四边中点所得的四边形是矩形
D . 顺次联结两组邻边互相垂直的四边形四边中点所得的四边形是矩形
二、填空题 (共12题;共12分)
7. (1分)(2019·重庆模拟) 计算:(3-π)0+(-0.2)-2=________.
8. (1分) (2018七下·揭西期末) 计算:2m2n·(m2+n-1)=________.
9. (1分) (2020八下·哈尔滨月考) 若无实数解,则m的取值范围是________.
10. (1分)(2020·上海模拟) 已知正比例函数的函数值y随着自变量的值增大而减小,那么符合条件的正比例函数可以是________.(只需写出一个)
11. (1分)(2020·上海模拟) 如果关于的方程有两个相等的实数根,那么m的值是________.
12. (1分)(2020·上海模拟) 已知直线与轴和y轴的交点分别是(1,0)和,那么关于的不等式的解集是________.
13. (1分)(2020·上海模拟) 如果从长度分别为2、4、6、7的四条线段中随机抽取三条线段,那么抽取的三条线段能构成三角形的概率是________.
14. (1分)(2020·上海模拟) 如图,在中,点D在边AC上,已知和的面积比是2:3,,那么向量(用向量表示)是________.
15. (1分)(2020·上海模拟) 如图,的弦AB和直径CD交于点E,且CD平分AB,已知AB=8,CE=2,那么的半径长是________.
16. (1分)(2020·上海模拟) 某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株.设每盆多植x株,则可以列出的方程是________.
17. (1分)(2020·上海模拟) 已知正三角形ABC外接圆的半径长为R,那么的周长是________.(用含R的式子表示)
18. (1分)(2020·上海模拟) 如图,在中,AD=3,AB=5,,将绕着点B 顺时针旋转后,点A的对应是点,联结,如果,那么的值是________.
三、解答题 (共7题;共55分)
19. (5分) (2019九上·海淀开学考) 已知a2﹣2a﹣3=0,求代数式(2a﹣1)2﹣2(a+1)(a﹣1)的值.
20. (5分) (2018七上·沙洋期末)
(1)计算;
(2)解方程.
21. (3分)(2020·上海模拟) 在抗击“新冠肺炎疫情”的日子里,上海全市学生积极响应号召开展“停课不停学”的线上学习活动,某中学为了了解全校1200名学生一周内平均每天进行在家体育锻炼时间的情况,随机调查了该校100名学生一周内平均每天在家体育锻炼时间的情况,结果如下表:
时间(分)15202530354045505560
人数16241410868464
完成下列各题:
(1)根据上述统计表中的信息,可知这100名学生一周内平均每天在家体育锻炼时间的众数是________分,中位数是________分;
(2)小李根据上述统计表中的信息,制作了如下频数分布表和频数分布直方图(不完整),那么①频数分布表中m=________,n=________;②请补全频数分布直方图;
(3)请估计该学校平均每天在家体育锻炼时间不少于35分钟的学生大约有________人.
22. (10分)(2020·上海模拟) 如图,抛物线与轴交于点和B,与y轴交于点C,顶点为点D.
(1)求抛物线的表达式、点B和点D的坐标;
(2)将抛物线向右平移后所得新抛物线经过原点O,点B、D的对应点分别是点,联结,求的面积.
23. (2分)如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG , AH=CF .
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD ,且AH=AE ,求证:四边形EFGH是矩形
24. (15分)(2020·上海模拟) 如图,已知直线与轴交于点A,与y轴交于点C,矩形ACBE 的顶点B在第一象限的反比例函数图像上,过点B作,垂足为F,设OF=t.
(1)求∠ACO的正切值;
(2)求点B的坐标(用含t的式子表示);
(3)已知直线与反比例函数图像都经过第一象限的点D,联结DE,如果轴,求m的值.
25. (15分)(2020·上海模拟) 如图,在梯形ABCD中,AD//BC,AB=CD=AD=5,,点O是边BC 上的动点,以OB为半径的与射线BA和边BC分别交于点E和点M,联结AM,作∠CMN=∠BAM,射线MN与边AD、射线CD分别交于点F、N.
(1)当点E为边AB的中点时,求DF的长;
(2)分别联结AN、MD,当AN//MD时,求MN的长;
(3)将绕着点M旋转180°得到,如果以点N为圆心的与都内切,求的半径长.
参考答案一、单选题 (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题 (共12题;共12分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共55分)
19-1、20-1、
20-2、21-1、
21-2、21-3、
22-1、22-2、23-1、
23-2、24-1、
24-2、
24-3、
25-1、
25-2、
25-3、。

相关文档
最新文档