线性扫描伏安法分析
线性扫描伏安法与循环伏安法实验技术

线性扫描伏安法与循环伏安法实验技术Experimental Techniques of Linear Scan Voltammetry and Cylic Voltammetry 何为唐先忠王守绪王磊(电子科技大学微电子与固体电子学院成都610054) 摘要: 根据线性扫描伏安法与循环伏安法的基本原理, 采用电化学中典型的K3 [ Fe(CN) 6 ]电化学可逆系统设计了线性扫描伏安法与循环伏安法实验。
作为应用化学专业高年级学生和研究生学习电化学课程的实验, 收到了非常好的教学效果。
关键词: 线性扫描伏安法; 循环伏安法; 电位扫描技术; 电化学实验中图分类号: 064914文献标识码: B文章编号: 1672 - 4550 (2005) 03 - 0126 – 031前言电化学是研究两类导体形成的带电界面现象及其上所发生的变化的科学。
如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。
电化学在化工、冶金、机械、电子、航空、航天、轻工、仪表、医学、材料、能源、金属腐蚀与防护、环境科学等科技领域获得了广泛的应用。
当前世界上十分关注的研究课题, 如能源、材料、环境保护、生命科学等等都与电化学以各种各样的方式关联在一起。
电化学实验技术也在不断的发展, 随着微电子技术和计算机技术的迅猛发展, 线性扫描伏安法和循环伏安法、交流阻抗法和一系列更复杂灵巧的极化程序控制方法已在很大程度上取代了经典极化曲线测量和极谱方法[ 1 - 2 ] 。
本文在参考国内外有关电化学线性扫描伏安法与循环伏安法的基础上[ 3 - 4 ] , 进行了广泛的探索,采用电化学中典型的K3 [ Fe (CN) 6 ] 电化学可逆系统设计了线性扫描伏安法与循环伏安法实验, 得到了适合应用化学专业高年级学生和研究生实验教学的综合研究性实验方案。
教学效果表明, 该实验采用计算机控制的综合电化学测试仪, 实验参数容易控制, 数据测量准确, 实验结果便于计算机处理。
第4章 线性扫描伏安法

§1.2
线性扫描示波极谱法的分类 线性扫描示波极谱法可分为:
单扫描(single-Sweep):加一次电压。叫扫描一
次。单扫描法是指在同一汞滴上只加一次扫描电 压,记录i-E曲线一次,待汞滴落下后,再在第二 滴汞滴上同样加一次电压。 多扫描(multi-sweep):多扫描法则指在同一汞 滴上连续多次地施加扫描电压。
对于滴汞电极,将
代入上式,得
式中,α为转移系数,n α为电极反应中决定速度步 骤的电子转移数。 α <1,而n α ≤n,因此,不可逆 过程的峰电流ip不可逆< ip可逆,过程愈不可逆, ip愈小, 峰高也愈低。对于完全不可逆过程,如氧在汞电极 上还原,甚至不出现峰。这样可减小氧波对测定的 干扰。 由式可见,不可逆过程的峰电流ip仍与c*和v1/2成正 比。
图8 离子A和B共存时 l—E曲线
§3.2不可逆极谱波 设电极反应 假设(1)电流由电极反应速率所控制;(2)超电压大于0.12/n伏,逆反 应可忽略;(3)电极电位是时间的线性函数
(4)电极上的扩散为线性扩散。
式中,
是个函数,其图形如图9所示。
图9
的峰值为0.282,
,得25 ℃时峰电流
§3线性扫描极谱理论 §3.1可逆极谱波。 1.受扩散控制的极谱电流 Randles—Sevcik方程式 Sevcik早在1948年就推导了线性扫描示波极谱可逆电极 反应中线性扩散的电流方程式。 电极反应为
假设: (1)电极反应可逆; (2)电解前溶液中只有Ox,其浓度为c*; (3)Ox和Red均溶于溶液中: (4)滴汞电极上的扩散可看作线性扩散,并将其面积当作固 定。一般在汞滴生长期的最后2秒记录极谱曲线,此时汞滴 面积几乎不变化,没有对流运动的影响。
第4章--线性扫描伏安法分析

25℃时
对于阳极过程的峰电位
25℃时
3.影响峰电流的因素 (1)正去比极化剂浓度c*:当其它条件一定时,峰电流ip与被测物质的浓度c*成 这是线性扫描极谱法定量分析的基础。 (2)电极反应电子数n:当其它条件一定时,得 对决于定同极一谱浓图度峰的的不宽同度离 ,子n愈,大其,n峰愈的大宽,度ip愈愈大窄,,反如之图,7所则示愈。小。同时也
徐国宪等和高鸿等曾验证Randles—Sevcik方程式,认为 Sevcik的常数值过低,Randles的常数比较正确。
2.峰电位与半波电位的关系
可逆电极反应的峰电位Ep,与去极化剂的性质和底液的组成 有关,而与去极化剂的浓度无关。它与经典极谱的半波电位 E1/2有一定的关系。
对于阴极过程的峰电位
锯齿波发生器1产生快速线性变化电压通过电阻R加在电解池2的两极上, 产生的电流在电阻R上引起电位降,将此电位降经垂直放大器3放大后, 输入至示波器5的垂直偏向板上,代表电流坐标;而将电解池两极的电 压经水平放大器4放大后,输入示波器的水平偏向板上,代表电位坐标, 因此,从示波器的萤光屏上就能直接观察电流一电压曲线。
的精确度和重现性,通常采用 简便的导数示波极谱法。 导数极谱是记录di/dE(或di/dt) 对E或d2i/dE2(或d2i/dt2)对E的 关系曲线,通常称为导数极谱 波。 前者为一次导数极谱波,呈一 正峰和一负峰;后者为二次导 数极谱波,呈两正峰和一负峰, 如图11所示。 由图可见,导数波具有较强的 图11 分辨能力。一次导数波两峰间 的流物电值质流的ip”值浓,度i在p’或成一二正定次比条导,件数可下波作与峰为反电定应 量分析的依据。
线性扫描伏安法测定废水中的镉实验报告

线性扫描伏安法测定废水中的镉实验报告一、实验目的本实验旨在通过线性扫描伏安法(Linear sweep voltammetry,LSV)测定废水中的镉(Cd)含量。
线性扫描伏安法是一种常用的电化学分析方法,具有高灵敏度、高选择性以及快速测量的优点。
通过本实验,能够提高对电化学分析方法的理解,掌握线性扫描伏安法的操作流程,并学会用该方法测定废水中的重金属离子。
二、实验原理线性扫描伏安法是一种在电极上施加线性电压扫描的电化学分析方法。
在一定的电位范围内,随着电压的改变,电流也会发生相应的变化。
本实验中,我们将使用此方法测定镉离子在电极上的氧化还原反应。
当电压逐渐增加时,镉离子会从溶液中还原并沉积在电极上,产生电流响应。
通过测量电流响应值,可以推算镉离子的浓度。
三、实验步骤1.准备实验仪器和试剂:线性扫描伏安仪、废水样品、镉标准溶液、恒电位仪、电解电极、磁力搅拌器等。
2.配制镉标准溶液:准确称取一定量的镉标准物质,用超纯水配制成浓度为1000mg/L的镉标准溶液。
3.绘制标准曲线:分别取适量的镉标准溶液,用超纯水稀释至不同浓度,分别为0.1mg/L、0.5mg/L、1.0mg/L、2.5mg/L、5.0mg/L。
在相同的实验条件下,利用线性扫描伏安仪进行测量,绘制电流响应值与镉浓度的关系曲线。
4.测定废水样品:将废水样品进行稀释,使其中镉离子浓度处于标准曲线范围内。
然后,用线性扫描伏安仪进行测量,记录电流响应值。
5.数据处理:根据测量的电流响应值和标准曲线,推算废水样品中镉离子的浓度。
四、实验结果及数据分析1.标准曲线数据:通过线性扫描伏安法测量不同浓度的镉标准溶液,得到电流响应值与镉浓度的关系曲线。
根据曲线拟合得到方程为:y = 0.113x +0.028 (R² = 0.995),其中y为电流响应值,x为镉浓度(单位:mg/L)。
2.废水样品测量结果:通过测量废水样品,得到电流响应值为0.45μA。
仪器分析实验报告:线性扫描伏安法测定废水中的镉

线性扫描伏安法测定废水中的镉含量1111*11111学院广州510275摘要Cd是我国水质监测实施排放总量控制的指标之一。
本实验采用线性扫描伏安法(LSV)方法对废水中的镉离子进行了定量分析。
扫描曲线经过了半微分方法处理处理后的工作曲线在0-80 mg/L范围内的线性相差系数R2为0.9984,结果表明水样中Cd2+的含量为56.7 mg/L,此含量远超过相差规定,必须加以处理方可排放。
方法设备简单、操作简便、分析速度快,有较好的应用前景。
关键词线性扫描伏安法废水镉引言镉(Cd)不是人体的必需元素,Cd的毒性很大在人体主要积蓄在肾脏,引起泌尿系统的功能变化,引发多种疾病。
1955年在日本富山县发生的头痛病,即为Cd污染所致,我国也有受Cd污染稻米的报道。
当水中Cd质量浓度为0.1 mg/L时可轻度抑制地表水的自净作用。
用Cd质量浓度为0.04 mg/L的污水进行农灌时,土壤和稻米明显受到污染。
农灌水中Cd的质量浓度达到0.007 mg/L 时,即可造成污染。
因此Cd是我国水质监测实施排放总量控制的指标之一[1]。
Cd的主要污染源有电镀、采矿、冶炼、染料、电池及其它工业等排放的废水,这些废水排放到水体中引起水质污染。
因此,对水体中有害重金属元素进行检测,保护生态环境就显得很重要[2]。
水和废水中镉的测定,有比色法、原子吸收分光光度法及阳极溶出伏安法、离子选择性电极法、极谱法等[3]。
线性扫描伏安法是指在汞电极上施加一个线性变化的电压,即电极电位是随外加电压线性变化记录工作电极上的电解电流的伏安分析方法,它具有灵敏度高、分辨率高、抗先还原能力强等优点,因此被广泛地应用到了包括有机、无机离子和生物医药物质的分析测定之中。
线性扫描伏安法的工作电极是可极化的微电极,如滴汞电极、静汞电极或其他固体电极;而辅助电极和参比电极则具有相对大的表面积,是不可极化的。
根据电流-电位曲线测得的峰电流与被测物的浓度呈线性关系,可作定量分析[4]。
第4章 线性扫描伏安法分析

❖ 当电子转移反应的速度与传质速度相比,不足以维持Nernst方程时, 体系由可逆过程向不可逆过程转变(见图10)。
图10 扫速对反应可逆性的影响 a.可逆过程 b.不可逆过程
❖ §4 导数示波极谱 ❖ 为减小前波的影响、提高测量
❖ 为使图形稳定、重现,在每滴汞成长至一定面积时才加一次电压,记 录一次电流一电压曲线。例如,国产JP一1A型示波极谱仪,在滴汞成 长的前5秒保持电压为起始电压(即停止扫描),在后2秒内加入扫描电压, 这样在汞滴后
❖ 期完成一次极谱图。由于汞滴 ❖ 后期面积变化率最小,可消除 ❖ 因面积变化带来的影响。汞滴 ❖ 成长至第7秒时,通过定时线路 ❖ 的继电器敲击电极强制滴落, ❖ 然后又开始新的汞滴,重复前5 ❖ 秒停扫,后2秒记录极谱图。这 ❖ 样每滴汞上的图形是稳定的, ❖ 重现的,如图4所示。
❖图2线性扫描i—E曲线
❖ §1.1线性扫描示波极谱与经典极谱的比较
❖ 线性扫描示波极谱的基本原理与经典极谱相似。其主要区 别在于经典极谱加入电压的速度很慢,一般为2V/10 min (约3mV/s),记录的电流一电压曲线呈S线,是许多滴汞上 的平均结果;而线性扫描示波极谱,则扫描速度很快,一般 为250mV/s,例如,国产JP一1A型和JP一2型示波极谱仪。 其电流一电压曲线呈峰形,是在一滴汞上得到的(见表1)。
❖ 获得导数极谱波的方法有多种,其中电阻电容导数电路具有结构简单和操作方 便等特点,因此,在一般示波极谱仪上均附设这种导数电路。
❖ 在垂直放大器的输入端,设有RC导数电路,如图12所示。恒定的直流不能通过 y轴放大器,然而可记录法拉第电流在电阻R上所产生电压降的变化率(即 R·di/dt),因此,在极谱波的残余电流和极限电流部分,导数电流维持在原点, 而极谱波上升的扩散电流部分,导数电流则发生变化。电极上的电压是随时间 呈线性变化的,而其改变率dE/dt为一常数。由于di/dt=di/dE·dE/dt,y轴显示 为di/dE值,所得的极谱波仍是di/dE对E的关系曲线。上述得到的一次导数极谱 波,如再次被导数,则得到二次导数极谱波。
线性扫描极谱和伏安分析特点

•由于电压扫描速度很快且消除了部分充电电流,线性扫描极谱的灵敏度为10-6~10-7mol/L1/21/2p 1/2p 1/22/31/6Ilkovic 605Randles-Sevcik / 3.3d d i n m τA i Kn i i D υcD cn ===经典直流极谱方程:线性扫描极谱方程pc 1/2pa 1/228mV 28mV pc cathode peak pa anode peak E E nE E n=-=+线性扫描极谱峰电位与经典直流极谱半波电位的关系:表示阴极()峰()表示阳极()峰()•分辨率高,两种物质的半波电位相差100 mV即可以分辨•消除前波对后波的影响•如果线性扫描达到一定电位后,以相同的扫描速度回到原来的起始电位,情况会怎样?•相当于单向扫描变为往返扫描循环伏安(CV,Cyclic Voltammetry)•三角波扫描E24681012141618Time (s)pc 1/2pa 1/2p pa pc 1/21/21/c2p p a p p 2828 (mV) (mV)56Δ (mV)1; υυE E E E n nE E E ni KnD A i c i i =-+=-=≈==循环伏安阴极峰与阳极峰电位关系阴极峰与阳极峰电位关系与线性扫描伏安类;受扩散控制时,循环伏安的峰电流与似描度:扫速成正比循环伏安法的应用•循环伏安作为一种成分分析方法并不比线性扫描伏安法优越(因为循环伏安只是多了一次回扫,灵敏度并没有提高)•但循环伏安是电极过程机理研究的重要手段•可用于研究电极反应的性质、机理及电极过程动力学参数等•对于可逆电极过程来说,循环伏安阳极峰和阴极峰的电位差:p pa pc 56Δ (mV) E E En=-=•实际情况下,△E p 与循环电压扫描中换向时的电位有关,也与实验条件有一定的关系,其值会在一定范围内变化。
一般认为当△E p 为55/n ~65/n mV 时,该电极反应是可逆过程。
循环伏安法与线性扫描伏安法

循环伏安法原理:循环伏安法(CV )是最重要的电分析化学研究方法之一。
该方法使用的仪器简单,操作方便,图谱解析直观,在电化学、无机化学、有机化学、生物化学等许多 研究领域被广泛应用。
循环伏安法通常采用三电极系统,一支工作电极(被研究物质起反应的电极),一支参比电极(监测工作电极的电势),一支辅助(对)电极。
外加电压加在工作电极与辅助电极之间,反应电流通过工作电极与辅助电极。
对可逆电极过程(电荷交换速度很快),如一定条件下的Fe(CN)63-/4-氧化还原体系,当电压负向扫描时,Fe(CN)63- 在电极上还原,反应为:Fe(CN)63-+e - → Fe(CN)64-得到一个还原电流峰。
当电压正向扫描时,Fe(CN)64-在电极上氧化,反应为: Fe(CN)64- - e - → Fe(CN)63-得到一个氧化电流峰。
所以,电压完成一次循环扫描后,将记录出一个如图2所示的氧化还原曲线。
扫描电压呈等腰三角形。
如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。
因此.一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。
应用领域:循环伏安法能迅速提供电活性物质电极反应的可逆性,化学反应历程,电活性物质的吸附等许多信息。
循环伏安法可用于研究化合物电极过程的机理、双电层、吸附现象和电极反应动力学.成为最有用的电化学方法之一。
如通过对未知研究体系的CV 研究,可以获研究对象的反应电位或和平衡电位, 估算反应物种的量,以及判断反应的可逆性。
电化学反应中物种反应的量可以依据Faraday 定律估算,, 其中m 为反应的摩尔量, n 为电极反应中的得失电子数,F 为 图2 氧化还原cv 曲线图图1 cv 图中电势~时间关系图3 Ag在Pt电极上电结晶过程的CV图0.01mol/LagNO3+0.1mol/LKNO3Faraday常数(96485 C.molmnFidtQt==∫0-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ §1.1线性扫描示波极谱与经典极谱的比较
❖ 线性扫描示波极谱的基本原理与经典极谱相似。其主要区 别在于经典极谱加入电压的速度很慢,一般为2V/10 min (约3mV/s),记录的电流一电压曲线呈S线,是许多滴汞上 的平均结果;而线性扫描示波极谱,则扫描速度很快,一般 为250mV/s,例如,国产JP一1A型和JP一2型示波极谱仪。 其电流一电压曲线呈峰形,是在一滴汞上得到的(见表1)。
§2仪器的装置及分析的依据 ❖ §2.1仪器的基本线路 ❖ 线性扫描示波极谱由于施加电压的速度很快,在示波极谱
仪上。必须用锯齿波发生器产生快速扫描电压以代替经典极 谱中的电位器线路。电流的测量或电流一电压曲线的记录也 需要用阴极射线示波器来代替检流计。仪器的基本线路图, 如图3所示。
图3 示波极谱仪基本线路图 1.锯齿波发生器 2.电解池 3.垂直放大器 4.水平放大器 5.示波器
第四章 线性扫描伏安法
❖ §1 概 述 ❖ 将一快速线性变化电压施加于电解池上,并根据所得的电流一电压曲
线进行分析的方法,称为线性扫描伏安法。这种方法的主要特点是加电 压的速度很快,可用图1和式1表示。
❖ 式中: ❖ Ei为起始电位, ❖ v为电压扫描速度, ❖ t为时间, ❖ E为扫描开始后任一时间的电位。
❖ 又例如,Cd(Ⅱ)和Zn(I)的半波电位分别为-0.6V和-1.2V左右,在示波极 谱中,只要将起始电位放在-1.0V,就能在大量Cd(Ⅱ)存在下,测定少量 的而大ZZ。nn((ⅡⅡ))。能这产是生因ip ,为在Zn-(1Ⅱ.0)V量后虽,少C,d(但Ⅱ它)只的能ip产可生能扩比散大电量流Cdid(Ⅱ,)而的不id还是要ip ,
图4 滴汞周期与扫描周期 和静止周期的关系
❖ §9.2.2定性和定量分析的依据 ❖ 极化电极可用滴汞电极,也可用固定面积的电极。对于电极反应可逆的物质,
得到的电流电压曲线呈明显的尖峰形;对于不可逆的物质,则没有尖峰,波高 很低,有时甚至不起波,如图5所示。
❖ 电极反应可逆的示波极谱图 ❖ 上呈峰形的原因,是由于加入的 ❖ 电压变化速度很快,当达到去极 ❖ 化剂的分解电压时,该物质在电 ❖ 极上迅速地还原,产生很大的电 ❖ 流。由于去极化剂迅速地在电极 ❖ 上还原,使其在电极附近的浓度 ❖ 急剧地降低,扩散层厚度增加.而 ❖ 溶液主体中的去极化剂又来不及 ❖ 扩散到电极,因而电流迅速下降, ❖ 当电极反应速度与扩散速度达到 ❖ 平衡时,电流不再变化,而形成峰 ❖ 状电流。
❖ 锯齿波发生器1产生快速线性变化电压通过电阻R加在电解池2的两极上, 产生的电流在电阻R上引起电位降,将此电位降经垂直放大器3放大后, 输入至示波器5的垂直偏向板上,代表电流坐标;而将电解池两极的电 压经水平放大器4放大后,输入示波器的水平偏向板上,代表电位坐标, 因此,从示波器的萤光屏上就能直接观察电流一电压曲线。
❖ §1.3线性扫描示波极谱法的特点 ❖ 1.灵敏度较高,可达10-6—10-7mol/L。这主要与扫描速度快有关。
等流积i浓基d要度本大的固得去定多极,。化残其剂余次的电,线 流由性 较于扫 小线描 ,性因示扫而波描信极示噪谱波比峰极较电谱高流记。ip录比i经-E典曲极线谱时极汞限滴扩电散极电面 ❖ 2.分辨率较高。在经典极谱中,相邻的两个极谱波的半波电位如小
❖ 表1 线性扫描示波极谱与经典极谱的比较
❖ §1.2 线性扫描示波极谱法的分类
❖ 线性扫描示波极谱法可分为:
单扫描(single-Sweep):加一次电压。叫扫描一 次。单扫描法是指在同一汞滴上只加一次扫描电 压,记录i-E曲线一次,待汞滴落下后,再在第二 滴汞滴上同样加一次电压。
多扫描(multi-sweep):多扫描法则指在同一汞 滴上连续多次地施加扫描电压。
图5 示波极谱图 a.可逆 b.不可逆
❖ 图中尖峰所对应的电位,称为峰电位,以Ep,表示。 它在一定的实验条件(温度、底液组成等)下,仅决 定于去极化剂的性质.因而可作为定性分析的依据。
❖ 图中峰电流以ip表示。在一定的实验条件下,峰电 流与去极化剂的浓度成正比.可作为定量分析的依 据。
❖ 峰电流也与扫描速度有关,扫速越快.峰电流也越 大。如扩散层厚度增大,则扩散电流减小。因此扫 描速度越快,施加一定电压值所需的时间越短,扩 散层厚度越小由于加电压(扫描)的速度很快,记录的i-E曲线如图 2所示,呈峰形。欲记录这种快速扫描的i-E曲线, 需响应快速的示波器或数字显示仪等。如以滴汞电 极作为极化电极,示波器记录电流一电压曲线的线 性扫描伏安法,称为线性扫描示波极谱法或单扫示 波极谱法。国产JP一1A型和JP一2型示波极谱仪属 于这种类型的仪器。
于200mV,则发生干扰。对于线性扫描极谱,由于极谱波呈峰形,两波 相差50mV也可分开。 ❖ 3.抗先还原的能力强。可利用电极反应可逆性的差异将两波分开; 或利用峰电流比相应的扩散电流大得多,消除前波对后波的影响。
❖ 例如,在经典极谱中,U (Ⅵ)波在Pb(Ⅱ)波之前,大量U(Ⅵ)所产生的扩 散电流干扰后面的少量Pb(Ⅱ)的测定。但在示波极谱中,由于扫描速度 很快,U(Ⅵ)的可逆性比Pb(I)差,因此,U(Ⅵ)的含量即使比Pb(I)大200 倍可,以U测(定Ⅵ少)的量ip的比P少b(量ⅡP)。b(I)的ip也大不了多少,因而在大量U(Ⅵ)存在下,
❖ 为使图形稳定、重现,在每滴汞成长至一定面积时才加一次电压,记 录一次电流一电压曲线。例如,国产JP一1A型示波极谱仪,在滴汞成 长的前5秒保持电压为起始电压(即停止扫描),在后2秒内加入扫描电压, 这样在汞滴后
❖ 期完成一次极谱图。由于汞滴 ❖ 后期面积变化率最小,可消除 ❖ 因面积变化带来的影响。汞滴 ❖ 成长至第7秒时,通过定时线路 ❖ 的继电器敲击电极强制滴落, ❖ 然后又开始新的汞滴,重复前5 ❖ 秒停扫,后2秒记录极谱图。这 ❖ 样每滴汞上的图形是稳定的, ❖ 重现的,如图4所示。