精选杭州拱墅区2018-2019学年七年级下期末统考数学试卷(有答案)-(浙教版)
拱墅初中2018-2019学年七年级下学期数学第一次月考试卷

拱墅初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)二元一次方程组的解是()A. B. C. D.【答案】B【考点】解二元一次方程组【解析】【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故答案为:B.【分析】观察方程组中未知数的系数特点:x的系数相等,因此利用①﹣②消去x,求出y的值,再将y的值代入方程①,就可求出x的值,即可得出方程组的解。
2.(2分)股票有风险,入市须谨慎、我国A股股票市场指数从2007年10月份6100多点跌到2008年10月份2000点以下,小明的爸爸在2008年7月1日买入10手某股票(股票交易的最小单位是一手,一手等于100股),如图,是该股票2008年7﹣11月的每月1号的收盘价折线图,已知8,9月该股票的月平均跌幅达8.2%,10月跌幅为5.4%,已知股民买卖股票时,国家要收千分之二的股票交易税即成交金额的2‰,下列结论中正确的个数是()①小明的爸爸若在8月1日收盘时将股票全部抛出,则他所获纯利润是(41.5﹣37.5)×1000×(1﹣2‰)元;②由题可知:10月1日该股票的收盘价为41.5×(1﹣8.2%)2元/股;③若小明的爸爸的股票一直没有抛出,则由题可知:7月1日﹣11月1日小明的爸爸炒股票的账面亏损为37.5×1000×(1﹣2‰)﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.A. 0个B. 1个C. 2个D. 3个【答案】C【考点】折线统计图【解析】【解答】解:读图分析可得:③说法不对,账面亏损不含股票交易税;故应为账面亏损为37.5×1000﹣41.5×1000×(1﹣8.2%)2×(1﹣5.4%)元.①与②的说法都正确,故答案为:C【分析】根据统计图中的数据进行计算,从而进行计算即可判断.3.(2分)下列不属于抽样调查的优点是()A. 调查范围小B. 节省时间C. 得到准确数据D. 节省人力,物力和财力【答案】C【考点】抽样调查的可靠性【解析】【解答】解:普查得到的调查结果比较准确,而抽样调查得到的调查结果比较近似.故答案为:C【分析】根据抽样调查的特征进行判断即可.4.(2分)下列计算不正确的是()A. |-3|=3B.C.D.【答案】D【考点】实数的运算【解析】【解答】A、|-3|=3,不符合题意;B、,不符合题意;C、,不符合题意;D、,符合题意.故答案为:D.【分析】(1)由绝对值的性质可得原式=3;(2)由平方的意义可得原式=;(3)根据有理数的加法法则可得原式=-;(4)由算术平方根的意义可得原式=2.5.(2分)用加减法解方程组中,消x用法,消y用法()A. 加,加B. 加,减C. 减,加D. 减,减【答案】C【考点】解二元一次方程【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,故答案为:C.【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
浙教版-学年度下学期七年级数学期末试卷(含解析)

浙教版2018-2019学年七年级下期末数学试卷一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=24.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y65.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.46.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩7.如果,则x:y的值为()A.B.C.2 D.38.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣110.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为米.12.若分式的值为零,则x的值为.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是%.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=.16.若x2﹣16x+m2是一个完全平方式,则m=;若m﹣=9,则m2+=.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣=.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.19.计算:①=,②=.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).22.(8分)解方程(组):(1).(2)23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.下列四个图形中,不能通过基本图形平移得到的是()A.B.C.D.【分析】根据平移的性质,对四个选项逐步分析.【解答】解:A、能通过其中一个菱形平移得到,不符合题意;B、能通过其中一个正方形平移得到,不符合题意;C、能通过其中一个平行四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.【点评】本题主要考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而误选A、B、C.2.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°【分析】分别过K、H作AB的平行线MN和RS,根据平行线的性质和角平分线的性质可用∠ABK和∠DCK分别表示出∠H和∠K,从而可找到∠H和∠K的关系,结合条件可求得∠K.【解答】解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.3.同时使分式有意义,又使分式无意义的x的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=2【分析】让第一个分式的分母不为0,第二个分式的分母为0即可.【解答】解:由题意得:x2+6x+8≠0,且(x+1)2﹣9=0,(x+2)(x+4)≠0,x+1=3或﹣3,x≠﹣2且x≠﹣4,x=2或x=﹣4,∴x=2,故选D.【点评】分式有意义,分式的分母都应不为0;分式无意义,分母为0.4.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y6【分析】根据同底数幂的除法对A进行判断;根据同底数幂的乘法对B进行判断;根据幂的乘方对C进行判断;根据积的乘方对D进行判断.【解答】解:A、原式=x4,所以A选项的计算错误;B、原式=x7,所以B选项的计算错误;C、原式=x6,所以C选项的计算正确;D、原式=x4y6,所以D选项的计算错误.故选:C.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减.即a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).也考查了同底数幂的乘法.5.y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,则k的值是()A.0 B.﹣1 C.1 D.4【分析】观察已给的多项式,可变形为可以利用分组分解法,前三项可以用完全平方公式分解,根据式子的特点就可以确定k的值.【解答】解:原式=﹣(4x2+y2﹣4xy+k)=﹣[(2x﹣y)2+k]显然根据平方差公式的特点,两个平方项要异号才能继续分解又由y﹣2x+1是4xy﹣4x2﹣y2﹣k的一个因式,可知第二个数是1则k=﹣1.故选:B.【点评】要熟练因式分解的公式法,同时注意前后联系.本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.6.下列调查最适合于抽样调查的是()A.某校要对七年级学生的身高进行调查B.卖早餐的师傅想了解一锅茶鸡蛋的咸度C.班主任了解每位学生的家庭情况D.了解九年级一班全体学生立定跳远的成绩【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故B正确;C、班主任了解每位学生的家庭情况,适合普查,故B错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有坏的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如果,则x:y的值为()A.B.C.2 D.3【分析】要想求得x:y的值,实际应把常数项消去.【解答】解:在方程组中,(2)×5﹣(1)×11,得3x﹣9y=0,∴3x=9y,即x=3y.所以x:y=3.故选:D.【点评】想求得方程组里两个未知数的比值,有两种方法:求得两个未知数的值再比;消去常数项,直接求比.8.在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A. B.C.×(1+)=D.【分析】人数为未知数,有各个班的捐款总数,应根据每个班每人捐款数来列等量关系.关键描述语是:乙班平均每人捐款数比甲班平均每人捐款数多.等量关系为:甲班平均每人捐款数×(1+)=乙班平均每人捐款数.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.【点评】找到关键描述语,找到等量关系是解决问题的关键.9.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1【分析】原式利用完全平方公式展开得到结果,即可作出判断.【解答】解:原式=a2﹣2a+1,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.一个两位数,十位数字比个位数字的2倍大1,若将这个两位数减去36恰好等于个位数字与十位数字对调后所得的两位数,则这个两位数是()A.86 B.68 C.97 D.73【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于十位数字和个位数字都是未知的,所以不能直接设所求的两位数.本题中2个等量关系为:十位数字=2×个位数字+1;(10×十位数字+个位数字)﹣36=10×个位数字+十位数字.根据这两个等量关系可列出方程组.【解答】解:设这个两位数的十位数字为x,个位数字为y.则,解得.故选:D.【点评】解题关键是弄清题意,合适的等量关系,列出方程组.本题涉及一个常识问题:两位数=10×十位数字+个位数字,并且在求两位数或三位数时,一般是不能直接设这个两位数或三位数的,而是设它各个数位上的数字为未知数.二.填空题(共10小题,满分30分,每小题3分)11.科学家发现一种病毒的直径为0.000104米,用科学记数法表示为 1.04×10﹣4米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000104=1.04×10﹣4,故答案为:1.04×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若分式的值为零,则x的值为3.【分析】分式的值为零:分子等于零,且分母不等于零,由此得到3﹣|x|=0且x+3≠0,从而得到x的值.【解答】解:依题意得:3﹣|x|=0且x+3≠0,解得x=3.故答案是:3.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.13.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.【点评】此题主要考查了平行线的判定,熟练掌握平行线的判定是解题关键.14.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是90%.【分析】分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.【解答】解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故答案为90%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3.【分析】多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,据此求出算式(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)的值是多少即可.【解答】解:(20a n﹣2b n﹣14a n﹣1b n+1+8a2n b)÷(﹣2a n﹣3b)=20a n﹣2b n÷(﹣2a n﹣3b)﹣14a n﹣1b n+1÷(﹣2a n﹣3b)+8a2n b÷(﹣2a n﹣3b)=﹣10ab n﹣1+7a2b n﹣4a n+3故答案为:﹣10ab n﹣1+7a2b n﹣4a n+3.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.16.若x2﹣16x+m2是一个完全平方式,则m=±8;若m﹣=9,则m2+=83.【分析】根据乘积二倍项和已知平方项确定出这两个数,再根据完全平方公式表示出另一个平方项求解即可;把已知条件直接平方然后整理即可.【解答】解:∵x2﹣16x+m2是完全平方式,∴16x=2×8•x,∴m2=82,解得m=±8;∵m﹣=9,∴(m﹣)2=m2﹣2+=81,解得m2+=81+2=83.【点评】本题是对完全平方公式的考查,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式;第二问中利用好m与互为倒数是求解的关键.17.已知:a+x2=2015,b+x2=2016,c+x2=2017,且abc=12,则﹣= 0.25.【分析】先将已知所给式子依次相减得:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1;再把所求式子通分计算化成,为了将分子化成完全平方式,分子和分母同时乘以2,进行变形,再把所求的式子整体代入即可.【解答】解:由题意得:①﹣②得:a﹣b=﹣1①﹣③得:a﹣c=﹣2②﹣③得:b﹣c=﹣1∴﹣=====0.25故答案为:0.25【点评】本题综合考查了分式的加减法和完全平方公式,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.就本类题而言,分式求值题中比较多的题型主要有三种:①转化已知条件后整体代入求值;②转化所求问题后将条件整体代入求值;③既要转化条件,也要转化问题,然后再代入求值.本题就是第三种情况,既要转化条件,把已知式依次相减,也要转化问题,对所求式子通分、配方等,然后再整体代入求值.18.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为﹣3.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.19.计算:①=,②=.【分析】①两个分式相乘,直接约分即可;②首先计算乘方,然后进行加法运算即可.【解答】解:①原式=;②原式=4+1﹣=.故答案是:,.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、等考点的运算.20.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc=3.【分析】已知等式整理变形后,利用完全平方公式化简,将各自的值代入计算即可求出值.【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.【点评】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键.三.解答题(共6小题,满分50分)21.(8分)计算(1)÷+(﹣2)2×20160﹣()﹣2;(2)(x﹣y)2﹣(x+2y)(x﹣y).【分析】(1)原式利用二次根式除法法则,零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=+4×1﹣9=4+4﹣9=﹣1;(2)原式=x2﹣2xy+y2﹣x2+xy﹣2xy+2y2=﹣3xy+3y2.【点评】此题考查了多项式乘多项式,完全平方公式,零指数幂、负整数指数幂,以及实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)解方程(组):(1).(2)【分析】(1)根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论,依次计算可得;(2)利用加减法计算可得.【解答】解:(1)两边都乘以(x+1)(x﹣1),得:x(x﹣1)﹣(x﹣3)=(x+1)(x ﹣1),解得:x=2,当x=2时,(x+1)(x﹣1)=3≠0,所以原分式方程的解为x=2;(2)①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,则方程组的解为.【点评】本题主要考查解分式方程和二元一次方程组的能力,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论及加减消元法解方程组的能力.23.(8分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.(8分)如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2.(1)找出图中互相平行的线并加以说明;(2)DO和AB有怎样的位置关系并加以说明.【分析】(1)利用在同一平面内,垂直于同一直线的两直线平行得出DE∥BO,再结合已知条件求得∠1=∠3,从而证明DO∥CF;(2)主要是由平行线的判定及垂线的定义即可证明.由两直线平行,同位角相等得到∠BCF=∠BDO,由已知条件得到∠BDO=90°,所以两直线垂直.【解答】解:(1)DE∥BO,DO∥CF,理由如下:∵DE⊥AO,BO⊥AO(已知),∴DE∥BO(在同一平面内,垂直于同一直线的两直线平行),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DO∥CF(同位角相等,两直线平行);(2)DO⊥AB,理由如下:由(1)得:DO∥CF,∴∠BCF=∠BDO(两直线平行,同位角相等),∵FC⊥AB(已知),∴∠BCF=90°(垂直定义),∴∠BDO=90°(等量代换),∴DO⊥AB(垂直定义).【点评】此题主要考查了平行线的性质和判定,还考查了垂直的定义.25.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=20%,b=12%;并补全条形统计图;(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b和a的值.利用总数和百分比求出频数再补全条形图;(2)用样本估计总体即可;(3)首先设甲组得x分,则乙组得(110﹣x)分,由题意得不等关系:甲组得x分≥乙组得x分×1.5,根据不等关系列出不等式,解不等式即可.【解答】解:(1)总人数:230÷46%=500(人),100÷500×100%=20%,60÷500×100%=12%;500×22%=110(人),如图所示:(2)3500×20%=700(人);(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:x≥1.5(110﹣x),解得:x≥66.答:甲组最少得66分.【点评】此题主要考查了扇形统计图与条形统计图,以及一元一次不等式的应用,正确读图,能从图中得到正确的信息是解决问题的关键.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则解得故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则=+2解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.四.解答题(共2小题,满分20分,每小题10分)27.(10分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为∠E=∠END﹣∠BME;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.【分析】(1)由AB∥CD,即可得到∠END=∠EFB,再根据∠EFB是△MEF的外角,即可得出∠E=∠EFB﹣∠BME=∠END﹣∠BME;(2)由平行线的性质以及三角形外角性质,即可得到∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,再根据三角形内角和定理,即可得到∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,即可得到∠E+2∠NPM=180°;(3)延长AB交DE于G,延长CD交BF于H,由平行线的性质以及三角形外角性质,即可得到∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE;依据∠CHB是△DFH的外角,即可得到∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),进而得出∠F=∠E.【解答】解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.【点评】本题主要考查了平行线的性质和角平分线的定义、三角形内角和的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算.28.(10分)已知a、b、c满足a﹣b=8,ab+c2+16=0,求2a+b+c的值.【分析】本题乍看下无法代数求值,也无法进行因式分解;但是将已知的两个式子进行适当变形后,即可找到本题的突破口.由a﹣b=8可得a=b+8;将其代入ab+c2+16=0得:b2+8b+c2+16=0;此时可发现b2+8b+16正好符合完全平方公式,因此可用非负数的性质求出b、c的值,进而可求得a的值;然后代值运算即可.【解答】解:因为a﹣b=8,所以a=b+8.(1分)又ab+c2+16=0,所以(b+8)b+c2+16=0.即(b+4)2+c2=0.又(b+4)2≥0,c2≥0,则b=﹣4,c=0.(4分)所以a=4,(5分)所以2a+b+c=4.(6分)【点评】本题既考查了对因式分解方法的掌握,又考查了非负数的性质以及代数式求值的方法.。
浙江省杭州市拱墅区、余杭区2019-2020学年第二学期 七年级期末考试数学试卷 (解析版)

2019-2020学年浙江省杭州市拱墅区、余杭区七年级第二学期期末数学试卷一、选择题1.下列调查中,调查方式选择合理的是()A.为了解一批灯管的使用寿命,选择全面调查B.为了解某市初中生的视力情况,选择抽样调查C.为了解某省居民对生活垃圾的处理情况,选择全面调查D.为了解长征五号乙运载火箭的设备零件质量情况,选择抽样调查2.如图,射线AB,AC被射线DE所截,图中的∠1与∠2是()A.内错角B.对顶角C.同位角D.同旁内角3.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1 4.分式可变形为()A.B.C.D.5.下列计算正确的是()A.a2+a2=2a4B.a5•a2=a10C.(a5)2=a7D.a6÷a3=a3 6.下列因式分解正确的是()A.﹣2a2+4a=﹣2a(a+2)B.3ax2﹣6axy+3ay2=3a(x﹣y)2C.2x2+3x3+x=x(2x+3x2)D.m2+n2=(m+n)27.如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°8.若是方程ax﹣by=﹣3的解,则4a2﹣12ab+9b2+2020的值为()A.2011B.2017C.2029D.20359.我国古代数学家张丘建在《张丘建算经》里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是()A.87B.84C.81D.7810.小方将4张长为a、宽为b(a>b)的长方形纸片先按图1所示方式拼成一个边长为(a+b)的正方形,然后按图2所示连接了四条线段,并画出部分阴影图形,若大正方形的面积是图中阴影部分图形面积的3倍,则a、b满足()A.a=3b B.2a=5b C.a=2b D.2a=3b二、认真填一填(本题有6个小题,每小题4分,共24分,)11.因式分解:x3+3x2=.12.若分式的值为0,则x的值为.13.某市今年2月份15天的空气污染指数统计如图所示,若规定污染指数在0~50,51~100,101~150范围的空气质量依次为优,良,轻度污染,则这15天中,该市空气质量属优的有天,它的频率是(精确到0.01).14.如图,将三角形ABC沿水平方向向右平移到三角形DEF的位置,若BF=11,EC=5,则A,D之间的距离为.15.一根金属棒在0℃时的长度是b(m),温度每升高1℃,它就伸长a(m),当温度为x(℃)时,金属棒的长度y可用公式y=ax+b计算.已测得当x=100℃时,y=2.002m;当x=500℃时,y=2.01m.若这根金属棒加热后长度伸长到2.015m,则此时金属棒的温度是℃.16.观察下列等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,若250=m,则2100+2101+2102+…+2200=.(用含m的代数式表示)三.全面答一答(本题有7个小题,共66分,解答应写出文字说明,证明过程成推演步骤.如果觉得有的题目有点难,那么把自己能写出的解答写出一部分也可以.)17.计算:(1)950×5﹣1;(2)(﹣2a2)3+3a2•a4.18.解下列方程(组):(1);(2).19.某校为了解七年级女生的身高情况,随机抽取该年级若干名女生测量身高,并将测量结果绘制成如图所示的不完整的统计图(每组含前一个边界值,不含后一个边界值)(1)被抽取测量身高的女生有多少名?(2)通过计算,将频数直方图补充完整.(3)求扇形统计图中F部分的扇形的圆心角度数.(4)若该年级有240名女生,计算身高不低于160cm的人数.20.先化简,再求值:(1)(x+2)(2﹣x)﹣(x+1)(6﹣x),其中x=2;(2)()÷,其中x=﹣4.21.如图,在三角形ABC中,D,E,F分别是三边上的点,且DE平分∠ADF,∠ADF =2∠DFB.(1)判断DE与BC是否平行,并说明理由.(2)若EF∥AB,∠DFE=3∠CFE,求∠ADE的度数.22.已知关于x,y的方程组(m,n为实数).(1)若m+4n=5,试探究方程组的解x,y之间的关系;(2)若方程组的解满足2x+3y=0,求分式的值.23.某店3月份采购A,B两种品牌的T恤杉,若购A款40件,B款60件需进价8400元;若购A款45件,B款50件需进价8050元.(1)商店3月份的进货金额只有10000元,能否同时购进A数和B款T恤衫各60件?(2)根据3月份的销售情况,商店决定4月份和5月份均只销售A款T恤衫,4月份每件的进价比3月份涨了a元,进价合计9800元;5月份每件的进价比4月份又涨了0.5a 元,进价合计12240元,数量是4月份的1.2倍.这两批A款T恤衫开始都以每件150元的价格出售,到6月初,商店把剩下的30件打八折出售,很快便售完,问商店销售这两批A款T恤衫共获毛利润(销售收入减去进价总计)多少元?参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一个是正确的)1.下列调查中,调查方式选择合理的是()A.为了解一批灯管的使用寿命,选择全面调查B.为了解某市初中生的视力情况,选择抽样调查C.为了解某省居民对生活垃圾的处理情况,选择全面调查D.为了解长征五号乙运载火箭的设备零件质量情况,选择抽样调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.解:(1)为了解一批灯管的使用寿命,适合抽样调查;(2)为了解某市初中生的视力情况,适合抽样调查;(3)为了解某省居民对生活垃圾的处理情况,适合抽样调查;(4)为了解长征五号乙运载火箭的设备零件质量情况,适合全面调查.故选:B.2.如图,射线AB,AC被射线DE所截,图中的∠1与∠2是()A.内错角B.对顶角C.同位角D.同旁内角【分析】根据同位角,内错角,同旁内角的定义判断即可.解:射线AB、AC被直线DE所截,则∠1与∠2是内错角,故选:A.3.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为()A.0.129×10﹣2B.1.29×10﹣2C.1.29×10﹣3D.12.9×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00129这个数用科学记数法可表示为1.29×10﹣3.故选:C.4.分式可变形为()A.B.C.D.【分析】利用分式的基本性质化简即可.解:=﹣.故选:D.5.下列计算正确的是()A.a2+a2=2a4B.a5•a2=a10C.(a5)2=a7D.a6÷a3=a3【分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及同底数幂的除法法则逐一判断即可.解:A.a2+a2=2a2,故本选项不合题意;B.a5•a2=a7,故本选项不合题意;C.(a5)2=a10,故本选项不合题意;D.a6÷a3=a3,故本选项符合题意.故选:D.6.下列因式分解正确的是()A.﹣2a2+4a=﹣2a(a+2)B.3ax2﹣6axy+3ay2=3a(x﹣y)2C.2x2+3x3+x=x(2x+3x2)D.m2+n2=(m+n)2【分析】直接利用提取公因式法以及公式法分解因式进而得出答案.解:A、﹣2a2+4a=﹣2a(a﹣2),故此选项错误;B、3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2,正确;C、2x2+3x3+x=x(2x+3x2+1),故此选项错误;D、m2+n2,故此选项错误;故选:B.7.如图,已知∠1=∠2=∠3=55°,则∠4的度数是()A.110°B.115°C.120°D.125°【分析】本题首先应根据同位角相等判定两直线平行,再根据平行线的性质及邻补角的性质求出∠4的度数.解:∵∠1=∠2,∠5=∠1(对顶角相等),∴∠2=∠5,∴a∥b(同位角相等,得两直线平行);∴∠3=∠6=55°(两直线平行,内错角相等),故∠4=180°﹣55°=125°(邻补角互补).故选:D.8.若是方程ax﹣by=﹣3的解,则4a2﹣12ab+9b2+2020的值为()A.2011B.2017C.2029D.2035【分析】把x与y的值代入方程ax﹣by=﹣3,可得2a﹣3b=﹣3,把所求式子的前三项因式分解后代入计算即可.解:将代入ax﹣by=﹣3,可得2a﹣3b=﹣3,∴4a2﹣12ab+9b2+2020=(2a﹣3b)2+2020=(﹣3)2+2020=2029.故选:C.9.我国古代数学家张丘建在《张丘建算经》里,提出了“百钱买百鸡”这个有名的数学问题.用100个钱买100只鸡,公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.问公鸡,小鸡各买了多少只?在这个问题中,小鸡的只数不可能是()A.87B.84C.81D.78【分析】设公鸡有x只,母鸡有y只,小鸡有z只,根据条件建立三元一次不定方程组,解方程组即可求解.解:设公鸡有x只,母鸡有y只,小鸡有z只,根据题意得,整理得:7x+4y=100.x==,∵x≥0,y≥0,且都是自然数,∴≥0,∴y≤25,25﹣y是7的倍数,∴25﹣y=0,7,14,21,y=25,18,11,4;∴共有4种情况:①公鸡4只,母鸡18只,小鸡78只;②公鸡8只,母鸡11只,小鸡81只;③公鸡12只,母鸡4只,小鸡84只;④公鸡0只,母鸡25只,小鸡75只.故小鸡的只数不可能是87.故选:A.10.小方将4张长为a、宽为b(a>b)的长方形纸片先按图1所示方式拼成一个边长为(a+b)的正方形,然后按图2所示连接了四条线段,并画出部分阴影图形,若大正方形的面积是图中阴影部分图形面积的3倍,则a、b满足()A.a=3b B.2a=5b C.a=2b D.2a=3b【分析】设大正方形的面积为S,图中空白部分的面积为S1,阴影部分的面积为S2,先用含有a、b的代数式分别表示出S、S1和S2,再根据S1=3S2得到关于a、b的等式,整理即可.解:设大正方形的面积为S,图中空白部分的面积为S1,阴影部分的面积为S2,由题意,得S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2,S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2,S=(a+b)2,∵S=3S2,∴(a+b)2=3(2ab﹣b2),整理,得(a﹣2b)2=0,∴a﹣2b=0,∴a=2b.故选:C.二、认真填一填(本题有6个小题,每小题4分,共24分,)11.因式分解:x3+3x2=x2(x+3).【分析】提公因式x2即可因式分解.解:x3+3x2=x2(x+3).故答案为:x2(x+3).12.若分式的值为0,则x的值为﹣5.【分析】分式值为零的条件是分子等于零且分母不等于零.解:∵分式的值为0,∴,解得x=﹣5且x≠,∴x的值为﹣5,故答案为:﹣5.13.某市今年2月份15天的空气污染指数统计如图所示,若规定污染指数在0~50,51~100,101~150范围的空气质量依次为优,良,轻度污染,则这15天中,该市空气质量属优的有2天,它的频率是0.13(精确到0.01).【分析】直接利用折线统计图得出空气质量属优的天数,进而利用频率求法得出答案.解:∵规定污染指数在0~50,51~100,101~150范围的空气质量依次为优,良,轻度污染,∴这15天中,该市空气质量属优的有15日,21日共2天,∴它的频率是:≈0.13.故答案为:2,0.13.14.如图,将三角形ABC沿水平方向向右平移到三角形DEF的位置,若BF=11,EC=5,则A,D之间的距离为3.【分析】根据平移的性质得AD=BE=CF,再利用BF=BE+EC+CF可计算出BE,从而得到AD的长.解:∵三角形ABC沿水平方向向右平移到三角形DEF的位置,∴AD=BE=CF,∵BF=BE+EC+CF,∴BE=(11﹣5)=3,∴AD=3.故答案为:3.15.一根金属棒在0℃时的长度是b(m),温度每升高1℃,它就伸长a(m),当温度为x(℃)时,金属棒的长度y可用公式y=ax+b计算.已测得当x=100℃时,y=2.002m;当x=500℃时,y=2.01m.若这根金属棒加热后长度伸长到2.015m,则此时金属棒的温度是750℃.【分析】将x=100℃时,y=2.002m;当x=500℃时,y=2.01m,代入公式y=ax+b计算得出a和b的值,再求当长度伸长到2.015m时,金属棒的温度.解:将x=100℃时,y=2.002m;当x=500℃时,y=2.01m,代入公式y=ax+b,得,解得,所以y=x+2,当y=2.015m时,x+2=2.015,解得x=750°C.答:金属棒加热后长度伸长到2.015m,则此时金属棒的温度是750°C.故答案为:750.16.观察下列等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,若250=m,则2100+2101+2102+…+2200=m2(2m2﹣1).(用含m的代数式表示)【分析】由题意可得2100+2101+2102+…+2200+240=2100(1+2+22+…+299+2100)=2100(1+2101﹣2)=(250)2[(250)2×2﹣1)],再将250=m代入即可求解.解:∵250=m,∴2100+2101+2102+…+2200=240=2100(1+2+22+…+299+2100)=2100(1+2101﹣2)=(250)2[(250)2×2﹣1)]=m2(2m2﹣1).故答案为:m2(2m2﹣1).三.全面答一答(本题有7个小题,共66分,解答应写出文字说明,证明过程成推演步骤.如果觉得有的题目有点难,那么把自己能写出的解答写出一部分也可以.)17.计算:(1)950×5﹣1;(2)(﹣2a2)3+3a2•a4.【分析】(1)根据负整数指数幂和零整数指数幂解答即可;(2)根据整式的混合计算解答即可.解:(1);(2)(﹣2a2)3+3a2•a4=﹣8a6+3a6=﹣5a6.18.解下列方程(组):(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1),①×2+②得:7a=21,解得:a=3,把a=3代入①得:b=﹣2,则方程组的解为;(2)去分母得:2+2x+1﹣x2=x﹣x2,解得:x=﹣3,经检验x=﹣3是分式方程的解.19.某校为了解七年级女生的身高情况,随机抽取该年级若干名女生测量身高,并将测量结果绘制成如图所示的不完整的统计图(每组含前一个边界值,不含后一个边界值)(1)被抽取测量身高的女生有多少名?(2)通过计算,将频数直方图补充完整.(3)求扇形统计图中F部分的扇形的圆心角度数.(4)若该年级有240名女生,计算身高不低于160cm的人数.【分析】(1)根据D组的频数和频数分布直方图中的数据,可以求得被抽取测量身高的女生有多少名;(2)根据(1)中的结果和扇形统计图中的数据,可以计算出C组和E组的人数;(3)根据频数分布直方图中的数据,可以计算出扇形统计图中F部分的扇形的圆心角度数;(4)根据频数分布直方图中的数据,可以计算出身高不低于160cm的人数.解:(1)14÷28%=50(名),即被抽取测量身高的女生有50名;(2)C组学生有:50×24%=12(名),E组学生有:50﹣2﹣6﹣12﹣14﹣4=12(名),补充完整的频数分布直方图如右图所示;(3)360°×=28.8°,即扇形统计图中F部分的扇形的圆心角度数是28.8°;(4)240×=144(人),即身高不低于160cm的有144人.20.先化简,再求值:(1)(x+2)(2﹣x)﹣(x+1)(6﹣x),其中x=2;(2)()÷,其中x=﹣4.【分析】(1)先利用平方差公式和多项式乘多项式法则计算,再去括号、合并同类项即可化简原式,继而将x的值代入计算可得;(2)先计算括号内分式的减法、将除法转化为乘法,再约分即可化简原式,继而将x 的值代入计算可得.解:(1)原式=4﹣x2﹣(6x﹣x2+6﹣x)=4﹣x2﹣6x+x2﹣6+x=﹣5x﹣2,当x=2时,原式=﹣5×2﹣2=﹣10﹣2=﹣12;(2)原式=[﹣]÷=•=﹣,当x=﹣4时,原式=﹣=﹣=4.21.如图,在三角形ABC中,D,E,F分别是三边上的点,且DE平分∠ADF,∠ADF =2∠DFB.(1)判断DE与BC是否平行,并说明理由.(2)若EF∥AB,∠DFE=3∠CFE,求∠ADE的度数.【分析】(1)根据角平分线的定义以及∠ADF=2∠DFB,即可得到∠EDF=∠DFB,进而得出DE∥BC;(2)设∠EFC=α,则∠DFE=3∠CFE=3α,根据平行线的性质,即可得到∠DFB=α,再根据∠DFB+∠DFE+∠CFE=180°,即可得到α的度数.解:(1)DE∥BC,理由:∵DE平分∠ADF,∴∠ADF=2∠EDF,又∵∠ADF=2∠DFB,∴∠EDF=∠DFB,∴DE∥BC;(2)设∠EFC=α,则∠DFE=3∠CFE=3α,∵EF∥AB,∴∠B=∠EFC=α,又∵DE∥BC,∴∠ADE=∠B=α,∵DE平分∠ADF,DE∥BC,∴∠DFB=∠EDF=∠ADE=α,∵∠DFB+∠DFE+∠CFE=180°,∴α+3α+α=180°,解得α=36°,∴∠ADE=36°.22.已知关于x,y的方程组(m,n为实数).(1)若m+4n=5,试探究方程组的解x,y之间的关系;(2)若方程组的解满足2x+3y=0,求分式的值.【分析】(1)根据等式的性质将x+2y=5变形,即可得出用含x的式子表示y;(2)根据条件可求出x=﹣5,y=5,代入方程即可得出m的值.解:(1)∵x+2y=5,∴y=﹣x,(2)根据题意得x+2y=5,x+y=0,∴y=5,x=﹣5,代入x﹣2y+mx+9=0得,﹣5﹣10﹣5m+9=0,解得:m=﹣,答:m的值为﹣.23.某店3月份采购A,B两种品牌的T恤杉,若购A款40件,B款60件需进价8400元;若购A款45件,B款50件需进价8050元.(1)商店3月份的进货金额只有10000元,能否同时购进A数和B款T恤衫各60件?(2)根据3月份的销售情况,商店决定4月份和5月份均只销售A款T恤衫,4月份每件的进价比3月份涨了a元,进价合计9800元;5月份每件的进价比4月份又涨了0.5a 元,进价合计12240元,数量是4月份的1.2倍.这两批A款T恤衫开始都以每件150元的价格出售,到6月初,商店把剩下的30件打八折出售,很快便售完,问商店销售这两批A款T恤衫共获毛利润(销售收入减去进价总计)多少元?【分析】(1)根据购A款40件,B款60件需进价8400元;若购A款45件,B款50件需进价8050元,可以得到相应的二元一次方程组,从而可以求得A款T恤衫的单价和B款T恤衫的单价,然后即可计算出同时购进A数和B款T恤衫各60件的总价钱,然后和10000比较大小,即可解答本题;(2)根据题意,可以得到相应的分式方程,从而可以得到a的值,然后即可计算出商店销售这两批A款T恤衫共获毛利润.解:(1)设A款T恤衫的单价为a元,B款T恤衫的单价为b元,,解得,,∵60×90+60×80=5400+4800=10200>10000,∴商店3月份的进货金额只有10000元,不能同时购进A数和B款T恤衫各60件;(2)由题意可得,,解得,a=8,经检验,a=8是原分式方程的解,则4月份购进的T恤衫的数量为=100(件),5月份购进的T恤衫的数量为100×1.2=120(件),(100+120﹣30)×150﹣(9800+12240)+150×0.8×30=10060(元),答:商店销售这两批A款T恤衫共获毛利润10060元.。
2018-2019学年第二学期7年级下浙江各地期末考试数学试题精选及答案解析

2018-2019学年第二学期7年级下浙江各地期末考试数学试题一.选择题(共16小题)1.(2019•瑞安市期末)若x+y=2z,且x≠y≠z,则的值为()A.1B.2C.0D.不能确定2.(2019•余姚市期末)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种3.(2019•越城区期末)能使分式值为整数的整数x有()个.A..1B.2C.3D..44.(2019•鄞州区期末)如图将一张四边形纸片沿EF折叠,以下条件中能得出AD∥BC的条件个数是()①∠2=∠4;②∠2+∠3=180°;③∠1=∠6;④∠4=∠5.A.1B.2C.3D.45.(2019•温州期末)王老师有一个实际容量为1.8GB(1GB=220KB)的U盘,内有三个文件夹,已知课件文件夹占用了0.8GB的内存,照片文件夹内有32张大小都是211KB的旅行照片,音乐文件夹内有若干首大小都是215KB的音乐,若该U盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.346.(2019•杭州期末)已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b﹣1的值为()A.﹣1B.0C.17D.357.(2019•越城区期末)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B﹣∠D C.180°+∠D﹣∠B D.180°+∠B﹣∠D 8.(2019•越城区期末)已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠39.(2019•温州期末)如图,已知直线a∥b,点A,B分别在直线a,b上,连结AB.点D是直线a,b之间的一个动点,作CD∥AB交直线b于点C,连结AD.若∠ABC=70°,则下列选项中∠D不可能取到的度数为()A.60°B.80°C.150°D.170°10.(2019•天台县期末)已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.11.(2019•天台县期末)如图1,当光线在空气进入水中时,会发生折射,满足入射角∠1与折射角∠2的度数比为4:3﹒如图2,在同一平面上,两条光线同时从空气进入水中,两条入射光线与水面夹角分别为α,β,在水中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.B.C.α+β=γD.α+β+γ=180°12.(2019•拱墅区校级期末)已知关于x,y的方程组以下结论:①当k=0,方程组的解也是方程x﹣2y=﹣4的解;②存在实数k,使得x+y=0;③当y﹣x>﹣1时,k>1;④不论k取什么实数,x+3y的值始终不变,其中正确的是()A.①②③B.①②④C.①③④D.②③④13.(2019•瑞安市期末)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2C.25D.30°14.(2019•越城区期末)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab ﹣ac﹣bc的值为()A.0B.1C.2D.315.(2019•余姚市期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.B.C.D.16.(2019•嵊州市期末)已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC 于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A.104°B.76°C.104°或64°D.104°或76°二.填空题(共14小题)17.(2019•永康市期末)若(a+2)a﹣3=1,则a=.18.(2019•鄞州区期末)若实数a,b满足a2+5b2+4ab+6b+9=0,则a+5b的值为.19.(2019•嵊州市期末)若方程组的解为,则方程组的解是.20.(2019•嵊州市期末)如图,P是长方形ABCD内一点,过点P分别作EF∥AB,GH∥BC,(E,F,G,H在长方形的各边上),这样,EF,GH就把长方形ABCD分割成四个小长方形,若其中长方形BEPG的面积是其周长的1.5倍,长方形AGPF和长方形PECH的面积均为2,则长方形PHDF的周长为.21.(2019•诸暨市期末)若解分式方程+2产生增根,则m=.22.(2019•嵊州市期末)如图,在△ABC中,已知BC=7,点E,F分别在边AB,BC上,将△BEF沿直线EF折叠,使点B落在点D处,DF向右平移若干单位长度后恰好能与边AC重合,连结AD,若3AC﹣AD=11,则AC+3AD的值为.23.(2019•天台县期末)已知关于x,y的方程组,有以下结论:①当k=0时,方程组的解是;②方程组的解可表示为;③不论k取什么实数,x+3y的值始终不变.其中正确的有.(填写编号)24.(2019•温州期末)如图,在长方形ABCD中,AB=10,BC=13.E,F,G,H分别是线段AB,BC,CD,AD上的定点,现分别以BE,BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3,若,则S3=.25.(2019•西湖区期末)已知实数a,b,定义运算:a※b=,若a※(a﹣3)=1,则a=.26.(2019•余姚市期末)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.27.(2019•嘉兴期末)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多道.28.(2019•嘉兴期末)如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD 和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为.29.(2019•越城区期末)一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2019的智慧数共有个.30.(2019•瑞安市期末)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a =,b=.三.解答题(共11小题)31.(2019•嵊州市期末)(1)若m2+n2=13,m+n=3,则mn=.(2)请仿照上述方法解答下列问题:若(a﹣b﹣2017)2+(2019﹣a+b)2=5,则代数式的值为.32.(2019•杭州期末)已知关于x,y的二元一次方(a为实数)(1)若方程组的解始终满足y=a+1,求a的值;(2)已知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠﹣6)的解①探究实数a,b满足的关系式;②若a,b都是整数,求b的最大值和最小值.33.(2019•西湖区期末)一项工程甲队单独完成所需天数是乙队单独完成这项工程所需天数的;若由乙队先做45天,剩下的工程再由甲、乙两队合作54天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.82万元,乙队每天的施工费用为0.68万元,工程预算的施工费用为100万元,拟安排甲、乙两队同时合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?说明理由.34.(2019•温州期末)李师傅要给一块长9米,宽7米的长方形地面铺瓷砖,如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽,已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价;(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少?(3)李师傅打算按如下设计图的规律进行铺瓷砖,若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为米(直接写出答案)?35.(2019•瑞安市期末)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)36.(2019•余姚市期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.37.(2019•越城区期末)杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式;(3)运用:若今天是星期四,经过84天后是星期,经过8100天后是星期.38.(2019•鄞州区期末)如图,长方形ABCD中,AB=x(6<x<9),AD=y(6<y<9),放入一个边长为6的正方形AEFG和两个边长都为3的正方形CHIJ及正方形DKMN,S1,S2,S3分别表示对应阴影部分的面积.(1)NH=,KG=,BJ=(结果用含x或y的代数式表示).(2)若S2=S3,求长方形ABCD的周长.(3)若2S1+3S2=5S3,且AD比AB长1,求长方形ABCD的面积.39.(2019•越城区期末)如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.40.(2019•天台县期末)一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.41.(2019•诸暨市期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.2018-2019学年第二学期7年级下浙江各地期末考试数学试题参考答案与试题解析一.选择题(共16小题)1.(2019•瑞安市期末)若x+y=2z,且x≠y≠z,则的值为()A.1B.2C.0D.不能确定【解析】∵x+y=2z,且x≠y≠z,∴x﹣z=z﹣y,∴====1,故选:A.2.(2019•余姚市期末)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种【解析】当4a2是中间项时,那么,第三项为4a4;组成的完全平方式为(2a2+1)2;当4a2是第一项时,那么,中间项为±4a,组成的完全平方式为(2a±1)2;添加的单项式可以为4a4、±4a,即3种,故选:B.3.(2019•越城区期末)能使分式值为整数的整数x有()个.A..1B.2C.3D..4【解析】=+=2+,当2x﹣3=±1或±13时,是整数,即原式是整数.解得:x=2或1或8或﹣5;4个,故选:D.4.(2019•鄞州区期末)如图将一张四边形纸片沿EF折叠,以下条件中能得出AD∥BC的条件个数是()①∠2=∠4;②∠2+∠3=180°;③∠1=∠6;④∠4=∠5.A.1B.2C.3D.4【解析】①∵∠2=∠4,∴AD∥BC,故①符合题意;②∵∠2+∠3=180°,∠3+∠5=180°,∴∠2=∠5,∴HE∥GF,本选项不符合题意;③由折叠的性质可得∠1=∠7,∵∠1=∠6,∴∠6=∠7,∴AD∥BC,故③符合题意;④无法由∠4=∠5得到AD∥BC,本选项不符合题意.故能得出AD∥BC的条件个数是2.故选:B.5.(2019•温州期末)王老师有一个实际容量为1.8GB(1GB=220KB)的U盘,内有三个文件夹,已知课件文件夹占用了0.8GB的内存,照片文件夹内有32张大小都是211KB的旅行照片,音乐文件夹内有若干首大小都是215KB的音乐,若该U盘内存恰好用完,则此时文件夹内有音乐()首.A.28B.30C.32D.34【解析】(1.8﹣0.8)×220=220(KB)32×211=216(KB),(220﹣216)÷215=25﹣2=30(首),故选:B.6.(2019•杭州期末)已知a,b是常数,若化简(﹣x+a)(2x2+bx﹣3)的结果不含x的二次项,则36a﹣18b﹣1的值为()A.﹣1B.0C.17D.35【解析】原式=﹣2x3﹣bx2+3x+2ax2+abx﹣3a=﹣2x3+(2a﹣b)x2+(3+ab)x﹣3a∵(﹣x+a)(2x2+bx﹣3)结果不含x的二次项∴2a﹣b=0∵式子36a﹣18b﹣1=18(2a﹣b)﹣1∴36a﹣18b﹣1=18×0﹣1=﹣1故选:A.7.(2019•越城区期末)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B﹣∠D C.180°+∠D﹣∠B D.180°+∠B﹣∠D【解析】∵AB∥DE,∴∠E=180°﹣∠B,∴∠BCD=∠D+∠E=180°﹣∠B+∠D.故选:C.8.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【解析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C.9.(2019•温州期末)如图,已知直线a∥b,点A,B分别在直线a,b上,连结AB.点D是直线a,b之间的一个动点,作CD∥AB交直线b于点C,连结AD.若∠ABC=70°,则下列选项中∠D不可能取到的度数为()A.60°B.80°C.150°D.170°【解析】延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选:A.10.(2019•天台县期末)已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.【解析】当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x<,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.11.(2019•天台县期末)如图1,当光线在空气进入水中时,会发生折射,满足入射角∠1与折射角∠2的度数比为4:3﹒如图2,在同一平面上,两条光线同时从空气进入水中,两条入射光线与水面夹角分别为α,β,在水中两条折射光线的夹角为γ,则α,β,γ三者之间的数量关系为()A.B.C.α+β=γD.α+β+γ=180°【解析】如图2所示,过B,D,F分别作水平线的垂线,则PC∥DE∥QG,∴∠BDF=∠BDE+∠FDE=∠DBC+∠DFG,由题可得,∠DBC=∠ABP=(90°﹣α),∠DFG=∠HFQ=(90°﹣β),∴∠BDF=(90°﹣α)+(90°﹣β)=(180°﹣α﹣β),即γ=135°﹣(α+β),∴(α+β)=135°﹣γ,故选:B.12.(2019•拱墅区期末)已知关于x,y的方程组以下结论:①当k=0,方程组的解也是方程x﹣2y=﹣4的解;②存在实数k,使得x+y=0;③当y﹣x>﹣1时,k>1;④不论k取什么实数,x+3y的值始终不变,其中正确的是()A.①②③B.①②④C.①③④D.②③④【解析】①把k=0代入方程组得:,解得:,代入方程得:左边=﹣2﹣2=﹣4,右边=﹣4,左边=右边,此选项正确;②由x+y=0,得到y=﹣x,代入方程组得:,即k=3k﹣1,解得:k=,则存在实数,使x+y=0,本选项正确;③,①×2﹣②得:y=1﹣k,把y=1﹣k代入①得:x=3k﹣2,y﹣x=1﹣k﹣3k+2=3﹣4k,代入不等式得:3﹣4k>﹣1,解得:k<1,此选项错误;④x+3y=3k﹣2+3﹣3k=1,本选项正确,故选:B.13.(2019•瑞安市期末)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2C.25D.30°【解析】如图,延长BA交EC于H.∵EC∥BD,∴∠CHA+∠ABD=180°,∵∠ABD=90°,∴∠AHC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD=120°,∵∠BAC=∠AHC+∠ECA,∴∠ECA=30°,故选:D.14.(2019•嘉祥县期末)已知a=2019x+2018,b=2019x+2019,c=2019x+2020,则代数式a2+b2+c2﹣ab ﹣ac﹣bc的值为()A.0B.1C.2D.3【解析】∵a=2019x+2018,b=2019x+2019,c=2019x+2020,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣ac﹣bc=2(a2+b2+c2﹣ab﹣ac﹣bc)÷2=[(a﹣b)2+(b﹣c)2+(c﹣a)2]÷2=[(﹣1)2+(﹣1)2+22]÷2=6÷2=3故选:D.15.(2019•余姚市期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.【解析】如图,作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,则MN∥PP′且MN=PP′,于是四边形PMNP′为平行四边形,故PM=NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.故选:C.16.(2019•嵊州市期末)已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC 于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A.104°B.76°C.104°或64°D.104°或76°【解析】当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE﹣∠CDE=84°﹣20°=64°.综上所述:∠ADC=104°或64°.故选:C.二.填空题(共14小题)17.(2019•永康市期末)若(a+2)a﹣3=1,则a=3或﹣1或﹣3.【解析】∵(a+2)a﹣3=1,∴a+2≠0,且a﹣3=0或a+2=1或a+2=﹣1,且a﹣3是偶数,∴a=3或﹣1或﹣3,故答案为:3或﹣1或﹣3.18.(2019•鄞州区期末)若实数a,b满足a2+5b2+4ab+6b+9=0,则a+5b的值为﹣9.【解析】∵a2+5b2+4ab+6b+9=0,∴(a+2b)2+(b+3)2=0,∴a+2b=0,b+3=0,解得:a=6,b=﹣3,∴a+5b=6+5×(﹣3)=﹣9.故答案为﹣9.19.(2019•嵊州市期末)若方程组的解为,则方程组的解是.【解析】在方程组中,设x+2=a,y﹣1=b,则变形为方程组,解得.故答案为:.20.(2019•嵊州市期末)如图,P是长方形ABCD内一点,过点P分别作EF∥AB,GH∥BC,(E,F,G,H在长方形的各边上),这样,EF,GH就把长方形ABCD分割成四个小长方形,若其中长方形BEPG的面积是其周长的1.5倍,长方形AGPF和长方形PECH的面积均为2,则长方形PHDF的周长为.【解析】设PG=a,PE=b,PF=c,PH=d,根据题意,得ac=bd=2,则c=,d=.又ab=1.5×2(a+b)=3(a+b).c+d=+===.所以长方形PHDF的周长为2(c+d)=.故答案为.21.(2019•诸暨市期末)若解分式方程+2产生增根,则m=﹣5.【解析】去分母得:x﹣1=m+2x+8,由分式方程有增根,得到x+4=0,即x=﹣4,把x=﹣4代入整式方程得:m=﹣5,故答案为:﹣522.(2019•嵊州市期末)如图,在△ABC中,已知BC=7,点E,F分别在边AB,BC上,将△BEF沿直线EF折叠,使点B落在点D处,DF向右平移若干单位长度后恰好能与边AC重合,连结AD,若3AC﹣AD=11,则AC+3AD的值为12.【解析】∵将△BEF沿直线EF折叠,使点B落在点D处,∴DF=BF,∵DF向右平移若干单位长度后恰好能与边AC重合,∴四边形ADFC是平行四边形,∴AD=CF,DF=AC,设AD=CF=x,则AC=DF=BF=7﹣x,∵3AC﹣AD=11,∴3(7﹣x)﹣x=11,∴x=2.5,∴AD=2,5,AC=4.5,∴AC+3AD=4.5+3×2.5=12,故答案为:12.23.(2019•天台县期末)已知关于x,y的方程组,有以下结论:①当k=0时,方程组的解是;②方程组的解可表示为;③不论k取什么实数,x+3y的值始终不变.其中正确的有①②③.(填写编号)【解析】①当k=0时,原方程组可整理得:,解得:,故①正确;②解方程组,得:,故②正确;③由②知,方程组的解为,∴x+3y=3k﹣2+3(1﹣k)=1,∴不论k取什么实数,x+3y的值始终不变,故③正确;故答案为①②③.24.(2019•温州期末)如图,在长方形ABCD中,AB=10,BC=13.E,F,G,H分别是线段AB,BC,CD,AD上的定点,现分别以BE,BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF 与正方形DGIH的重合部分恰好是一个正方形,且BE=DG,Q,I均在长方形ABCD内部.记图中的阴影部分面积分别为S1,S2,S3,若,则S3=.【解析】如图,设CG=a,则DG=GI=BE=10﹣a,∵AB=10,BC=13,∴AE=AB﹣BE=10﹣(10﹣a)=a,PI=IG﹣PG=10﹣a﹣a=10﹣2a,AH=13﹣DH=13﹣(10﹣a)=a+3,∵,即,4a2﹣9a=0,a1=0(舍),a2=,则S3=(10﹣2a)2=(10﹣)2=,故答案为:.25.(2019•西湖区期末)已知实数a,b,定义运算:a※b=,若a※(a﹣3)=1,则a=3或±1.【解析】∵a>a﹣3,a※(a﹣3)=1,根据题中的新定义得:a a﹣3=1,∴a﹣3=0或a=1或a=﹣1,∴a=3或±1.故答案为:3或±1.26.(2019•余姚市期末)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为45°,75°,165°.【解析】①如图1中,当DE∥AB时,易证∠ABD=∠D=45°,可得旋转角α=45°②如图2中,当DE∥BC时,易证∠ABD=∠ABC+∠CBD=∠ABC+∠D=75°,可得旋转角α=75°③如图3中,当DE∥AC时,作BM∥AC,则AC∥BM∥DE,∴∠CBM=∠C=90°,∠DBM=∠D=45°,∴∠ABD=30°+90°+45°=165°,可得旋转角α=165°,综上所述,满足条件的旋转角α为45°,75°,165°故答案为45°,75°,165°.27.(2012•乐平市校级自主招生)小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多20道.【解析】设x道难题,y道中档题,z道容易题.x+y+z=100①x+2y+3z=180②①×2﹣②,得x﹣z=20,∴难题比容易题多20道.故填20.28.(2018•嘉兴期末)如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD 和正方形PBEF,连结MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为35.【解析】∵AP=a,BP=b,点M是AB的中点,∴AM=BM=,∴S阴影=S正方形APCD+S正方形BEFP﹣S△ADM﹣S△BEM=a2+b2﹣a×﹣b×=a2+b2﹣(a+b)2=(a+b)2﹣2ab﹣(a+b)2=100﹣40﹣25=35,故答案为:35.29.(2019•越城区期末)一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22﹣12=3,3就是智慧数,从0开始,不大于2019的智慧数共有1010个.【解析】∵(n+1)2﹣n2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1010.故答案为:1010.30.(2019•瑞安市期末)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=288,b=102.【解析】设横式纸盒x个,则竖式纸盒为(x+30)个,a=4(x+30)+3x,b=(x+30)+2x,∵295<a+b<305,∴295<4(x+30)+3x+(x+30)+2x<305,解得:14.5≤x≤15.5,∵x为整数,∴x=15当x=15时,a=225,b=75,故答案为:225,75.三.解答题(共11小题)31.(2019•嵊州市期末)(1)若m2+n2=13,m+n=3,则mn=﹣2.(2)请仿照上述方法解答下列问题:若(a﹣b﹣2017)2+(2019﹣a+b)2=5,则代数式的值为﹣4038.【解析】(1)把m+n=3两边平方得:(m+n)2=9,即m2+n2+2mn=9,把m2+n2=13代入得:2mn=﹣4,即mn=﹣2;(2)由题意得:4=[(a﹣b﹣2017)+(2019﹣a+b)]2=(a﹣b﹣2017)2+(2019﹣a+b)2+2(a﹣b﹣2017)(2019﹣a+b),把(a﹣b﹣2017)2+(2019﹣a+b)2=5代入得:(a﹣b﹣2017)(2019﹣a+b)=﹣,则原式==﹣4038,故答案为:﹣403832.(2019•杭州期末)已知关于x,y的二元一次方(a为实数)(1)若方程组的解始终满足y=a+1,求a的值;(2)已知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠﹣6)的解①探究实数a,b满足的关系式;②若a,b都是整数,求b的最大值和最小值.【解析】(1),②﹣①得:3y=6a﹣3,即y=2a﹣1,把y=2a﹣1代入y=a+1中得:2a﹣1=a+1,解得:a=2;(2)①把y=2a﹣1代入方程组第一个方程得:x=a+2,方程组的解为,代入bx+3y=1得:ab+2b+6a﹣3=1,即ab+6a+2b=4;②由ab+6a+2b=4,得到b====﹣6,∵a,b都是整数,∴a+2=±1,±2,±4,±8,±16,当a+2=1,即a=﹣1时,b取得最大值10;当a+2=﹣1,即a=﹣3时,b取得最小值﹣22.33.(2019•西湖区期末)一项工程甲队单独完成所需天数是乙队单独完成这项工程所需天数的;若由乙队先做45天,剩下的工程再由甲、乙两队合作54天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.82万元,乙队每天的施工费用为0.68万元,工程预算的施工费用为100万元,拟安排甲、乙两队同时合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?说明理由.【解析】(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意得:+54×=1.解得:x=180.经检验:x=180是所列方程的根.且符合题意,∴x=×180=120(天).答:甲、乙两队单独完成这项工程各需要120天和180天.(2)设甲、乙两队合作完成这项工程需要y天.可得:(+)y=1.解得:y=72.需要施工费用:72×(0.82+0.68)=108(万元).∵108>100,108﹣100=8(万元)∴工程预算的施工费用不够用.需追加预算8万元.34.(2019•温州期末)李师傅要给一块长9米,宽7米的长方形地面铺瓷砖,如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等,B款瓷砖的长大于宽,已知一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价;(2)若李师傅买两种瓷砖共花了1000元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少?(3)李师傅打算按如下设计图的规律进行铺瓷砖,若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为1米和米或1米和米(直接写出答案)?【解析】(1)设A款瓷砖单价为x元,B款瓷砖单价为y元,则,解得:;答:A款瓷砖单价为80元,B款瓷砖单价为60元.(2)设A款瓷砖买了m块,B款瓷砖买了y块,且m>n,则80m+60n=1000,即:4m+3n=50,∵m,n为正整数,且m>n,∴m=11时,n=2;m=8时,n=6;答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款瓷砖边长为a米,B款瓷砖长为a米、宽为b米,则2××=2(+1)×﹣14,解得:a=1,由题意得:是正整数,设=k(k为正整数),解得:b=,当k=1时,b=(>1,舍去);当k=2时,b=(>1,舍去);当k=3时,b=;当k=4时,b=.故答案为:1米和米或1米和.35.(2019•瑞安市期末)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了24,26,28.本.(直接写出答案)【解析】(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.36.(2019•余姚市期末)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.【解析】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.37.(2019•越城区期末)杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)运用:若今天是星期四,经过84天后是星期星期五,经过8100天后是星期星期五.【解析】(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)84=(7+1)4的最后一项是1,∴经过84天后是星期五;8100=(7+1)100的最后一项是1,∴经过8100天后是星期五;故答案为星期五,星期五.38.(2019•鄞州区期末)如图,长方形ABCD中,AB=x(6<x<9),AD=y(6<y<9),放入一个边长为6的正方形AEFG和两个边长都为3的正方形CHIJ及正方形DKMN,S1,S2,S3分别表示对应阴影部分的面积.(1)NH=x﹣6,KG=9﹣y,BJ=y﹣3(结果用含x或y的代数式表示).(2)若S2=S3,求长方形ABCD的周长.(3)若2S1+3S2=5S3,且AD比AB长1,求长方形ABCD的面积.【解析】(1)NH=CD﹣DN﹣CH=x﹣3﹣3=x﹣6,KG=AG+DK﹣AD=6+3﹣y=9﹣y,BJ=BC﹣CJ=y﹣3,故答案为:x﹣6;9﹣y;y﹣3;(2)∵S2=S3,∴(9﹣x)(9﹣y)=(x﹣6)(y﹣6),∴x+y=15,∴长方形ABCD的周长=2(x+y)=30;(3)∵2S1+3S2=5S3,且AD比AB长1,∴,解得,,∴长方形ABCD的面积=.39.(2019•越城区期末)如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.【解析】(1)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°﹣∠D=60°,∠PCH=120°﹣∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC﹣90°,∴∠FHC=180°﹣(∠ABC﹣90°)=270°﹣∠ABC,∴∠D+∠DCH+270°﹣∠ABC=360°,即∠D+∠DCB﹣∠ABC=90°.即α+β﹣γ=90°.40.(2019•天台县期末)一个运输公司有甲、乙两种货车,两次满载的运输情况如下表:甲种货车辆数乙种货车辆数合计运货吨数第一次2418第二次5635(1)求甲、乙两种货车每次满载分别能运输多少吨货物;(2)现有一批重34吨的货物需要运输,而甲、乙两种货车运输的保养费用分别为80元/辆和40元/辆.公司打算由甲、乙两种货车共10辆来完成这次运输,为了使保养费用不超过700元,公司该如何安排甲、乙两种货车来完成这次运输任务.【解析】(1)设甲车每辆运输x吨货物,乙车每辆运输y吨货物,由题意得:,解得:,答:甲车每辆运输4吨货物,乙车每辆运输2.5吨货物.(2)安排甲车a辆、乙车(10﹣a)辆,,解得:6≤a≤7.5,∵a为整数,∴a可以取的整数是6或7,答:公司可以安排甲车6辆、乙车4辆或甲车7辆、乙车3辆.41.(2019•诸暨市期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC 之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.【解析】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;。
2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。
浙教版2018-2019学年初一数学(下册)期末测试卷及答案

2018-2019学年初一数学(下册)期末测试卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选
项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以
用多种不同的方法来选取正确答案.
1.下列计算正确的是()
A.(a3)3=a9B.a2+a2=a4 C.(a+1)2=a2+1 D.1+=
2.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生
B.调查全体男生
C.调查九年级全体学生
D.调查七、八、九年级各50名学生
3.下列代数式变形中,是因式分解的是()
A. ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)
C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)2
4.如图,能判定EB∥AC的条件是()
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
5.化简的结果是()
A.﹣x﹣y B.y﹣x C.x﹣y D.x+y
6.803﹣80能被()整除.
A.76 B.78 C.79 D.82
7.与方程5x+2y=﹣9构成的方程组,其解为的是()
A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣3
第1页(共20页)。
拱墅初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

拱墅初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A. ∠1+∠2B. ∠2-∠1C. 180°-∠2+∠1D. 180°-∠1+∠2【答案】C【考点】平行线的性质【解析】【解答】解:∵B∥CD∴∠1=∠BCD∵CD∥EF,∴∠2+∠DCE=180°∠DCE=180°-∠2∵∠BCE=∠BCD+ ∠DCE∴∠BCE=180°-∠2+∠1故答案为:C【分析】根据两直线平行内错角相等即同旁内角互补,可得出∠1=∠BCD,∠2+∠DCE=180°,再根据∠BCE=∠BCD+ ∠DCE,即可得出结论。
2、(2分)如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()A. 平行B. 相交C. 垂直D. 不能确定【答案】A【考点】平行线的判定与性质【解析】【解答】解:因为平行于同一条直线的两直线平行,所以AB∥EF.故答案为:A.【分析】若两直线同时平行于第三条直线,则这两条直线也平行.3、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A. ∠1=90°,∠2=30°,∠3=∠4=60°;B. ∠1=∠3=90°,∠2=∠4=30°C. ∠1=∠3=90°,∠2=∠4=60°;D. ∠1=∠3=90°,∠2=60°,∠4=30°【答案】D【考点】对顶角、邻补角【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故答案为:D【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.4、(2分)下列说法:①5是25的算术平方根, ②是的一个平方根;③(-4)2的平方根是±2;④立方根和算术平方根都等于自身的数只有1.其中正确的是()A. ①②B. ①③C. ①②④D. ③④【答案】A【考点】平方根,算术平方根,立方根及开立方【解析】【解答】解:①5是25的算术平方根,正确;②是的一个平方根,正确;③(-4)2=16的平方根是±4,故③错误;④立方根和算术平方根都等于自身的数有1和0,错误;正确的有:①②故答案为:A【分析】根据算术平方根的定义,可对①作出判断;根据平方根的性质:正数的平方根有两个。
2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省杭州拱墅区2018-2019学年七年级下学期期末统考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)1.已知人体红细胞的平均直径是0.00072cm ,用科学记数法可表示为().A .37.210cm -⨯B .47.210cm -⨯C .57.210cm -⨯D .67.210cm -⨯【答案】B【解析】科学记数法:将数写成10n a ⨯,110a <≤.2.为调查6月份某厂生产的100000件手机电池的质量,质检部门共抽检了其中3个批次,每个批次100件的手机电池进行检验,在这次抽样调查中,样本的容量是(). A .100000B .3C .100D .300【答案】D【解析】3100300⨯=.3.下列运算结果为6x 的是().A .33x x +B .33()xC .5x x ⋅D .122x x ÷【答案】C【解析】解析:3332x x x +=,339()x x =,56x x x ⋅=,12210x x x ÷=.4.下列式子直接能用完全平方公式进行因式分解的是().A .21681a a ++B .239a a -+C .2441a a +-D .2816a a --【答案】A【解析】221681(41)a a a ++=+.5.已知直线1l ,2l ,3l ,(如图),5∠的内错角是().A .1∠B .2∠C .3∠D .4∠【答案】B【解析】内错角的定义.6.下列分式中,最简分式是().A .22xx y+B .23x xy xy-C .224x x +- D .2121xx x --+【答案】A【解析】233x xy x yxy y--=,22214(2)(2)2x x x x x x ++==-+--,2211121(1)1x x x x x x --==-+--.7.已知2(3)a -=-,1(3)b -=-,0(3)c =-,那么a ,b ,c 之间的大小关系是().A .a b c >>B .a c b >>C .c b a >>D .c a b >>【答案】D【解析】21(3)9a -=-=,11(3)3b -=-=-,0(3)1c =-=,∴b a c <<.12345l 2l 1l 38.对x ,y 定义一种新运算“※”,规定:y m ny x x =+※(其中m ,n 均为非零常数),若114=※, 123=※.则21※的值是().A .3B .5C .9D .11【答案】C【解析】114m n =+=※,1223m n =+=※, ∴5m =,1n =-,∴1292m n =+=※.9.对某厂生产的一批轴进行检验,检验结果中轴的直径的各组频数、频率如表(每组含前一个边界值,不含后一个边界值).且轴直径的合格标准为20150.15100ϕ+-(单位:mm ).有下列结论: ①这批被检验的轴总数为50根; ②0.44a b +=且x y =;③这批轴中没有直径恰为100.15mm 的轴;④这一批轴的合格率是82%,若该厂生产1000根这样的轴.则其中恰好有180根不合格,其中正确的有().-0.15+0.14φA .1个B .2 D .4个【答案】C【解析】总数为50.150÷=(根), 20500.4b =÷=,10.10.420.40.040.04a =----=,0.44a b +=. b 对应20个,所以2x =,4x y +=,x y =,由表知,没有直径恰好100,15mm 的轴, 合格率为0.420.40.8282%+==,生产1000根中不合格的估计有1000(182%)180⨯-=(根),不一定恰好, 故正确的为①②③,共3个.10.某市在“五水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时b 吨的定流量增加).若污水处理厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组.需15小时处理完污水.现要求用5个小时将污水处理完毕,则需同时开动的机组数为(). A .4台B .5台C .6台D .7台【答案】D【解析】依题意:有30230,15315,a b a b +=⨯⎧⎨+=⨯⎩则30.1.a b =⎧⎨=⎩设需x 台机组,则55a b x +=,∴7x =.二、填空填(本大题有6小题,每小题4分,共24分) 11.要使分式11x x +-有意义,x 的取值应满足__________. 【答案】1x ≠ 【解析】要使11x x +-有意义,则10x -≠, ∴1x ≠.12.已知二元一次方程142x y +=.若用含x 的代数式表示y ,可得y =__________;方程的正整数解是__________. 【答案】22x -2x =,1y =【解析】∵142x y +=,∴21242x x y ⎛⎫=⨯-=- ⎪⎝⎭,正整数解为2,1.x y =⎧⎨=⎩.13.如图,有下列条件:①12∠=∠;②34∠=∠;③5B ∠=∠;④180B BAD ∠+∠=︒.其中能得到AB CD ∥的是__________(填写编号).【答案】②③【解析】平行线的判定.14.分解因式:34ab ab -=__________. 【答案】(21)(21)ab b b +-【解析】324(41)(21)(21)ab ab ab b ab b b -=-=+-.15.若分式方程23111k x x-=--有增根,则k =__________. 【答案】32-【解析】23111k x x-=--等式两边同乘(1)x -, 231k x +=-得24x k =+,∵方程有增根, ∴10x -=即241k +=, ∴32k =-.16.如图所示,一个大长方形刚好由n 个相同的小长方形拼成,其上、下两边各有2个水平放置的小长DABCE12345方形,中间恰好用若干个小长方形平放铺满,若这个大长方形的长是宽的1.75倍,则n 的值是__________.【答案】32【解析】依题意,设小长方形的长为a ,宽为b , 则大长方形长为2a ,宽为2b a +, 则2 1.75(2)a b a =+解得14a b =,∴大长方形有142432⨯+=(个)小长方形拼成.三、解答题(本大题有7小题,共66分)17.(6分)如图,在每格边长为1的网格上.平移格点三角形ABC ,使三角形ABC 的顶点A 平移到格点D 处.(1)请画出平移后的图形三角形DEF (B ,C 的对应点分别为点E ,F ),并求三角形DEF 的面积.(2)写出线段AD 与线段BF 之间的关系.【答案】见解析【解析】解:(1)图略111342412234222DEF ABC S S ==⨯-⨯⨯-⨯⨯-⨯⨯=△△. (2)AD BE ∥且AD BE =.18.(8分)计算: (1)22132xy x y-;(2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦【答案】见解析 【解析】解:(1)2222222323222x y x yx y x y x y --=. (2)2(2)(4)62m n n m n m m ⎡⎤+-++÷⎣⎦222(4446)2m mn n mn n m m =++--+÷ 2(46)223m m m m =+÷=+.19.(8分)先化简,再求值:2213312113x x x x x x ---+÷+++,其中9101(3)3x ⎛⎫=-⨯- ⎪⎝⎭.【答案】见解析 【解析】解:原式2(1)(1)3(1)3(1)11x x x x x x +--=+++-198711111x x x x x x -+=+==+++++9101(3)33x ⎛⎫=-⨯-=- ⎪⎝⎭时, 原式751312=+=--+.20.(10分)解方程(组) (1)5,325;x y x y +=-⎧⎨-=⎩(2)2210442x x x x+-=-+-.【答案】见解析 【解析】解:(1)5,325,x y x y +=-⎧⎨-=⎩①②,【注意有①②】2⨯①+②得55x =-,∴1x =-,代入①得4y =-,∴1,4.x y =-⎧⎨=-⎩. (2)2210442x x x x+-=-+-.化简得2210(2)2x x x ++=--,左右同乘2(2)x -, 得220x x ++-=,∴0x =,经检验,0x =为原分式方程的解.21.(10分)如图,已知AB CD EF ∥∥,30CMA ∠=︒,80CNE ∠=︒,CO 平分MCN ∠.求M C N ∠, DCO ∠的度数(要求有简要的推理说明).【答案】25︒【解析】解:∵AB CD ∥,∴30MCD AMC ∠=∠=︒,D A BC EFOM N同理,80NCD CNE ∠=∠=︒, ∴110MCN MCD NCD ∠=∠+∠=︒. ∵CO 平分MCN ∠, ∴1552NCO MCN ∠=∠=︒, ∴25DCO NCD NCO ∠=∠-=︒.22.(12分)以下是某网络书店1~4月关于图书销售情况的两个统计图:某网络书店14-月销售总额统计图绘本类图书销售额占该书店 当月销售总额的百分比统计图(1)求1月份该网络书店绘本类图书的销售额.(2)若已知4月份与1月份这两个月的绘本类图书销售额相同,请补全统计图2. (3)有以下两个结论:①该书店第一季度的销售总额为182万元.②该书店1月份到3月份绘本类图书销售额的月增长率相等. 请你判断以上两个结论是否正确,并说明理由. 【答案】见解析【解析】解:(1)1月份绘本类图书的销售额为706% 4.2⨯=(万元).图1图2(2)4月份绘本类图书销售总额占的百分比为4.2607%÷=.图略. (3)第一季度销售总额为706250182-+=(万元).①正确.1月份到2月份,绘本类图书销售额增长率为(628%706%) 4.20.76 4.218.1%⨯-⨯÷=÷≈.2月份到3月份增长率为(5010%628%)628%()0.8%⨯-⨯÷⨯≈.②错误.23.(12分)通过对某校营养午餐的检测,得到如下信息:每份营养午餐的总质量400g ;午餐的成分为蛋白质、碳水化合物、脂肪和矿物质,其组成成分所占比例如图1所示;其中矿物质的含量是脂肪含量的1.5倍,蛋白质和碳水化合物含量占80%.某校营养午餐组成成分统计图 某校营养午餐组成统计图(1)设其中蛋白质含量是(g)x .脂肪含量是(g)y ,请用含x 或y 的代数式分别表示碳水化合物和矿物质的质量.(2)求每份营养午餐中蛋白质、碳水化合物、脂肪和矿物质的质量. (3)参考图1,请在图2中完成这四种不同成分所占百分比的扇形统计图.【答案】见解析图1碳水化合物矿物质45%蛋白质脂肪55%图2【解析】解:(1)由题可知,矿物质的质量为1.5(g)y .碳水化合物的质量为40045% 1.5180 1.5(g)y y ⨯-=-.(2)40055%,180 1.540080%,x y x y +=⨯⎧⎨+-=⨯⎩,解得188,32,x y =⎧⎨=⎩ 蛋白质质量为188g .碳水化合物质量为180 1.532132g -⨯=,脂肪质量为32g ,矿物质质量为1.53248g ⨯= (3)蛋白质:188100%47%400⨯=, 碳水化合物:80%47%33%-=,脂肪:55%47%8%-=,矿物质:45%33%12%-=.图略.。