苏科版七年级上册数学第一学期期末考试试卷

合集下载

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试题一、单选题1.2022-的相反数是()A .12022-B .12022C .2022-D .20222.用科学记数法表示42000为()A .34210⨯B .44.210⨯C .54.210⨯D .54200010⨯3.下列图形绕图中的虚线旋转一周,能形成圆锥的是()A .B .C .D .4.下列运算中,正确的是()A .a+2a =3a 2B .2a ﹣a =1C .3ab 2﹣2b 2a =ab 2D .2a+b =2ab5.若关于x 的一元一次方程2x ﹣k+1=0的解是x =2,那么k 的值是()A .3B .4C .5D .66.若3xm +5y 2与23x 8yn +4的差是一个单项式,则代数式nm 的值为()A .﹣8B .6C .﹣6D .87.古代数学:现有一伙人共同买一个物品,每人出8钱,还余3钱;每人出7钱,还差4钱,问有人数、物价各是多少?设物价为x 钱,根据题意可列出方程()A .8374x x +=-B .3487x x +-=C .8374x x -=+D .3487x x -+=8.有下列说法:①射线AB 与射线BA 表示同一条直线;②若AB =BC ,则点B 是线段AC 的中点;③过一点有且只有一条直线与已知直线平行;④两点之间,线段最短;⑤已知三条射线OA ,OB ,OC ,若12AOC AOB ∠=∠,则射线OC 是∠AOB 的平分线;⑥在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.其中正确的有()A .1个B .2个C .3个D .4个二、填空题9.比0小4的数是_____.10.单项式﹣2πa2bc的次数为_____.11.已知∠α=32°24′,则∠α的补角是_____.12.如图,想在河堤两岸搭建一座桥,搭建方式最短的是线段_____.13.已知a﹣2b=1,那么代数式5﹣2a+4b的值是_____.14.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为24,则x﹣y=_____.15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°,∠2=_____.16.某城市下水管道工程由甲、乙两个工程队单独铺设分别需要10天和15天完成,如果两队从两端同时施工2天,然后由乙单独完成,还需_____天完成.17.如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2022次输出的结果为_____.18.如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为_____.三、解答题19.计算:(1)132()12243-+-⨯;(2)2022211(3)|2|2-+-÷--.20.解方程:(1)2﹣3x =5﹣2x ;(2)121123x x +-=-.21.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(ab 2﹣2a 2b ),其中21||(3)02a b -++=.22.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD 的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C 画AD 的平行线CE ;(2)过点B 画CD 的垂线,垂足为F .23.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请在网格中画出几何体的主视图、左视图、俯视图;(2)图中共有个小正方体.(3)已知每个小正方体的棱长为1cm,则该几何体的表面积为cm2.24.如图,已知点D是线段AB上一点,点C是线段AB的中点,若AB=8cm,BD=3cm.(1)求线段CD的长;(2)若点E是线段AB上一点,且13BE BD,求线段AE的长.25.如图,直线AB、CD相交于点O,OE平分∠BOD,OE⊥OF.(1)若∠DOE=32°,求∠BOF的度数;(2)若∠COE:∠COF=8:3,求∠AOF的度数.26.某景区旅游团队的门票价格如下:购票人数不超过50人超过50人,但不超过100人超过100人门票价格100元/人80元/人60元/人(1)甲旅游团共有40人,则甲旅游团共付门票费元;(2)乙旅游团共付门票费7200元,则乙旅游团共有人;(3)丙,丁两个旅游团共有100人,其中丙旅游团人数不超过50人,两个旅游团先后共付门票费8600元,求丙、丁两个旅游团的人数.27.如图1:已知OB⊥OD,OA⊥OC,∠COD=40°,若射线OA绕O点以每秒30°的速度顺时针旋转,射线OC绕O点每秒10°的速度逆时针旋转,两条射线同时旋转,当一条射线与射线OD重合时,停止运动.(1)开始旋转前,∠AOB=.(2)若射线OB也绕O点以每秒20°的速度顺时针旋转,三条射线同时旋转,当一条射线与射线OD重合时,停止运动.当三条射线中其中一条射线是另外两条射线夹角的角平分线时,求旋转的时间.(3)【实际应用】从今天上午6时整开始到上午7时整结束的运动过程中,经过多少分钟时针与分针所形成的钝角等于120°(直接写出所有可能结果).参考答案1.D2.B3.B4.C5.C6.A7.B8.B9.-410.411.147°36′12.PN【分析】根据从直线外一点到这条直线上各点所连的线段中,垂线段最短可知搭建方式最短的是PN,理由垂线段最短.【详解】解:因为PN⊥MQ,垂足为N,则PN为垂线段,根据垂线段最短,可得线段PN最短,故答案为:PN.【点睛】本题考查了垂线段最短,利用垂线段的性质是解题关键.13.3【分析】已知a-2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a-2b=1,∴5-2a+4b=5-2(a-2b)=5-2×1=3,故答案为:3.【点睛】本题考查了代数式求值,是基础题,整体思想的利用是解题的关键.14.6【分析】利用正方体及其表面展开图的特点,根据相对面上的两个数之积为24,列出方程求出x、y的值,从而得到x-y的值.【详解】解:将题图中平面展开图按虚线折叠成正方体后,可知标有数字“2”的面和标有x的面是相对面,标有数字“4”的面和标有y的面是相对面,∵相对面上两个数之积为24,∴x=12,y=6,∴x-y=6.故答案为:6.【点睛】本题考查了正方体对面上的字,找出x、y的对面是解题的关键.15.57°##57度【分析】先利用∠1求出∠EAC的度数,再利用90°减去∠EAC即可解答.【详解】解:∵∠BAC=60°,∠1=27°,∴∠EAC=∠BAC-∠1=60°-27°=33°,∵∠EAD=90°,∴∠2=∠EAD-∠EAC=90°-33°=57°,故答案为:57°.【点睛】本题考查角的和差,题目较容易,根据已知求出∠EAC 便可求出答案.16.10【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程,解方程即可.【详解】解:由乙队单独施工,设还需x 天完成,根据题意得2211015x ++=,解得x=10.答:由乙队单独施工,还需10天完成,故答案为:10.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.6【分析】把x 的值代入程序中计算,以此类推得到一般性规律,即可得到第2022次输出结果.【详解】解:第一次输出结果为96×12=48,第二次输出结果为48×12=24,第三次输出结果为24×12=12,第四次输出结果为12×12=6,第五次输出结果为6×12=3,第六次输出结果为3+3=6,第七次输出结果为6×12=3,…,依此类推,得出规律:第四次后,偶数次时,输出结果为6;奇数次时,输出结果为3;第2022次输出结果为6,故答案为:6.【点睛】此题考查了代数式求值,数字型规律,弄清题中程序框图表示的意义是解本题的关键.18.94或6【分析】分下列三种情况讨论,如图1,当点P在CD上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在AD上,即3<t≤7时,由S△PCE=S四边形AECD-S△PCD-S△PAE建立方程求出其解即可;如图3,当点P在AE上,即7<t≤9时,由S△PCE=12PE•BC=18建立方程求出其解即可.【详解】解:如图1,当点P在CD上,即0<t≤3时,∵四边形ABCD是长方形,∴AB=CD=6cm,AD=BC=8cm.∵CP=2t(cm),∴S△PCE=12×2t×8=18,∴t=9 4;如图2,当点P在AD上,即3<t≤7时,∵AE=2BE,∴AE=23AB=4.∵DP=2t-6,AP=8-(2t-6)=14-2t.∴S△PCE=12×(4+6)×8-12(2t-6)×6-12(14-2t)×4=18,解得:t=6;当点P在AE上,即7<t≤9时,PE=18-2t .∴S △CPE=12(18-2t )×8=18,解得:t=274<7(舍去).综上所述,当t=94或6时△APE 的面积会等于18.故答案为:94或6.【点睛】本题考查了一元一次方程的运用,三角形面积公式的运用,梯形面积公式的运用,动点问题,分类讨论等;解答时要运用分类讨论思想求解,避免漏解.19.(1)-5(2)15【分析】(1)利用乘法分配律展开计算即可;(2)先算乘方,和绝对值,再算除法,最后算加减.(1)解:13212243⎛⎫-+-⨯ ⎪⎝⎭=132121212243-⨯+⨯-⨯=698-+-=5-(2)2022211(3)22-+-÷--=2192-+⨯-=1182-+-=15【点睛】本题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(1)x=-3(2)x=11【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:移项合并得:-x=3,解得:x=-3;(2)去分母得:()()312216x x +=--去括号得:33426x x +=--,移项合并得:11x -=-,解得:11x =.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.22126a b ab -,36-【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=22226336a b ab ab a b--+=22126a b ab -∵21||(3)02a b -++=,∴a=12,b=-3,则原式=()()22111236322⎛⎫⨯⨯--⨯⨯- ⎪⎝⎭=36-.【点睛】此题考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.23.(1)见解析(2)6(3)26【分析】(1)根据三视图的画法画出相应的图形即可;(2)观察几何体可得结果;(3)根据三视图的面积求出该几何体的表面积.(1)解:如图所示:(2)由图可知:图中共有6个小正方体;(3)(4+4+5)×2=26(cm 2)答:该几何体的表面积为26cm 2.【点睛】本题考查解答几何体的三视图,画三视图时应注意“长对正,宽相等,高平齐”.24.(1)1cm(2)9cm 或7cm【分析】(1)根据中点定义,求得BC 的长,再由线段的和差计算结果;(2)分两种情况:①当点E 在点B 的右侧时,②当点E 在点B 的左侧时,分别根据线段的和差计算即可.(1)解:∵点C 是线段AB 的中点,AB=8cm ,∴BC=12AB=4cm ,∴CD=BC-BD=4-3=1cm .(2)①当点E 在点B 的右侧时,如图:∵BD=3cm ,BE=13BD ,∴BE=1cm ,∴AE=AB+BE=8+1=9cm ;②当点E 在点B 的左侧时,如图:∵BD=3cm ,BE=BE=13BD ,∴BE=1cm ,∴AE=AB-BE=8-1=7cm ;综上,AE 的长为9cm 或7cm .【点睛】此题考查的是两点间的距离,掌握线段中点的定义是解决此题关键.25.(1)58°(2)126°【分析】(1)根据角平分线的定义求出∠BOE ,再根据垂线的定义求出∠EOF ,从而可得∠BOF ;(2)设∠DOE=x ,分别表示出∠COE 和∠COF ,根据∠COE :∠COF =8:3,列出方程,求出x 值,再根据∠AOF=∠COF+∠AOC=∠COF+∠BOD 求出结果.(1)解:∵OE 平分∠BOD ,∴∠DOE=∠BOE=32°,∵OE ⊥OF ,∴∠EOF=90°,∴∠BOF=90°-∠BOE=58°;(2)设∠DOE=x ,∵OE 平分∠BOD ,∴∠DOE=∠BOE=x ,∵OE ⊥OF ,∴∠COF=90°-x ,∴∠COE=90°-x+90°=180°-x ,∵∠COE :∠COF =8:3,∴()()318090:8:x x -=︒-︒,解得:36x =,∴∠AOF=∠COF+∠AOC=∠COF+∠BOD=90°-x+2x=126°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.26.(1)4000(2)90或120(3)丙旅游团的人数为30人、丁旅游团的人数70人【分析】(1)由费用=单价×人数,可求解;(2)分两种情况讨论,由人数=费用÷单价,可求解;(3)设丙旅游团人数为x 人(0<x <50),由“两个旅游团先后共付门票费8600元”列出方程可求解.(1)解:甲旅游团共付门票费=40×100=4000(元),故答案为:4000;(2)当人数超过50人,但不超过100人,乙旅游团的人数=7200÷80=90(人数);当人数超过100人,乙旅游团的人数=7200÷60=120(人数);故答案为:90或120;(3)∵8600>80×100,∴丁旅游团人数小于100,设丙旅游团人数为x 人(0<x≤50),则丁旅游团人数为(100-x )人,由题意可得:100x+80(100-x )=8600,解得x=30,∴100-x=70(人),答:丙旅游团的人数为30人、丁旅游团的人数70人.【点睛】本题考查了一元一次方程的应用,理解题意,找出正确的相等关系是本题的关键.27.(1)40︒(2)4秒或2秒,53秒或135秒,12秒或94秒(3)12011分钟或60011分钟【分析】(1)根据同角的余角相等可得40AOB COD ∠=∠=︒;(2)根据路程等于速度乘以时间分别求得,,OA OC OB 运动到OD 所需要的时间,进而求得停止的时间,根据角度的和差可得,,AOD BOD COD ∠∠∠,根据角度的方向以及角平分线的定义,建立绝对值方程,解方程求解即可;(3)根据题意作出图形,类比(2)建立方程,在周角内求角度,进而解方程求解即可.(1)OB ⊥OD ,OA ⊥OC ,90AOC BOD ∴∠=∠=︒AOB BOC BOC COD∴∠+∠=∠+∠AOB COD∴∠=∠ ∠COD =40°40AOB ∴∠=︒故答案为:40︒(2)40AOB ∠=︒4090130AOD AOB BOD ∴∠=∠+∠=︒+︒=︒设旋转时间为t 秒,当OA 旋转至OD 所需要的时间为:13013303︒=︒(秒)当OC 旋转至OD 所需要的时间为:()3604010=32︒-︒÷︒(秒)当OB 旋转至OD 所需要的时间为:99020=2︒÷︒(秒)∴当OA 旋转至OD 时,其他线段都停止,则133t ≤,旋转t 秒后,()13030AOD t ∠=︒-︒,()9020BOD t ∠=︒-︒,()4010COD t ∠=︒+︒∴()4010AOB AOD BOD t ∠=∠-∠=︒-︒,()5030BOC BOD COD t ∠=∠-∠=︒-︒,()9040AOC AOD COD t ∠=∠-∠=︒-︒①当OB 平分AOC ∠时,AOB BOC ∠=∠,()4010t ︒-︒=()5030t ︒-︒即()4010t ︒-︒=()5030t ︒-︒或()4010t ︒-︒=()5030t -︒+︒解得:12t =或94t =②当OA 平分BOC ∠时,BOA AOC ∠=∠,()4010t ︒-︒=()9040t ︒-︒即()4010t ︒-︒=()9040t ︒-︒或()4010t ︒-︒=()9040t -︒+︒解得:53t =或135t =③当OC 平分AOB ∠时,AOC BOC ∠=∠,()9040t ︒-︒=()5030t ︒-︒即()9040t ︒-︒=()5030t ︒-︒或()9040t ︒-︒=()5030t -︒+︒解得:4t =或2t =综上所述,4t =或2t =,53t =或135t =,12t =或94t =(3)如图,根据题意,6时整时,180AOB ∠=︒,6时至7时,OA 旋转了30°,OB 旋转了360°则OA 的速度为301=602︒度/分钟,OB 的速度为360=660︒度/分钟,6点整之后,设()060m m <<分钟后,120AOB ∠=︒则1,62AOD m COB m ∠=︒∠=︒∴118018062AOB AOD COB m m ∠=︒+∠-∠=︒+︒-︒112018062m m ∴︒=︒+︒-︒112018062m m ∴︒=︒+︒-︒或112018062m m -︒=︒+︒-︒解得:12011m =或60011m =。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.3-的倒数是()A .3B .13C .13-D .3-2.将数据460000000用科学记数法表示是()A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯3.下列长度的三条线段能组成三角形的是()A .1,2,3B .4,5,9C .6,8,10D .5,15,84.下列图形中,能围成正方体的是()A .B .C .D .5.如图是用五个相同的立方体搭成的几何体,其左视图是()A .B .C .D .6.如图,OA 为北偏东44︒方向,90AOB ∠=︒,则OB 的方向为()A .南偏东46︒B .南偏东44︒C .南偏西44︒D .北偏东46︒7.如图,如果13∠=∠,250∠=︒,那么4∠的度数为()A.50°B.100°C.120°D.130°8.若钝角∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系满足()A.∠1﹣∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠39.古代数学问题:“今有人共买物,人出七,盈二;人出六,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,若每人出7钱,则多了2钱;若每人出6钱,则少了4钱,问有多少人,物品的价格是多少?”设有x人,可列方程为()A.7x﹣2=6x+4B.7x+2=6x+4C.7x﹣2=6x﹣4D.7x+2=6x﹣4 10.如图,在这个数运算程序中,若开始输入的正整数n为奇数,都计算3n+1;若n为偶数,都除以2.若n=21时,经过1次上述运算输出的数是64;经过2次上述运算输出的数是32;经过3次上述运算输出的数是16;…;经过2022次上述运算输出的数是()A.1B.2C.3D.4二、填空题11.比较大小:﹣2_______﹣3.(填“>”或“<”号)12.已知C是线段AB中点,若AB=5cm,则BC=____.13.若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,理由是_____.14.已知线段AB=11cm,C是直线AB上一点,若BC=5cm,则线段AC的长等于_____cm.15.如图所示,∠BAC的外角∠CAE等于100°,∠B=45°,则∠C的度数是_______.16.一个正多边形的内角和等于1440°,则此多边形是________边形.17.如图,已知//AE BD ,1130∠=︒,230∠=︒,则C ∠=__________.18.如图,将一副三角板叠在一起,使它们的直角顶点O 重合,若∠AOB=165°,则∠COD 的度数为____.三、解答题19.计算:(1)()()75364-⨯--÷;(2)()2411237⎡⎤--⨯--⎣⎦.20.解方程:(1)4x-3=2(x-1)(2)x-22x-=1+2x-1321.先化简,再求值:5x 2y +6xy ﹣2(3xy ﹣x 2y ),其中x =﹣2,y =3.22.如图,B 是线段AD 上一点,C 是线段BD 的中点.若AD =8,BC =3.求线段CD ,AB 的长;23.如图,直线AB 、CD 相交于点O ,过点O 作OE ⊥AB ,射线OF 平分∠AOC ,∠AOF =25°.求:(1)∠BOD的度数;(2)∠COE的度数.24.某超市先后以每千克12元和每千克14元的价格两次共购进大葱800千克,且第二次付款是第一次付款的1.5倍.(1)求两次各购进大葱多少千克?(2)该超市以每千克18元的标价销售这批大葱,售出500千克后,受市场影响,把剩下的大葱标价每千克22元,并打折全部售出.已知销售这批大葱共获得利润4440元,求超市对剩下的大葱是打几折销售的?(总利润=销售总额-总成本)25.如图,A、B、C为网格图中的三点,利用网格作图.(1)过点A画直线AD∥BC;(2)过点A画线段BC的垂线AH,垂足为H;(3)点A到直线BC的距离是线段的长;(4)三角形ABC的面积为.26.已知关于x的一元一次方程ax+b=0(其中a≠0,a、b为常数),若这个方程的解恰好为x=a﹣b,则称这个方程为“恰解方程”,例如:方程2x+4=0的解为x=﹣2,恰好为x=2﹣4,则方程2x+4=0为“恰解方程”.(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.27.如图,直线CD//EF,点A、B分别在直线CD、EF上(自左向右分别为点C、A、D和点E、B、F),∠ABF=60°,射线AM自射线AB的位置开始,绕点A以每秒1°的速度沿逆时针方向旋转,同时,射线BN自射线BE开始以每秒5°的速度绕点B沿顺时针方向旋转,当射线BN旋转到BF的位置时,两者均停止运动,设旋转时间为x秒.(1)如图1,直接写出下列答案:①∠BAD的度数是;②当旋转时间x=秒时,射线BN过点A.(2)如图2,若AM∥BN,求此时对应的旋转时间x的值.(3)若两条射线AM和BN所在直线交于点P,①如图3,若点P在CD与EF之间,且∠APB=126°,求旋转时间x的值;②若旋转时间x<24,求∠APB的度数(用含x的代数式表示).参考答案1.C2.C3.C4.C5.A6.A8.A9.A10.B11.>【分析】比较的方法是:两个负数,绝对值大的其值反而小.【详解】解:(1)∵|-3|=3,|-2|=2,而3>2,∴-2>-3,故答案为>.【点睛】本题主要考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.12.2.5cm【分析】根据线段中点的定义即可得到结论.【详解】 C 是线段AB 中点,5AB cm =,115 2.522BC AB ∴==⨯=()cm ,故答案为:2.5cm .【点睛】本题考查了线段中点的定义,熟练掌握线段中点的定义是解题关键.13.同角的补角相等【分析】根据补角的性质:同角的补角相等进行解答即可.【详解】解:∵∠1+∠2=180°,∠1+∠3=180°,∴∠2=∠3(同角的补角相等).故答案为:同角的补角相等.【点睛】本题考查了补角的定义和性质,解题时牢记同角的补角是解题关键.14.6或16.【分析】根据线段的性质分类讨论即可求解.【详解】解,当点C 在线段AB 之间时,AC =AB ﹣BC =11﹣5=6cm .当点C 在线段AB 的延长线上时,AC+BC =11+5=16cm .故答案为:6或16.【点睛】此题主要考查线段长度的求解,解题的关键是根据题意分类讨论.15.55°##55度【分析】根据三角形外角的性质可得答案.【详解】解:∵,45,100CAE B C B CAE ∠=∠+∠∠=︒∠=︒,∴55C ∠=︒,故答案为:55°.【点睛】本题主要考查三角形的外角的性质,熟练掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.16.10##十【分析】设这个多边形的边数为n ,根据内角和公式得出(n -2)×180°=1440,求出方程的解即可.【详解】解:设这个多边形的边数为n ,则(n -2)×180°=1440°,解得:n=10,即这个多边形是10边形,故答案为:10.【点睛】本题考查了多边形的内角与外角,能熟记多边形的内角和公式是解此题的关键,注意:边数为n (n≥3)的多边形的内角和=(n -2)×180°.17.20°【分析】由//AE BD ,得∠AEC=230∠=︒,结合1130∠=︒,即可得到答案.【详解】∵//AE BD ,230∠=︒,∴∠AEC=230∠=︒,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.18.15°【分析】先根据直角三角板的性质得出∠AOD+∠COB =180°,进而可得出∠COD 的度数.【详解】解:∵△AOD 与△BOC 是一副直角三角板,∴∠AOD+∠COB =180°,∴∠AOC+2∠COD+∠BOD=∠AOB+∠COD=180°.∵∠AOB =165°,∴∠COD =180°﹣∠AOB =180°﹣165°=15°.故答案为15°.【点睛】本题考查了角度的计算,熟知直角三角板的特点,找准各角之间的关系是解答此题的关键.19.(1)-26(2)0【分析】(1)先计算有理数乘除法,再计算有理数加减法来求解;(2)先计算乘方,再计算中括号里面的,然后根据有理数乘除法的计算法则,乘方法则进行计算,最后计算加减法求解.(1)解:()()75364-⨯--÷()359=---359=-+26=-(2)解:()2411237⎡⎤--⨯--⎣⎦()411297=--⨯-()1177=--⨯-=11-+0=【点睛】本题主要考查有理数的混合运算,理解有理数混合运算法则是解答关键.20.x=0.5;(2)x=2【分析】(1)按照去括号、移项、合并同类项、系数化1的步骤解答即可;(2)按照去分母、去括号、移项、合并同类项、系数化1的步骤解答即可.【详解】解:(1)去括号得:4x-3=2x-2移项得:4x-2x=3-2合并同类项得:2x=1系数化为1:x=0.5;(2)去分母得:6x-3(x-2)=6+2(2x-1)去括号得:6x-3x+6=6+4x-2移项得:6x-3x-4x=6-2-6合并同类项得:-x=-2系数化为1:x=2【点睛】本题考查一元一次方程的解法,解题关键是熟练运用一元一次方程的解法步骤,本题属于基础题型.21.27x y ,84【分析】先对整式进行化简,然后再把x 、y 的值代入求解即可.【详解】解:()225623x y xy xy x y +--()225662x y xy xy x y=+--225662x y xy xy x y =+-+27x y =;把2,3x y =-=代入,得:原式=27(2)384⨯-⨯=.【点睛】本题主要考查整式加减的化简求值,熟练掌握整式的加减运算是解题的关键.22.AB =2.【分析】根据中点的定义求得CD=BC=3,则由图中相关线段间的和差关系求得AB 的长度.【详解】解:∵C 是线段BD 的中点,BC =3,∴CD =BC =3.又∵AB +BC +CD =AD ,AD =8,∴AB =8-3-3=2.【点睛】本题主要考查线段间的计算及线段的中点.23.(1)∠BOD =50°;(2)∠COE =40°.【分析】(1)根据角平分线的性质求出∠AOC ,再根据对顶角相等求出∠BOD 即可;(2)根据垂直得出∠AOE =90°,再用角的和差求∠COE 即可.【详解】解:(1)∵射线OF 平分∠AOC ,∠AOF =25°,∴∠AOC =2∠AOF =50°,∴∠BOD =∠AOC =50°;(2)∵OE ⊥AB ,∴∠AOE =90°,∵∠AOC =50°,∴∠COE =90°﹣∠AOC =90°﹣50°=40°.【点睛】本题考查了角平分线定义和垂直的定义、对顶角相等以及角的和差,解题关键是准确识图,找到图中相等的角和角之间的关系.24.(1)第一次购进350千克,第二次购进450千克;(2)九折【分析】(1)设第一次购进的数量为x 千克,则第二次购进800-x 千克,从而根据“第二次付款是第一次付款的1.5倍”列方程求解即可;(2)用销售总额减去总成本等于总利润建立方程求解即可.【详解】(1)设第一次购进的数量为x 千克,则第二次购进800-x 千克,()151214800.x x ⨯=-解得:350x =800350450-=,∴第一次购进350千克,第二次购进450千克;(2)设折扣为y 折,根据题意列方程为:()50018800500223501245014444010y ⨯+-⨯⨯-⨯-⨯=解得:9y =∴超市对剩下的大葱是打九折销售的.【点睛】本题考查一元一次方程的实际应用,仔细审题,找准等量关系是解题关键.25.(1)见解析(2)见解析(3)AH(4)2.5【分析】(1)根据平行线的判定,画出图形即可;(2)根据垂线的定义,画出图形即可;(3)根据点到直线的距离解决问题即可;(4)把三角形的面积看成矩形的面积减去周围三个三角形面积即可.(1)解:如图,取格点D,作直线AD,直线AD即为所求;(2)解:如图,取格点E,作直线AE交BC于点H,直线AH即为所求;(3)解:点A到直线BC的距离是线段AH的长;故答案为:AH;(4)解:三角形ABC的面积=2×3﹣12×1×2﹣12×1×2﹣12×1×3=2.5.故答案为:2.5.【点睛】本题考查作图——应用与设计作图,平行线的判定和性质,垂线的定义等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求三角形面积.26.(1)92(2)m=﹣3,n=﹣23(3)-9【分析】(1)利用“恰解方程”的定义,得出关于k的一元一次方程,解方程即可得出k的值;(2)解方程﹣2x=mn+n得出x=﹣12(mn+n),由﹣2x=mn+n是“恰解方程”得出x=﹣2+mn+n,再结合x=n,即可求出m,n的值;(3)根据“恰解方程”的定义得出mn+n =92-,把3(mn+2m 2﹣n )﹣(6m 2+mn )+5n 化简后代入计算即可.【详解】(1)解:(1)解方程3x+k =0得:x =﹣3k,∵3x+k =0是“恰解方程”,∴x =3﹣k ,∴﹣3k=3﹣k ,解得:k =92;(2)解:解方程﹣2x =mn+n 得:x =﹣12(mn+n ),∵﹣2x =mn+n 是“恰解方程”,∴x =﹣2+mn+n ,∴﹣12(mn+n )=﹣2+mn+n ,∴3mn+3n =4,∵x =n ,∴﹣2+mn+n =n ,∴mn =2,∴3×2+3n =4,解得:n =﹣23,把n =﹣23代入mn =2得:m×(﹣23)=2,解得:m =﹣3;(3)解:解方程3x =mn+n 得:x =3mn n+,∵方程3x =mn+n 是“恰解方程”,∴x =3+mn+n ,∴3mn n+=3+mn+n ,∴mn+n =92-,∴3(mn+2m 2﹣n )﹣(6m 2+mn )+5n=3mn+6m 2﹣3n ﹣6m 2﹣mn+5n=2mn+2n=2(mn+n )=2×(92-)=﹣9.【点睛】本题考查了一元一次方程的解,理解“恰解方程”的定义是解题的关键.27.(1)120︒;24(2)20()x =秒(3)29()x =秒;当0<<20x 时,()1206APB x ∠=-︒,当20<<24x 时,()6120APB x ∠=-︒【分析】(1)①根据平行线的性质可求得;②根据邻补角的定义求得120ABE ︒∠=,进而求得结论;(2)根据平行线的性质得出=BAM ABN ∠∠,即可得出等式,解出即为所求;(3)①根据三角形内角和定理得51201261()80BAM ABN APB x x ∠+∠+∠=+-+=解出即可;②借助图形可求得APB ∠的度数.(1)①CD EF ∥,180DAB ABF ︒∴∠+∠=,60ABF ︒∠=,=120BAD ︒∴∠.故答案为:120°.②=60ABF ︒∠ ,=120ABE ︒∴∠,当射线BN 过点A 时,5120x =,24x =,∴当旋转时间为24秒时,射线BN 过点A .故答案为:24.(2)若AM BN ∥,根据平行线的性质得,=BAM ABN ∠∠,120ABE ︒∠= ,1205ABN x ∴∠=-,1205x x ∴-=,解得:20x =,∴此时对应时间为20秒.(3)①5BAM x EBN x ∠=∠= ,,5120ABN x ∴∠=-,根据三角形内角和为180︒得,51201261()80BAM ABN APB x x ∠+∠+∠=+-+=,解得29x =.②由(2)可知,AM BN ∥时时间是20秒,<24x ∴时,分两种情况:如图4,当0<<20x 时,()1801206APB BAP ABP x ∠=-∠-∠=-︒;如图5,当20<<24x 时,()()12056120APB BAM ABP x x x ∠=∠-∠=--=-︒.。

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试题一、单选题1.下列各数中最小的是()A .-1B .3C .0D .22.数据696000000这个数用科学记数法可表示为()A .0.696×109B .6.96×109C .6.96×108D .69.6×1073.下列方程中,是一元一次方程的是()A .0.3x=6B .2x 4x 3-=C .11x 3x-=-D .x=3y-54.下列立体图形中,有五个面的是()A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.一个整式与x 2-y 2的和是x 2+y 2,则这个整式是()A .2x 2B .2y 2C .-2x 2D .-2y 26.下列关于多项式2a 2b+ab-1的说法中,正确的是()A .次数是5B .二次项系数是0C .最高次项是2a 2bD .常数项是17.在下列图形中,可围成正方体的是()A .B .C .D .8.已知30AOB ∠=︒,自AOB ∠顶点O 引射线OC ,若:4:3AOC AOB ∠∠=,那么BOC ∠的度数是()A .10°B .40°C .70°D .10°或70°9.某超市出售一种方便面,原价为每箱24元.现有三种调价方案:方案一,先提价20%,再降价20%;方案二,先降价20%,再提价20%;方案三,先提价15%,再降价15%.三种调价方案中,最终价格最高的是()A .方案一B .方案二C .方案三D .不确定10.有理数p ,q ,r ,s 在数轴上的对应点的位置如图所示.若10p r -=,12p s -=,9q s -=,则q r -的值是()A .5B .6C .7D .10二、填空题11.14的倒数是__________.12.已知∠A =40°,则它的补角等于___.13.若2x 3yn 与﹣5xmy 是同类项,则m +n =______.14.若x=2是关于x 的方程ax+3=5的解,则a=__________.15.如图,线段AB =12cm ,C 是线段AB 上任一点,M ,N 分别是AC ,BC 的中点,如AM =4cm ,则BN 的长为______cm .16.整式mx+n 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值:x ﹣2﹣1012mx+n﹣12﹣8﹣44则关于x 的方程﹣mx+n =8的解为______.17.已知代数式2x y -的值是12,则代数式21x y -+-的值是______.18.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为60,则输入的最小正整数是_____.三、解答题19.计算:(1)20(14)(18)13-+----;(2)202221133(3)2--÷⨯--.20.解方程(1)532(5)x x +=-;(2)2151136x x +--=.21.先化简,再求值:4(3a 2b ﹣ab 2)﹣5(﹣ab 2+3a 2b ),其中a =2,b =﹣3.22.作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.23.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC 的顶点A 、B 、C 都在格点上.(1)过B 作AC 的平行线BD .(2)作出表示B 到AC 的距离的线段BE .(3)线段BE 与BC 的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC 的面积为.24.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?25.如图,直线AB 与CD 相交于O ,OE ⊥AB ,OF ⊥CD .(1)图中与∠AOF 互余的角是______,与∠COE 互补的角是______;(把符合条件的角都写出来)(2)如果∠AOC=14∠EOF ,求∠EOF 的度数.26.已知A =a ﹣2ab+b 2,B =a+2ab+b 2.(1)求14(B ﹣A )的值;(2)若3A ﹣2B 的值与a 的取值无关,求b 的值.27.如图,将一张正方形纸片的4个角剪去4个大小一样的小正方形,然后折起来就可以制成一个无盖的长方体纸盒,设这个正方形纸片的边长为a ,这个无盖的长方体盒子高为h .(1)若a=18cm ,h=4cm ,则这个无盖长方体盒子的底面面积为;(2)用含a 和h 的代数式表示这个无盖长方体盒子的容积V=​;(3)若a=18cm ,试探究:当h 越大,无盖长方体盒子的容积V 就越大吗?请举例说明;这个无盖长方体盒子的最大容积是.28.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,如果M ,P 两点间的距离有最小值,那么称这个最小值为点M ,线段AB 的“近距”,记作1(,)d M AB 点线段;如果M ,P 两点间的距离有最大值,那么称这个最大值为点M ,线段AB的“远距”,记作2(,)d M AB 点线段.特别的,若点M 与点P 重合,则M ,P 两点间距离为0.已知点A 表示的数为2-,点B 表示的数为3.例如图,若点C 表示的数为5,则1(,)2d C AB =点线段,2(,)7d C AB =点线段.(1)若点D 表示的数为3-,则1(d 点D ,线段)AB =_____,2(d 点D ,线段)AB =______;(2)若点E 表示数为x ,点F 表示数为1x +.2(,)d F AB 点线段是1(,)d E AB 点线段的3倍.求x的值.参考答案1.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵-1<0<2<3,∴其中最小的为-1.故选:A.【点睛】本题主要考查了有理数大小比较,解答此题的关键是掌握有理数大小比较法则.2.C【详解】解:根据科学记数法的定义,696000000=6.96×108.故选:C.【点睛】本题考查科学记数法.3.A【分析】根据一元一次方程的定义解答即可.【详解】选项A,是一元一次方程;选项B,未知数的最高次数是2,不是一元一次方程;选项C,等号左边不是整式,不是一元一次方程;选项D,含有两个未知数,不是一元一次方程.故选A.【点睛】本题考查了一元一次方程,熟知含有一个未知数,并且未知数的最高次数为1的整式方程是一元一次方程是解决问题的关键.4.A【分析】要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.【详解】解:A.四棱锥有一个底面,四个侧面组成,共5个面,符合题意.B.五棱锥有一个底面,五个侧面组成,共6个面,不符合题意.C.四棱柱有两个底面,四个侧面组成,共6个面,不符合题意.D.五棱柱有两个底面,五个侧面组成,共7个面,不符合题意.故选A.5.B【分析】知道和与一个加数,求另一个加数,用减法即可.【详解】解:根据题意得(x2+y2)-(x2-y2)=x2+y2-x2+y2=2y2.故选:B.【点睛】本题考查了整式的加减,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.6.C【分析】根据多项式的概念逐项分析即可.【详解】A.多项式2a2b+ab-1的次数是3,故不正确;B.多项式2a2b+ab-1的二次项系数是1,故不正确;C.多项式2a2b+ab-1的最高次项是2a2b,故正确;D.多项式2a2b+ab-1的常数项是-1,故不正确;故选:C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.7.C【分析】根据正方体的11种平面展开图解题.【详解】解:由正方体的11种平面展开图可知,选项A、B、D均不符合题意,选项C符合题意,故选:C.【点睛】本题考查正方体展开图的识别,是基础考点,掌握相关知识是解题关键.8.D【分析】分为两种情况:①OC和OB在OA的两侧时,②OC和OB在OA的同侧时,分别进行求解即可.【详解】∵∠AOB=30°,∠AOC:∠AOB=4:3,∴∠AOC=40°,分为两种情况:当OC和OB在OA的两侧时,如图1∠BOC=∠AOB+∠AOC=30°+40°=70°②OC和OB在OA的同侧时,如图2∠BOC=∠AOC-∠AOB=40°-30°=10°故选:D.【点睛】考查了角的计算,解题关键是分两种情况:OC、OB在OA的两侧时和OC、OB 在OA的同侧时.9.C【分析】根据题意,算出每种方案的最终价格,然后比较即可.+-=元;【详解】解:方案一的最终价格为:24(120%)(120%)23.04-+=元;方案二的最终价格为:24(120%)(120%)23.04+-=元;方案三的最终价格为:24(115%)(115%)23.46>=,因为23.4623.0423.04则选方案三,故选:C【点睛】此题考查了列出代数式计算的能力,读懂题意,找出题中的数量关系,列出式子正确计算是解题的关键.10.C【分析】根据绝对值的几何意义,将|p−r|=10,|p−s|=12,|q−s|=9转化为两点间的距离,进而可得q 、r 两点间的距离,即可得答案.【详解】解:根据绝对值的几何意义,由|p−r|=10,|p−s|=12,|q−s|=9得:|p−q|=|p−s|-|q−s|=3,|r−s|=|p−s|-|p−r|=2∴|q−r|=|p−s|-|p−q|-|r−s|=12-3-2=7.故选:C .【点睛】本题考查了绝对值的几何意义,解题的关键是运用数形结合的数学思想表示出数轴上两点间的距离.11.4.【分析】根据倒数的定义即可求解.【详解】14的倒数是4.故答案是:4.【点睛】考查了倒数,关键是熟悉乘积是1的两数互为倒数.12.140°【分析】根据补角的和等于180︒计算即可.【详解】解:40A ∠=︒ ,∴它的补角18040140=-=︒︒︒.故答案为140︒.【点睛】本题考查了补角的知识,熟记互为补角的两个角的和等于180︒是解题的关键.13.4【分析】根据同类项的定义可求得m 和n 的值,再代入计算即可求解.【详解】解:∵2x 3yn 与﹣5xmy 是同类项,∴m=3,n=1∴m+n=3+1=4故答案为:4【点睛】本题考查了同类项,解决本题的关键是明确同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.注意只有同类项才能合并使它们的和是单项式.14.1【详解】解:将x=2代入得:2a+3=5,解得:a=1.故答案为:115.2【分析】根据线段中点的定义可得AC=8cm ,根据线段的和差可得BC=4cm ,再根据线段的中点可得答案.【详解】解:∵点M 是线段AC 的中点,∴AC=2AM=8cm ,∵AB=12cm ,∴BC=AB-AC=12-8=4cm ,∵点N 是线段BC 的中点,∴BN=12BC=2cm .故答案为:2.【点睛】本题考查两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.16.3x =-【分析】根据表格中的数据,求得m n ,的值,然后代入方程8mx n -+=,求解即可.【详解】解:根据表格的数据可得:4n m n =-⎧⎨+=⎩,解得44m n =⎧⎨=-⎩代入方程8mx n -+=,可得448x --=,解得3x =-,故答案为:3x =-【点睛】本题考查了解一元一次方程和解二元一次方程组,解题的关键是正确求得m n ,的值.17.32-## 1.5-【分析】利用已知将原式变形求出答案.【详解】解:∵代数式2x y -的值是12,∴代数式()132121122x y x y -+-=---=--=-.故答案为:32-.【点睛】本题主要考查代数式求值,正确将原式变形是解题的关键.18.11【分析】根据输出的结果确定出x 的所有可能值即可.【详解】解:当2x ﹣4=60时,x =32,当2x ﹣4=32时,x =18,当2x ﹣4=18时,x =11,当2x ﹣4=11时,x =152,不是整数;所以输入的最小正整数为11,故答案为11.【点睛】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.19.(1)29-;(2)2-.【分析】(1)根据有理数的加减运算求解即可;(2)根据有理数的乘方、乘除等运算求解即可.(1)解:20(14)(18)132014181329-+----=--+-=-;(2)202221133(3)2--÷⨯--111(93)23=--⨯⨯-1166=--⨯2=-【点睛】此题考查了有理数的乘方、绝对值、加减乘除等四则运算,解题的关键是熟练掌握有理数的有关运算.20.(1)1x =;(2)3x =-.【分析】(1)根据去括号,移项,合并同类项步骤求解即可;(2)去分母,去括号,移项,合并同类项等步骤求解即可.(1)解:532(5)x x +=-53102x x+=-55=x 1x =(2)2151136x x +--=2(21)(51)6x x +--=42516x x +-+=3x -=3x =-21.﹣3a 2b+ab 2,54.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=12a 2b ﹣4ab 2+5ab 2﹣15a 2b =﹣3a 2b+ab 2,当a =2,b =﹣3时,原式=36+18=54.22.(1)见解析;(2)57【分析】(1)从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最少和最多个数相加即可.(1)(2)由俯视图易得最底层有4个小立方块,第二层最少有1个小立方块,所以最少有5个小立方块;第二层最多有3个小立方块,所以最多有7个小立方块.故答案为:57.23.(1)见解析;(2)见解析;(3)<;(4)9【分析】(1)连接与点B 在同一水平线的格点即可得;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求;(3)根据垂线段最短即可得;(4)根据三角形的面积公式可得12ABCS AC BE =⋅ .【详解】(1)如图BD 即为所求;(2)过点B 作AC 的垂线,交AC 于点E ,则BE 即为所求,如图所示:(3)由垂线段最短得:BE BC<故答案为:<;(4)ABC 的面积为1163922ABCS AC BE =⋅=⨯⨯= 故答案为:9.【点睛】本题考查了平行线与垂直的定义、垂线段最短等知识点,掌握理解平行线与相交线的相关概念是解题关键.24.先安排整理的人员有10人【详解】试题分析:等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.试题解析:设先安排整理的人员有x 人,依题意得,2(15)16060xx ++=解得,x=10.答:先安排整理的人员有10人.考点:一元一次方程25.(1)∠AOC 、∠BOD ;∠EOD 、∠BOF ;(2)∠EOF=144°.【分析】(1)根据互余及互补的定义,结合图形进行判断即可;(2)设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据周角为360度,即可解出x .【详解】解:(1)图中与∠AOF 互余的角是:∠AOC 、∠BOD ;图中与∠COE 互补的角是:∠EOD 、∠BOF .(2)∵OE ⊥AB ,OF ⊥CD ,∴∠EOB=90°,∠FOD=90°,又∵∠AOC=14∠EOF ,设∠AOC=x ,则∠BOD=x ,∠EOF=4x ,根据题意可得:4x+x+90+90=360°,解得:x=36°.∴∠EOF=4x=144°.【点睛】本题考查了余角和补角的知识,注意结合图形进行求解.26.(1)ab ;(2)110b =【分析】(1)直接把A 、B 代入进行化简运算即可;(2)把A 、B 代入3A ﹣2B 求解,然后根据整式的无关型问题进行求解即可.【详解】解:(1)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴()14B A -=()221224a ab b a ab b ++-+-=144ab⨯=ab ;(2)∵A =a ﹣2ab+b 2,B =a+2ab+b 2,∴32A B-=()()223222a ab b a ab b -+-++=22363242a ab b a ab b -+---=210a ab b -+=()2110b a b -+,∵3A ﹣2B 的值与a 的取值无关,∴1100b -=,∴110b =.【点睛】本题主要考查整式的加减,熟练掌握整式的加减运算是解题的关键.27.(1)100cm 2;(2)h (a ﹣2h )2cm 3;(3)432cm 3.【分析】(1)根据已知得出长方体底面的边长进而求出即可;(2)由于原来正方形的边长为a ,如果四个角上各剪去一个同样大小的正方形,那么无盖长方体的底面的长宽分别都是(a-2h),高是h ,由此即可表示这个无盖长方体的容积;(3)根据材料一定,长方体中体积最大与底面各积和高都有关进行解答即可.【详解】(1)∵a=18cm ,h=4cm ,∴这个无盖长方体盒子的底面面积为:(a ﹣2h)(a ﹣2h)=(18﹣2×4)×(18﹣2×4)=100(cm 2),故答案为100cm 2;(2)这个无盖长方体盒子的容积V=h(a ﹣2h)(a ﹣2h)=h(a ﹣2h)2(cm 3),故答案为h(a ﹣2h)2cm 3;(3)若a=18cm ,当h 越大,无盖长方体盒子的容积V 不一定就越大,如h=6时,体积V=216,h=8时,体积V=32;∵V=h(18﹣2h)2=4(9-h)(9-h)h=2(9-h)(9-h)2h9-h+9-h+2h=0,∴当9-h=2h 时,体积最大,即h=3时,此时体积最大,∴这个无盖长方体盒子的最大容积是:3×(18﹣6)2=432(cm 3),故答案为432cm 3.【点睛】本题考查了几何体的体积求法以及展开图面积问题,根据题意表示出长方体体积是解题关键.28.(1)1,6(2)4x =或6x =【分析】(1)根据已知定义,进行计算即可解答;(2)分两种情况,点E 在点A 的左侧,点E 在点B 的右侧.【详解】(1)解: 点D 表示的数为3-,∴1(d 点D ,线段)AB 2(3)231DA ==---=-+=∴2(d 点D ,线段)AB 3(3)336DB ==--=+=故答案为:1,6;(2)分两种情况:当点E 在点A 的左侧,2(d 点F ,线段)AB =BF=3-(x-1)=2-x1(d 点E ,线段)AB =AE=-2-x2(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,23(2)x x ∴-=--4x ∴=-点E 在点B 的右侧2(d 点F ,线段)AB =AF=x+1-(-2)=x+31(d 点E ,线段)AB =EB=x-32(d 点F ,线段)AB 是1(d 点E ,线段)AB 的3倍,33(3)x x ∴+=-综上所述,4x =或6x =.。

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试卷带答案

苏科版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.下列各式中,不相等的是()A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32-3.下列是一元一次方程的是()A .2230x x --=B .25x y +=C .11x =D .=1x -4.如图数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不正确...的是()A .0a b +<B .0b a ->C .b a <-D .()0a b --<5.下列结论正确的是()A .﹣3ab 2和b 2a 是同类项B .2π不是单项式C .a 比﹣a 大D .2是方程2x+1=4的解6.如图,点A 、B 、C 在同一直线上,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN=HC ;②MH=12(AH ﹣HB );③MN=12(AC+HB );④HN=12(HC+HB ),其中正确的是()A .①②B .①②④C .②③④D .①②③④7.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为()A .50°B .55°C .60°D .65°8.如图所示的正方体,如果把它展开,可以是下列图形中的()A .B .C .D .二、填空题9.将5500万用科学记数法表示应为_______.10.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________.(填序号)11.写出一个解是=1x -,未知数的系数为3,且等号左边为多项式的一元一次方程_______.12.已知()2|2|30a b -++=,则a b 的值等于_______.13.已知2∠是1∠的余角、3∠是1∠的补角,则3∠比2∠大________︒.14.如图1是边长为18cm 的正方形纸板,剪掉阴影部分后将其折叠成如图2所示的长方体盒子.已知该长方体的宽是高的2倍,则它的体积是______3cm .15.如图,如果圆环外圆的周长比内圆的周长长2m ,那么外圆的半径比内圆的半径大______m.(结果保留π)16.有一数值转换器,原理如图所示,如果开始输入x 的值是34,则第一次输出的结果是17,第二次输出的结果是52,……,那么第2022次输出的结果是_________.17.球赛入场券有10元、15元两种票价,老师用480元买了40张入场券,其中票价为10元的比票价为15元的多的张数是_________.18.一副三角板AOB 与COD 如图摆放,且∠A=∠C=90°,∠AOB=60°,∠COD=45°,ON 平分∠COB ,OM 平分∠AOD .当三角板COD 绕O 点顺时针旋转(从图1到图2).设图1、图2中的∠NOM 的度数分别为α,β,αβ+=______度.三、解答题19.计算:(1)()218(6)2⎛⎫-⨯-+- ⎪⎝⎭;(2)()411293⎛⎫-+-÷--- ⎪⎝⎭20.解方程:71132x x -+-=.21.已知3a ﹣7b =﹣3,求代数式2(2a+b ﹣1)+5(a ﹣4b )﹣3b 的值.22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;()4线段AE 的长度是点______到直线______的距离;()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)23.在平整的地面上,由若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.(1)请你在方格纸中分别画出这个几何体的主视..图;..图和左视(2)若现在手头还有一些相同的小正方体,如果保持这个几何体的主视图和俯视图不变,Ⅰ.在图中所示几何体上最多可以添加______个小正方体;Ⅱ.在图中所示几何体上最多可以拿走______个小正方体;24.“城有二姝,小艺与迎迎.小艺行八十步,迎迎行六十.今迎迎先行百步,小艺追之,问几何步及之?(改编自《九章算术》)”(步:古长度单位,1步约合今1.5米.)大意:在相同的时间里,小艺走80步,迎迎可走60步.现让迎迎先走100步,小艺开始追迎迎,问小艺需走多少步方可追上迎迎?(1)在相同的时间里:①若小艺走160步,则迎迎可走________步;②若小艺走a步,则迎迎可走_________步;(2)求小艺追上迎迎时所走的步数.25.如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=_____°,所以∠AOC=_____+_____=____°+_____°=______°,因为OD平分∠AOC,所以∠COD=12_____=_______°.26.如图,两条直线AB,CD相交于点O,且∠AOC=∠AOD,射线OM从OB开始绕O 点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s,运动时间为t秒(0<t<12,本题出现的角均小于平角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON的度数为;(2)若OE平分∠COM,OF平分∠NOD,当∠EOF为直角时,请求出t的值;(3)当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,求t的取值范围,并求出这个定值.参考答案1.D2.A3.D4.D5.A6.B7.D8.B9.75.510⨯10.②11.330x +=(答案不唯一)【详解】解:根据题意可得,330x +=(答案不唯一),故答案为:330x +=(答案不唯一)【点睛】本题考查了一元一次方程的定义,熟记定义是解题的关键.12.9【分析】根据绝对值的非负性和平方运算的非负性,可求得a ,b 的值,再把a ,b 的值代入,即可求得.【详解】解:()22|03|a b -++= ,||02a ≥﹣,()230b +≥,20a ∴-=,30b +=,解得a=2,b=-3,()2=3=9a b ∴-,故答案为:9.【点睛】本题考查了绝对值的非负性和平方运算的非负性,代数式求值,熟练掌握和运用绝对值的非负性和平方运算的非负性是解决本题的关键.13.90【分析】先根据余角性质得出∠2=90°-∠1,再根据补角性质得出∠3=180°-∠1,根据两角差计算即可.【详解】解∵2∠是1∠的余角,∴∠2+∠1=90°,∴∠2=90°-∠1,∵3∠是1∠的补角,∴∠3+∠1=180°,∴∠3=180°-∠1,∴∠3-∠2=180°-∠1-(90°-∠1)=90°.故答案为:90.【点睛】本题考查余角性质,补角性质,角的和差,掌握余角性质,补角性质,角的和差是解题关键.14.216【分析】设该长方体的高为x,则长方体的宽为2x,利用展开图得到2x+2x+x+x=18,然后解方程得到x的值,从而得到该长方体的高、宽、长,于是可计算出它的体积.【详解】设该长方体的高为x,则长方体的宽为2x,2x+2x+x+x=18,解得x=3,所以该长方体的高为3,则长方体的宽为6,长为18−6=12,所以它的体积为3×6×12=216(cm3),故答案为216.【点睛】本题的主要目的是为了考查列一元一次方程解应用题,其关键是设出未知数,找到边的等量关系,从而得到方程,求出长、宽、高,从而得到体积.15.1π【分析】设内圆的周长为l,表示出外圆周长l2+,利用周长公式表示出两圆半径之差即可得到结果.【详解】解:设内圆的周长为l,则外圆周长l2+,根据题意得:l2l1 2π2ππ+-=则外圆的半径比内圆的半径长1m.π故答案为1π.【点睛】考查了代数式,熟练掌握圆的周长公式是解本题的关键.16.2【分析】根据第一次输出的结果是17,第二次输出的结果是52,…,总结出每次输出的结果的规律,求出2022次输出的结果是多少即可.【详解】第一次输出的结果是:12×34=17,第二次输出的结果是:3×17+1=52,第三次输出的结果是:12×52=26,第四次输出的结果是:12×26=13,第五次输出的结果是:3×13+1=40,第六次输出的结果是:12×40=20,第七次输出的结果是:12×20=10,第八次输出的结果是:12×10=5,第九次输出的结果是:3×5+1=16,第十次输出的结果是:12×16=8,第十一次输出的结果是:12×8=4,第十二次输出的结果是:12×4=2,第十三次输出的结果是:12×2=1,第十四次输出的结果是:3×1+1=4,…,∴从第十一次开始,输出的结果分别是4、2、1,…,不断循环出现,∵(2022−10)÷3=2012÷3=670…2,∴第2022次输出的结果是2.故答案为:2.【点睛】此题主要考查了代数式求值问题,数字的变化规律,解答的关键是通过计算找到数字的变化规律.17.8【分析】设票价为10元买了x张,根据用480元买了40张入场券可得10x+15(40-x)=480,即可解得x=24,从而得到答案.【详解】解:设票价为10元买了x张,则票价为15元买了(40-x)张,票价为10元的比票价为15元的多的张数是x-(40-x)=2x-40,根据题意得:10x+15(40-x)=480,解得x=24,∴票价为15元买了40-x=16(张),票价为10元的比票价为15元的多的张数是2x-40=2×24-40=8,答:票价为10元的比票价为15元的多的张数是8,故答案为:8.【点睛】本题考查了一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.18.105【分析】图1中先设∠AOM=x=∠DOM,则∠BOM=60−x,根据∠BOD=∠DOM−∠BOM,得出∠BOD的度数,再根据∠COB=∠BOD+∠DOC,求出∠CON=∠BON,最后根据∠NOM=∠BOM+∠BON,即可得出α;图2中设∠AOM=∠DOM=x,∠CON=∠BON =y,则∠BOD=60−2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x−y的度数,最后根据∠MON与各角之间的关系,【详解】解:图1中设∠AOM=x=∠DOM,∵∠AOB=60°,∴∠BOM=60°−x,∵∠BOD=∠DOM−∠BOM,∴∠BOD=x−(60°−x)=2x−60°,∵∠COB=∠BOD+∠DOC,∴∠COB=(2x−60°)+45°=2x−15°,∴∠CON=∠BON=12(2x−15°)=x−7.5°,∴α=∠NOM=∠BOM+∠BON=60°−x+x−7.5°=52.5°;图2中设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°−2x,∵∠COD=45°,∴60−2x+2y=45°,即x−y=7.5°,∴β=∠MON=x+(60−2x)+y=60−(x−y)=52.5°,∴αβ+=52.5°+52.5°=105°,故答案为:105.【点睛】本题考查了角的计算,解题的关键是设一个未知数(或两个未知数),用代数方法解决几何问题.19.(1)40;(2)-4【分析】(1)先算乘方,再算乘法,最后算加法;(2)先算乘方,再算除法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】解:(1)原式=4+36=40;(2)原式=-1+6-9=-4.【点睛】考查了有理数混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.x=-23【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:71132x x -+-=去分母得,2(x-7)-3(1+x )=6,去括号得,2x-14-3-3x=6,移项得,2x-3x=6+14+3,合并同类项得,-x=23,系数化为1得,x=-23.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.11【分析】去括号,合并同类项,整体代入求值.【详解】解:()()221543a b a b b+-+--=4225203a b a b b+-+--=9212a b --.37=3a b -- ,∴原式=9212a b --=()3372a b --=()332⨯--=92--=11-.22.(1)见解析(2)见解析(3)见解析(4)线段AE 的长度是点A 到直线BC 的距离(5)A ,BC ,AE AF BF<<【分析】()()()123利用网格的特点直接作出平行线及垂线即可;()4利用垂线段的性质直接回答即可;()5利用垂线段最短比较两条线段的大小即可.【详解】()1直线CD 即为所求;()2直线AE 即为所求;()3直线AF 即为所求;()4线段AE 的长度是点A 到直线BC 的距离;()5AE BE ⊥ ,AE AF ∴<,AF AB ⊥ ,BF AF ∴>,AE AF BF ∴<<.故答案为A ,BC ,AE AF BF <<.【点睛】考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.23.(1)见解析(2)Ⅰ.添加2个小正方体;Ⅱ.拿走2个小正方体【分析】对于(1),画出从正面,左面看该组合体看到的图形即可;对于(2),Ⅰ从俯视图的相应位置增加小正方体,直至主视图不变;Ⅱ在俯视图的基础上减少小正方体,至主视图不变.(1)解:该组合体主视图,左视图如图所示.(2)解:Ⅰ在俯视图的相应位置最多相应数量的正方体,如图.故答案为:2.Ⅱ在俯视图的相应位置最多减少相应数量的正方体,如图.故答案为:2.【点睛】本题主要考查了几何体的三视图,掌握简答组合体的三视图的画法是解题的关键.24.(1)①120,②34a ;(2)400步.【分析】(1)根据题意,先表示出小艺走160步的时间,然后进一步求取迎迎的步数即可;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,据此进一步列出方程求解即可.【详解】(1)①若小艺走160步,则迎迎可走:1006012080⨯=(步),②若小艺走a 步,则迎迎可走:360804a a ⨯=(步),故答案为:①120,②34a ;(2)设小艺追上迎迎所走的步数为x 步,则迎迎在相同时间内走的步数为()100-x 步,则:1008060x x -=,解得:400x =,答:小艺追上迎迎时所走的步数为400步.【点睛】本题主要考查了一元一次方程的实际应用,熟练掌握相关方法是解题关键.25.120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.【分析】先求出BOC ∠的度数,再求出AOC ∠的度数,根据角平分线定义求出即可.【详解】∵3BOC AOB ∠=∠,40AOB ∠=︒∴120BOC ∠=︒∴40120160AOC AOB BOC =+=︒+︒=︒∠∠∠∵OD 平分AOC∠∴111608022COD AOC ==⨯︒=︒∠∠故答案为:120°,∠AOB ,∠BOC ,40°,120°,160°,∠AOC ,80°.26.(1)4;144°,114°;(2)t 的值为10s ;(3)当射线OM 在∠COB 内部,且7COM 2BON MON ∠+∠∠是定值时,t 的取值范围为103<t <6,这个定值是3【分析】(1)由直线AB ,CD 相交于点O ,∠AOC =∠AOD 即可得到共4个直角;当t =2时求得∠BOM =30°,∠NON =24°,即可得到∠MON 、∠BON 的度数;(2)用t 分别表示出∠BOM =15t ,∠NOD =12t ,∠COM =15t ﹣90°,根据OE 平分∠COM ,OF 平分∠NOD ,分别求得∠COE 、∠DOF,由∠EOF 为直角即∠COE+∠DOF =90°,列出方程解答即可.(3)先确定∠MON =180°时,∠BOM =90°时t 的值,再分两种情况进行计算,得到0<t <103时7COM 2BON MON ∠+∠∠不是定值,当103<t <6时,7COM 2BON MON ∠+∠∠=3是定值.【详解】(1)如图所示,∵两条直线AB ,CD 相交于点O ,∠AOC =∠AOD ,∴∠AOC =∠AOD =90°,∴∠BOC =∠BOD =90°,∴图中一定有4个直角;当t =2时,∠BOM =30°,∠NON =24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°;故答案为:4;144°,114°;(2)如图所示,∠BOM=15t,∠NOD=12t,∠COM=15t﹣90°,∵OE平分∠COM,OF平分∠NOD,∴∠COE=12∠COM=12(15t﹣90°),∠DOF=12∠DON=12×12t,∵当∠EOF为直角时,∠COE+∠DOF=90°,∴12(15t﹣90°)=12×12t,解得t=10,∴当∠EOF为直角时,t的值为10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t+90°+12t=180°,解得t=10 3,当∠BOM=90°时,15t=90°,解得t=6,①如图所示,当0<t<103时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=∠BOM+∠BOD+∠DON=15t+90°+12t,∴7COM2BONMON∠+∠∠=9015)2(9012)81015901227079(t t tt t t︒+︒+︒+︒++=︒﹣﹣81,(不是定值)②如图所示,当103<t<6时,∠COM=90°﹣15t,∠BON=90°+12t,∠MON=360°﹣(∠BOM+∠BOD+∠DON)=360°﹣(15t+90°+12t)=270°﹣27t,∴7COM2BONMON∠+∠∠=9015)2(9012)8102707(2727027t t tt t︒+︒+︒︒︒=﹣﹣81﹣﹣=3,(是定值)综上所述,当射线OM在∠COB内部,且7COM2BONMON∠+∠∠是定值时,t的取值范围为103<t<6,这个定值是3.。

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试卷含答案

苏科版七年级上册数学期末考试试题一、单选题1.3-的倒数是()A .3B .13C .13-D .3-2.将数据45.6亿用科学记数法表示为()A .45.6×108B .4.56×109C .4.56×1010D .0.456×10113.下列图形经过折叠不能围成棱柱的是()A .B .C .D .4.下列合并同类项结果正确的是()A .2a -3a =aB .2a +3a =5a 2C .2a -a =aD .2a 3+3a 3=6a 35.下列等式变形正确的是()A .如果mx =my ,那么x =yB .如果│x│=│y│,那么x =yC .如果12x =2,那么x =1D .如果x -2=y -2,那么x =y6.下列说法错误..的是()A .对顶角相等B .同角(等角)的余角相等C .过一点有且只有一条直线与已知直线平行D .过一点有且只有一条直线与已知直线垂直7.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是()A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变8.对于两个不相等的有理数a ,b ,我们规定符号min{a ,b}表示a 、b 两数中较小的数,例如min{2,-4}=-4,则方程min{x ,-x}=3x +4的解为()A .x =-1B .x =-2C .x =-1或x =-2D .x =1或x =29.把方程1126x x --=去分母,正确的是()A .()311x x --=B .311x x --=C .316x x --=D .()316x x --=10.如图,BC=12AB ,D 为AC 的中点,DC=3cm ,则AB 的长是()A .72cmB .4cmC .92cmD .5cm二、填空题11.如果盈利100元记作+100元,那么亏损50元记作__________元.12.单项式2xy 的系数是______.13.比较大小:-34______-45,(填“>”、“<”或“=”)14.已知∠α=30°24',则∠α的补角的度数为______.15.如图,甲从A 点出发沿着北偏东60°方向走到了点B ,乙从A 点出发沿着南偏西15°方向走到了点C ,则∠BAC 的度数为______°.16.线段AB =8cm ,C 是AB 的中点,D 点在CB 上,DB =1.5cm ,则线段CD =________cm .17.如图是一个正方体的展开图,把展开图折叠成正方体后,相对的两个面上的数字之和最大的值是______.18.某下水管道工程由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需x 天完成,列方程为__________.19.整式ax -b 的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程-ax +b =3的解是______.x-202ax -b -6-3020.如图是一个数值运算的程序,若输出y 的值为3.则输入的值为__________.三、解答题21.计算:(1)111()236+-×(-18);(2)-24-(-2)3÷83×(-3)2.22.解方程:(1)3(x +1)=9;(2)12x --1=23x +.23.先化简,再求值:5(3a 2b -ab 2)+4(ab 2-3a 2b ),其中a =-2,b =3.24.读句画图.(1)画射线BA ,连接BC 并延长线段BC 至E ;(2)用直尺和圆规作DCE ∠,使得DCE ABC ∠=∠.25.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买x 个纸杯蛋糕,请你根据题意把表格补充完整,并列方程解答.单价数量总价今天12x 明天26.如图1,线段20cm AB =.(图1)(1)点P 沿线段AB 自A 点向B 点以2厘米/秒运动,同时点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,几秒钟后P 、Q 两点相遇?(2)如图2,2cm AO PO ==,60POQ ∠=︒,现点P 绕着点O 以30/s ︒的速度顺时针旋转一周后停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点也能相遇,求点Q 运动的速度.(图2)27.如图,∠AOB =100°,OC 、OD 是两条射线,射线OD 平分∠BOC ,∠BOD =20°.(1)图中共有个角;(2)求∠AOC 的度数;(3)作射线OE .若∠BOE =50°,则∠DOE 的度数为°.28.数学中的许多规律不仅可以通过数的运算发现,也可以通过图形的面积发现.(1)填表:【数的角度】ab a +b a -b a 2-b 2213133-215121356536(2)【形的角度】如图①,在边长为a 的正方形纸片上剪去一个边长为b (b <a )的小正方形,怎样计算图中阴影部分的面积?小明和小红分别用不同的方法计算图中阴影部分的面积.小明的方法:若阴影部分看成大正方形与小正方形的面积差,则阴影部分的面积用代数式表示为;小红的方法:若沿图①中的虚线将阴影部分剪开拼成新的长方形(图②),则阴影部分的面积用代数式表示为.(3)【发现规律】猜想:a +b 、a -b 、a 2-b 2这三个代数式之间的等量关系是.(4)【运用规律】运用上述规律计算:502-492+482-472+462-452…+22-1.参考答案1.C【分析】由互为倒数的两数之积为1,即可求解.【详解】解:∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2.B【分析】用科学计数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:45.6亿=4560000000=4.56×109,故选:B .【点睛】此题考查了用科学计数法表示较大的数时,一般形式为10n a ,其中110a ≤<,确定a 与n 的值是解题关键.3.A【分析】根据平面图形的折叠及棱柱的展开图的特点排除即可.【详解】解:A 选项侧面上多出1个长方形,故不能围成一个三棱柱,故本选项符合题意;B 选项可以围成五棱柱,故本选项不符合题意;C 选项可以围成三棱柱,故本选项不符合题意;D 选项可以围成四棱柱,故本选项不符合题意;故答案为:A .【点睛】本题考查了立体图形的展开与折叠,掌握常见立体图形的表面展开图的特征是解这类题的关键.4.C【分析】根据合并同类项的法则,进行求解即可.【详解】解:A 、2a-3a=-a ,故本选项计算错误,不符合题意;B 、2a+3a=5a ,故本选项计算错误,不符合题意;C 、2a-a=a ,故本选项计算正确,符合题意;D 、2a 3+3a 3=5a 3,故本选项计算错误,不符合题意;故选:C .【点睛】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.5.D【分析】直接运用等式的性质进行判断即可.【详解】A .根据等式的性质2,等式两边要除以一个不为0的数,结果才相等,m 有可能为0,所以错误,不符合题意;B .如果︱x ︱=︱y ︱,那么x =±y ,所以错误,不符合题意;C .如果12x =2,,根据等式的性质2,等式两边同时乘以2,得到:x=4,所以错误,不符合题意;D .如果x -2=y -2,根据等式的性质1,两边同时加上2,得到x=y ,所以正确,符合题意.故选D .【点睛】本题考查了等式的基本性质,熟记等式的基本性质是解题的关键.等式性质1、等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.C【分析】分别根据对顶角以及平行公理和垂线的性质等知识,分别分析得出即可.【详解】解:A 、对顶角相等,原说法正确,故本选项不符合题意;B 、同角(等角)的余角相等,原说法正确,故本选项不符合题意;C 、过直线外一点有且只有一条直线与已知直线平行,原说法错误,故本选项符合题意;D 、过一点有且只有一条直线与已知直线垂直,原说法正确,故本选项不符合题意;故选:C【点睛】此题主要考查了命题与定理,正确把握相关定义是解题关键.7.C【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为 x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元,根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.8.B【分析】根据题意可得:min{x ,-x}x =或x -,所以34x x =+或34x x -=+,据此求出x 的值即可.【详解】 规定符号min{a ,b}表示a 、b 两数中较小的数,∴当min{x ,-x}表示为x 时,则34x x =+,解得2x =-,当min{x ,-x}表示为x -时,则34x x -=+,解得=1x -,1x =- 时,最小值应为x ,与min{x ,-x}x =-相矛盾,故舍去,∴方程min{x ,-x}=3x +4的解为2x =-,故选:B .【点睛】本题主要考查一元一次方程的解法,能根据题意正确列出一元一次方程是解题的关键.9.D【分析】根据等式的性质,给方程两边同时乘分母的最小公倍数,然后变形即可.【详解】解:等式两边同乘以6可得:()316x x --=,故选:D .【点睛】本题考查的是解方程过程中的去分母,利用等式的基本性质给等式的两边同时乘分母的最小公倍数进行变形即可.10.B【分析】先根据已知等式得出AB 与AC 的等量关系,再根据线段的中点定义可得出AC 的长,从而可得出答案.【详解】∵12BC AB =∴1322AC AB BC AB AB AB =+=+=,即23AB AC =∵D 为AC 的中点,3DC cm=∴26AC CD cm==∴2264()33AB AC cm ==⨯=故选:B .【点睛】本题考查了线段的和差倍分、线段的中点定义,掌握线段的中点定义是解题关键.11.50-【分析】根据正数与负数的意义即可得.【详解】由正数与负数的意义得:亏损50元记作50-元故答案为:50-.【点睛】本题考查了正数与负数的意义,掌握理解正数与负数的意义是解题关键.12.12##0.5【分析】根据单项式的系数的概念解答.【详解】单项式2xy 的数字因数是12∴单项式2xy 的系数是12.故答案为:12.【点睛】本题考查了单项式的系数的概念:单项式中的数字因数叫做单项式的系数.正确理解概念是解题的关键.13.>【分析】根据“两个负数比较大小,绝对值大的反而小”进行比较.【详解】∵33154420-==,44165520-==,∴15162020<,∴3445-<-,∴3445->-.故答案为:>【点睛】本题主要考查了有理数大小的比较,熟练掌“握两个负数比较大小,绝对值大的反而小”是解题的关键.14.14936'︒【分析】根据两个角的和等于180°,那么这两个角互补计算即可.【详解】解:∵3024α'∠=︒,∴α∠的补角的度数为:180302414936︒-︒=︒''.故答案为:14936'︒.【点睛】本题考查了补角的意义,如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角.15.135【分析】根据方位角的定义、角的和差即可求解.【详解】解:由图可知,∠BAC 等于60°的补角加15°,即∠BAC=180°-60°+15°=120°+15°=135°,故答案为:135.【点睛】本题考查了方位角的定义、角的和差,掌握理解方位角的定义是解题关键.16.2.5【分析】利用中点性质转化线段之间的倍分关系是解题的关键,已知BC=12AB ,解CD=BC-BD 即得.【详解】解:根据线段的中点概念,得:BC=12AB=4,所以CD=BC-BD=4-1.5=2.5.故答案为2.5.17.1【分析】根据图形,找出每个面的相对面,再将相对面的数字相加即可.【详解】由图可知:-1对2;3对-3;-2对1;-1+2=1,3+(-3)=0,-2+1=-1;-1<0<1,故答案为:1【点睛】本题主要考查了正方体相对面的确定,准确地找出每个面的相对面是解题的关键.18.210+215x +=1【分析】由乙队单独施工,设还需x 天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程即可.【详解】由乙队单独施工,设还需x 天完成,根据题意得210+215x +=1,故答案为:210+215x +=1【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.x=0【分析】转化3ax b -+=为:3ax b -=-,根据图表求得一元一次方程3ax b +=-的解.【详解】解:∵3ax b -+=,∴3ax b -=-,∵根据图表知:当0x =时,3ax b -=-,∴方程3ax b -=-的解为:0x =,∴方程3ax b -+=的解为:0x =.故答案为:0x =.【点睛】本题主要考查解一元一次方程,正确得出一元一次方程是解题的关键.20.7或-7【分析】设输入的数为x ,根据程序列出方程求解即可.【详解】解:设输入的数为x ,则有:()12x y-÷=当y=3时,得:()123x -÷=,7x =解得7=±x 故答案为7或-7【点睛】本题考查了计算程序和列方程求解,能理解程序图是解题关键.21.(1)-12(2)11【分析】(1)利用乘法分配律进行去括号,再进行加减计算即可;(2)先计算乘方,再计算乘除,最后进行加减计算即可.(1)解:原式=()()()111181818236⨯-+⨯--⨯-=963--+=12-(2)原式=()316898---⨯⨯=1627-+=11【点睛】此题考查了有理数的运算,掌握先计算乘方再计算乘除,最后计算加减的运算顺序,以及适当运用乘法分配律是解题的关键.22.(1)x=2(2)x=13【分析】(1)按解一元一次方程的一般步骤求解即可;(2)按解一元一次方程的一般步骤求解即可.(1)解:去括号得:339x +=,移项得:393x =-,合并同类项,得36x =,系数化为1,得,2x =;(2)解:去分母,得()()31622x x --=+,去括号,得33642x x --=+,移项得:32463x x -=++,合并同类项,得13x =,【点睛】本题考查了一元一次方程解法.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.23.223a b ab -,54【分析】原式去括号合并同类项得到最简结果,再把a 与b 的值代入计算即可求出值.【详解】解:原式=2222155412a b ab ab a b-+-=223a b ab -当a =-2,b =3时,原式=()()2232323⨯-⨯--⨯=34329⨯⨯+⨯=54【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)见解析(2)见解析【分析】(1)根据射线和线段的定义即可作射线BA ,线段BC ;(2)利用基本作图(作一个角等于已知角)作DCE ∠,使得DCE ABC ∠=∠.(1)如图1,射线BA ,线段BC 即为所求,(2)如图2,DCE ∠即为所求,【点睛】本题考查了作图—基本作图,作射线,线段,作一个角等于已知角,熟练掌握基本作图的方法是解本题的关键.25.12x 、12×0.9、x+1、12×0.9(x+1)(表格填法不唯一),29个【分析】小明今天买蛋糕的单价是12元,数量为x 个,则总价为12x 元.明天比今天多买一个,可参与打九折活动,所以明天的单价是(12×0.9)元,数量为(x+1)个,总价为12×0.9(x+1),完成表格即可.然后根据题意列方程求出x 的值即可.【详解】解:表格填写如下;单价数量总价今天12x 12x 明天12×0.9x+112×0.9(x+1)根据题意列方程得12×0.9(x+1)=12x-24,解得x=29.答:小明计划今天买29个纸杯蛋糕.【点睛】本题主要考查了列代数式和列一元一次方程解应用题,找等量关系列出正确的方程是解题的关键.26.(1)4s(2)8cm /s 或2.5cm /s【分析】(1)根据相遇时,点P 和点Q 的运动的路程和等于AB 的长列方程即可求解;(2)由于点P ,Q 只能在直线AB 上相遇,而点P 旋转到直线AB 上的时间分两种情况,所以根据题意列出方程分别求解.(1)解:设经过ts 后,点P 、Q 相遇.依题意,有2320t t +=,解得,4t =答:经过4s 后,点P 、Q 相遇;(2)解:点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为60230s =,或60180830s +=.设点Q 的速度为/ycm s ,则有2204y =-,解得8y =;或820y =,解得 2.5y =答:点Q 的速度为8/cm s 或2.5/cm s .【点睛】此题考查的知识点是一元一次方程的应用,关键是熟练掌握速度、路程、时间的关系.27.(1)6(2)60°(3)30或70【分析】(1)数出角的个数即可;(2)利用角平分线的性质求出∠BOC 的度数,即可求出∠AOC ;(3)分类讨论,分为OE 在∠AOB 的内部或外部,即可求出∠DOE .(1)解:一个小角组成的角:3个;两个小角组成的角:2个;三个小角组成的角:1个,共:3+2+1=6个;故答案为:6;(2)解:∵OD平分∠BOC,∠BOD=20°,∴∠BOC=2∠BOD=40°.∵∠AOB=100°,∴∠AOC=∠AOB-∠BOC=60°;(3)解:当OE在∠AOB的内部时,如图1:∵∠BOE=50°,∠BOD=20°∴∠DOE=∠BOE-∠BOD=50°-20°=30°;当OE在∠AOB的内部时,如图2:∵∠BOE=50°,∠BOD=20°∴∠DOE=∠BOE+∠BOD=50°+20°=70°故答案为:30或70.【点睛】本题考查了角平分线的定义,角的和差运算,灵活应用知识是本题的关键.28.(1)5,16(2)22,()()a b a b a b -+-(3)22()()a b a b a b -=+-(4)1275【分析】(1)a=3,b=-2时,22223(2)5a b -=--=;11,23a b ==时,a-b=111-=236.(2)小空1大正方形面积为a 2,小正方形的面积为b 2,作差即可.小空2把长方形的长和宽分别用含有a 、b 的代数式表示出来,再按照长方形面积公式计算即可.(3)根据第(2)小题发现的规律写出等量关系即可.(4)每两个数为一组按照根据第(3)小题写出的规律进行变形,问题即可解决.(1)ab a +b a -b a 2-b 2213133-215512135616536(2)小明的方法:大正方形面积为a 2,小正方形的面积为b 2,,∴阴影部分的面积为a 2-b 2;小红的方法:长方形的长为a+b ,宽为a-b ,∴阴影部分的面积为(a+b)(a-b).故答案为:22,()()a b a b a b -+-(3)a +b 、a -b 、a 2-b 2这三个代数式之间的等量关系是22()()a b a b a b -=+-.(4)502-492+482-472+462-452…+22-1=(502-492)+(482-472)+(462-452)…+(22-1)=(50+49)×(50-49)+(48+47)×(48-47)+(46+45)×(46-45)…+(2+1)×(2-1) =50+49+48+47+46+45+…+2+1=5050+12()=1275。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。

苏科版七年级上册数学期末考试试题及答案

苏科版七年级上册数学期末考试试题及答案

苏科版七年级上册数学期末考试试题一、单选题1.下列运用等式的性质,变形正确的是()A .若x2=6x ,则x=6B .若2x=2a -b ,则x=a -bC .若3x=2,则x=32D .若a=b ,则a -c=b -c2.将数字1670万用科学记数法表示应为()A .516710⨯B .616.710⨯C .71.6710⨯D .80.16710⨯3.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“欢”相对的字是()A .英B .雄C .凯D .旋4.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是()A .a+b>0B .a ⋅b>0C .|a|>|b|D .b+a>b5.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A .1800元B .1700元C .1710元D .1750元6.用一个平面去截一个几何体,截面不可能是三角形的是()A .五棱柱B .四棱柱C .圆锥D .圆柱7.某书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A .180元B .202.5元C .180元或202.5元D .180元或200元8.有理数a 、b 在数轴上的位置如下图所示,则下列判断正确的是()A .0ab >B .0a b >C .a b <D .0a b>>9.下列计算正确的是()A .5510a a a +=B .55102a a a +=C .5552a a a +=D .22332x y xy x y +=10.如图所示是计算机某计算程序,若开始输入2x =-,则最后输出的结果是().A .5-B .14-C .7-D .22-二、填空题11.比较大小:π-_____4-.12.三视图都是大小相同的正方形的几何体是________.13.若﹣5xm +3y 与2x 4yn +3是同类项,则m+n=____.14.一个棱锥共有20条棱,那么它是______棱锥.15.已知()()21130k x k x -+-+=是关于x 的一元一次方程,则k 的值为______.16.若()2120x y ++-=,则y x 的值为___.17.有理数a 、b 、c 在数轴上的位置如图所示,化简:222a c c b a b +--++=___________.18.观察等式:2322=22+-;23422+2=22+-;234522+2+2=22+-…,已知按一定规律排列的一组数:454688892222、、...、.若452m =,用含m 的式子表示这组数的和是__________.三、解答题19.计算:(1)()()()418464--÷-⨯-+;(2)1351621248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭.20.解方程:(1)()()62127x x x -+=--(2)331124x x +--=21.先化简,后求值:22224242(322)x xy y xy y x +---+,其中1x =,=2y -.22.定义一种新运算:a*b=3a-2b .(1)求()6*2-的值;(2)解方程2*(1*x )=1*x .23.已知:22321A a ab a =+--,21B a ab =-+-.(1)化简36A B +;(2)若(1)中的代数式的值与a 的取值无关,求b 的值.24.研究下列算式,你会发现有什么规律?①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;⑤13+23+33+43+53=152…(1)根据以上算式的规律,请你写出第⑥个算式;(2)用含n (n 为正整数)的式子表示第n 个算式;(3)请用上述规律计算:73+83+93+103.25.在平整的地面上,用若干个完全相同棱长为1的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.(3)如果需要给原来这个几何体表面喷上红漆,则喷漆面积是多少?26.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.(1)参加本次社会调查的学生共多少名?(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车?27.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.(1)如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D______【A,B】的好点,但点D______【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2.数______所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过______秒时,P、A和B中恰有一个点为其余两点的好点?参考答案1.D【分析】根据等式的性质,可得答案.【详解】解A.x可能为0,故A不符合题意;B.左右两边除以不同的数,故B不符合题意;C.左右两边除以不同的数,故C 不符合题意;D.左右两边都减c ,故D 符合题意;故选D.【点睛】考查等式的性质,熟练掌握等式的2个基本性质是解题的关键.2.C【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:1670万=16700000=71.6710⨯.故选:C .【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.3.C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由图知该正方体中,和“欢”相对的字是“凯”,故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.C【详解】解:由数轴可知:a <0<b ,|a|>|b|,∴a+b <0,ab <0,|a|>|b|,b+a <b ,故选:C .5.C【详解】设手机的原售价为x 元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .6.D【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【详解】A.过五棱柱的三个面得到的截面是三角形,符合题意;B.过四棱柱的三个面得到的截面是三角形,符合题意;C.过圆锥的顶点和下底圆心的面得到的截面是三角形,符合题意;D.圆柱的截面跟圆、四边形有关,不符合题意.故选D.【点睛】本题主要考查截一个几何体,解题关键是学会分截面的形状和被截的几何体还有角度和方向的问题.7.C【分析】付款162元,那么他买的书的总价钱一定超过了100元,有可能享受九折优惠,还有可能享受8折优惠,不享受优惠即原价,利用打九折即原价×0.9,打八折即原价×0.8,由此列方程分别求出即可.【详解】解:设这些书的原价是x元.∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.即享受9折优惠时,0.9x=162,解得:x=180元;享受8折优惠时,0.8x=162,解得x=202.5;故王明所购书的原价一定为180元或202.5元.故选:C.【点睛】此题考查了一元一次方程的应用,根据所给条件得到相应的关系式是解决问题的关键,注意分类讨论思想的渗透.8.C【分析】先根据各点在数轴上的位置判断出各数的符号,再对各选项进行逐一判断即可.【详解】∵由图可知,a<﹣1<0<b<1,∴ab<0,故A错误;ab<0,故B错误;a<b,故C正确;a<0<b,故D错误.故选C.【点睛】本题考查了数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.9.C【分析】根据合并同类项的法则"合并同类项时字母和字母的指数不变把系数相加减"进一步判断即可.【详解】解:A 、5552a a a +=,故此选项错误;B 、a 5+a 5=2a 5,故此选项错误;C 、5552a a a +=,正确;D 、2x y 和2xy 不是同类项,无法计算,故此选项错误.故选:C .【点睛】本题主要考查了合并同类项,熟练掌握相关方法是解题关键.10.B【分析】先输入2-,得到5-,不满足输出条件,再把5-再输入,得到145-<-,满足输出条件,输出14-.【详解】解:输入2-,()231615-⨯--=-+=-,不满足条件,将5-再输入,()531151145-⨯--=-+=-<-,满足条件,输出14-.故选:B .【点睛】本题借助流程图考查有理数的混合运算,解题的关键是看懂流程图,根据流程图的过程进行计算.11.>【分析】根据负数比较大小的方法:两个负数比较大小,绝对值大的数反而小,可知4π->-.【详解】解:∵4π<,∴4π->-,故答案为:>.【点睛】本题主要考查的是负数比较大小,掌握其比较方法即可进行解题.12.正方体【分析】找到从正面、左面和上面看得到的图形是正方形的几何体即可.【详解】解:∵主视图和左视图都是正方形,∴几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故答案为:正方体.13.﹣1.【分析】根据同类项的定义求出m 、n 的值,再代入求解即可.【详解】∵﹣5xm +3y 与2x 4yn +3是同类项,∴m+3=4,n+3=1,解得:m=1,n=﹣2,则m+n=1﹣2=﹣1.故答案为:﹣1.【点睛】本题考查了代数式的运算问题,掌握同类项的定义、代入法是解题的关键.14.十【分析】根据一个n 棱锥有2n 条棱,进行填空即可.【详解】根据一个n 棱锥有2n 条棱一个棱锥共有20条棱,那么它是十棱锥故答案为:十.【点睛】本题考查了棱锥的性质,掌握了棱锥的性质是解题的关键.15.-1【分析】由于方程是关于x 的一元一次方程,所以方程不含x 的二次项,并且含x 的一次项的系数不能为0,就能得到关于k 的方程和不等式,求值即可.【详解】解:由题意,得1010k k ⎧-=⎨-≠⎩解得,k=-1.故答案为-1【点睛】本题考查了一元一次方程的概念和解法.一元一次方程中含未知数的一次项的系数不能为0.16.1【分析】根据平方,绝对值的非负性可得10,20x y +=-=,再代入,即可求解.【详解】解:∵()2120x y ++-=,∴10,20x y +=-=,解得:1,2x y =-=,∴()211=-=y x .故答案为:1【点睛】本题主要考查了平方,绝对值的非负性,乘方运算,根据题意得到10,20x y +=-=是解题的关键.17.2b c-【分析】根据数轴上点的位置判断出0b a c <<<,c b <,a c <,由此判断绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:由题可知0b a c <<<,c b <,a c <,∴0a c +>,20c b ->,20a b +<,∴222a c c b a b+--++()()222a c c b a b =+---+=242a c c b a b+-+--=2b c -,故答案为:2b c -.【点睛】此题考查了整式的加减,以及数轴,涉及的知识有:去绝对值,去括号法则,以及合并同类项法则,考查重点是利用数轴对绝对值进行化简.18.902m-【分析】根据条件,补全等式()23444556888990222...222...22=22+++++++-,可知234445222...2=22=2m +++--,原式可化为4556888990222...22=22m -++++-,由此即可求得结果.【详解】解:由题意可知:()23444556888990222...222...22=22+++++++-,∵452m =,234445222 (222)+++=-∴4556888990222...22=22m -++++-,即:45568889909022...22=2222m m +++--+=-,故答案为:902m -.【点睛】本题考查的数字规律,关键在于明确题意,发现式子的变化特点,进行整体代入求值.19.(1)3-(2)44-【分析】(1)首先利用有理数混合运算对乘方,乘除进行运算,在进行加减运算即可;(2)先将除法转化为乘法,在根据乘法分配律进行简便运算即可.(1)解:原式=()()122--⨯-=14-=3-;(2)原式=()135486212⎛⎫-+-⨯- ⎪⎝⎭=()()()1354848486212⎛⎫-⨯-+⨯--⨯- ⎪⎝⎭=87220-+=44-.【点睛】本题主要考查的是有理数混合运算,计算过程中需熟练掌握运算法则及运算顺序,同时还需注意符号.20.(1)=1x -;(2)15x =-【分析】①方程去括号,移项,合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项,合并,把x 系数化为1,即可求出解.【详解】解:(1)去括号得:62227x x x --=+-,移项,合并得:33x =-,把x 系数化为1得:=1x -;(2)去分母得:()42331x x -+=-,去括号得:46231x x --=-,移项,合并得:51x -=,把x 系数化为1得:15x =-.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.21.-4xy ,8.【分析】先将整式化简,再将x 、y 的值代入计算.【详解】原式=2222424644x xy y xy y x +--+-,=-4xy ,当x 1,y 2==-时,原式=41(2)8-创-=.【点睛】此题考察整式的化简,注意去括号法则的运用.22.(1)22(2)12x =【分析】(1)直接根据定义新运算,代入进行计算即可;(2)根据新运算,可知()2*1*4x x =,1*32x x =-,进行求解即可,注意不能直接消去1*x .(1)解:由题意可知()()6*2362218422-=⨯-⨯-=+=;(2)由题意可知:()()()2*1*2*32322326644x x x x x =-=⨯--=-+=,1*32x x =-,∵2*(1*x )=1*x ,∴432x x =-,解得:12x =.【点睛】本题主要考查的是定义新运算的计算,严格遵照定义的运算进行求解是解题重点.23.(1)1569ab a --;(2)25b =【分析】(1)把A 、B 的值代入,然后去括号合并同类项即可;(2)合并关于a 的同类项,然后令a 的系数等于0求解即可;【详解】解:(1)∵22321A a ab a =+--,21B a ab =-+-∴36A B+=()232321a ab a +--+()261a ab -+-=26963a ab a +--2666a ab -+-=1569ab a --;(2)1569(156)9ab a b a --=--,由题意得1560b -=,25b ∴=.【点睛】本题考查了整式的加减---无关型问题,解答本题的关键是理解题目中代数式的取值与哪一项无关的意思,与哪一项无关,就是合并同类项后令其系数等于0,由此建立方程,解方程即可求得待定系数的值.24.(1)333333212345621+++++=(2)()23333311234...2n n n ⎡⎤⨯++++++=⎢⎣⎦(3)2584【分析】(1)利用类比的方法得到第⑥个算式为333333212345621+++++=;(2)同样利用类比的方法得到第n 个算式为233333(1)1234...2n n n ⨯+⎡⎤+++++=⎢⎥⎣⎦;(3)将3333789...10++++转化为()3333333333(1234...10)1234...6+++++-+++++后代入总结的规律求解即可.(1)解:①当1n =时,3211=,即()2311112⨯+⎡⎤=⎢⎥⎣⎦,②2n =时,332123+=,即()233221122⨯+⎡⎤+=⎢⎥⎣⎦,③3n =时,33321236++=,即()23333311232⨯+⎡⎤++=⎢⎥⎣⎦,④4n =时,33332123410+++=,即()2333344112342⨯+⎡⎤+++=⎢⎥⎣⎦,⑤5n =时,3333321234515++++=,即()233333551123452⨯+⎡⎤++++=⎢⎣⎦,∴当6n =时,()23333332661123456212⨯+⎡⎤+++++==⎢⎣⎦,故第⑥个算式为333333212345621+++++=;(2)根据(1)中的规律可得第n 个式子为:233333(1)1234...2n n n ⨯+⎡⎤+++++=⎢⎥⎣⎦;(3)∵333378910+++=()3333333333(1234...10)1234 (6)+++++-+++++=2210(101)6(61)22⨯+⨯+⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦=225521-=()()55215521-⨯+=3476⨯=2584.25.(1)见解析(2)4(3)34【分析】(1)根据三视图的画法,画出从正面、左面、上面看到的形状即可;(2)俯视图和左视图不变,构成图形即可解决问题;(3)求出这个几何体的表面积即可解决问题.(1)这个几何体有11个立方体构成,三视图如图所示;(2)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个),∴多可再添加4个小正方体.故答案为:4;(3)从左面看数有8个正方形表面,从前面数有6个正方形表面,从上面数有6个正方形表面,从右面数有8个正方形表面,从后面数有6个正方形表面,总计34正正方形表面需要喷上红色的漆,∴表面积为34,故喷漆面积为34.26.(1)28名;(2)租第一种车3辆,第二种车1辆时费用最少,其费用为1100元.【分析】(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.【详解】解:(1)设参加本次社会调查的同学共x人,则根据题意得,4(48x+3)=x,解之得:x=28答:参加本次社会调查的学生共28人.(2)其租车方案为①第一种车4辆,第二种车0辆,租车费用为:300×4=1200(元);②第一种车3辆,第二种车1辆,租车费用为:300×3+200=1100(元);③第一种车2辆,第二种车3辆,租车费用为:300×2+200×3=1200(元);④第一种车1辆,第二种车5辆,租车费用为:300+200×5=1300(元);⑤第一张车0辆,第二种车7辆,租车费用为:200×7=1400(元).比较后知:租第一种车3辆,第二种车1辆时费用最少,其费用为1100元.27.(1)不是,是;(2)0或-8;(3)5或7.5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0或-8;(3)根据题意得:PB=4t,AB=40+20=60,PA=60-4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.【详解】(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;(2)如图2,4-(-2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;4-(-8)=12,-2-(-8)=6,同理:数-8所表示的点也是【M,N】的好点;∴数0或-8所表示的点是【M,N】的好点;(3)如图3,由题意得:PB=4t,AB=40+20=60,PA=60-4t,点P走完所用的时间为:60÷4=15(秒),分四种情况:①当PA=2PB时,即2×4t=60-4t,t=5(秒),P是【A,B】的好点,②当PB=2PA时,即4t=2(60-4t),t=10(秒),P是【B,A】的好点,③当AB=2PB时,即60=2×4t,t=7.5(秒),B是【A,P】的好点,④当AB=2AP时,即60=2(60-4t),t=7.5(秒),A是【B,P】的好点,∴当经过5秒或7.5或10秒时,P、A和B中恰有一个点为其余两点的好点.。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.12-的倒数是()A.-2B.2C.12-D.122.下列各式中,与ab2是同类项的是()A.﹣ab2B.﹣3a2b C.a2b2D.2ab 3.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.4.代数式3a+1与3a﹣1互为相反数,则a的值是()A.13B.13-C.0D.﹣35.在﹣0.2418中,若用3去替换其中的一个非0数字,并使所得的数最大,则替换的数字是()A.1B.2C.4D.86.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有()A.1个B.2个C.3个D.4个8.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个9.已知a+4b=﹣15,那么代数式9(a+2b)﹣2(2a﹣b)的值是()A.﹣15B.﹣1C.15D.110.如图所示,点O在直线AB上,∠EOD=90°,∠COB=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠COD互余D.∠AOC与∠COB互补二、填空题11.计算:35--=_____.12.如图,在直线l上有A,B,C三点,则图中的线段共有_____条.13.小明的爸爸存折上原有1000元钱,近一段时间的存取情况(存入为正,取出为负)是﹣240元,+350元,+220元,﹣130元,﹣470元,小明的爸爸存折中现有_____元(不计利息).14.已知(a2﹣1)x2+ax+x﹣1=0是关于x的一元一次方程,则a的值是_____.15.如图,直线AB、CD相交于O点,射线OE平分∠BOC,已知∠AOC=50°,则∠BOE 的大小是_____度.16.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x 张铝片制瓶身,则可列方程为____________.17.一个正方体的每个面上各写有一个数,图中是它的两幅表面展开图,则字母A 表示的数是_____.三、解答题18.(1)计算:3172-;(2)化简:﹣[﹣2x ﹣(3﹣2x )].19.计算:(2355[3)262⎛⎫⎤--⨯÷- ⎪⎦⎝⎭.20.先化简,再求值:2(x 2y+xy )﹣3(x 2y ﹣xy ),其中x =1,y =﹣1.21.解方程:(1)2x-3=1-x ;(2)212134x x -+=-.22.如图,直线AB 、CD 相交于O ,OE ⊥CD ,且∠BOD =5∠AOD ,求∠BOE 的度数.23.某商场计划销售一批商品,如果每天销售10件,可以按计划完成销售任务,如果每天多销售2件,就可以提前1天完成任务.(1)该商场计划几天完成销售任务?(2)若该商品的标价为200元/件,按标价的八折进行促销,每件仍可以盈利60元,该批商品的总成本为多少元?24.如图,在△ABC中,∠B=90°,P为斜边AC上一点.(1)将△ABC沿射线AC平移,使点A与点P重合,画出平移后的△PEF(点B、C的对应点分别是点E、F);(2)设PE与BC交于点O,若四边形ABOP的面积等于22,则四边形COEF的面积等于多少?(3)若OB=3,OE=2,BC=a,四边形ABOP的面积等于S,用含a的代数式表示四边形ABOP的面积.25.如图,在长方形ABCD中,AD=16cm,AB=12cm,动点P从点A出发,沿线段AB、BC向点C运动,速度为2cm/s;动点Q从点B出发,沿线段BC向点C运动,速度为1cm/s.P,Q同时出发,当其中一点到达终点,另一点也停止运动,设运动时间是t(s).(1)请用含有t的代数式表示:当点P在AB上运动时,BP=;当点P在BC上运动时,BP=;(2)在运动过程中,t为何值,能使PB=BQ?26.如图,已知四点A、B、C、D.(1)用圆规和无刻度的直尺按下列要求与步骤画出图形:①画直线AB.②画射线DC..(保留作图痕迹)③延长线段DA至点E,使AE AB④画一点P ,使点P 既在直线AB 上,又在线段CE 上.(2)在(1)中所画图形中,若2AB =cm ,1AD =cm ,点F 为线段DE 的中点,求AF 的长.27.如图在长方形ABCD 中,12AB cm =,8BC cm =,点P 从A 点出发,沿A B C D →→→路线运动,到D 点停止;点Q 从D 点出发,沿D C B A →→→运动,到A 点停止若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间.(1)当x =__________秒时,点P 和点Q 相遇.(2)连接PQ ,当PQ 平分长方形ABCD 的面积时,求此时x 的值(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度变为每秒1cm ,求在整个运动过程中,点P 点Q 在运动路线上相距路程为20cm 时运动时间x 的值.参考答案1.A 2.A 3.C 4.C 5.C 6.C 7.C 8.C9.B 10.C 11.-812.313.73014.-115.6516.2×16x=45(100-x )17.2或618.(1)114-;(2)3.(2)先去小括号,然后去中括号,化简即可得.【详解】解:(1)3172-,671414=-,114=-;(2)()232x x ⎡⎤----⎣⎦,()232x x =---+,()3=--,3=.19.13-【分析】先算乘方,再算括号内的,再算乘除.【详解】解:原式()529865⎛⎫=-⨯- ⎪⎝⎭52165⎛⎫=⨯⨯- ⎪⎝⎭13=-.【点睛】本题考查含乘方的有理数四则混合运算,掌握运算顺序是解决本题的关键.20.25x y xy -+,-4【分析】先去括号,然后合并同类项,最后代值求解即可.【详解】解:()()2223x y xy x y xy+--222233x y xy x y xy =+-+25x y xy=-+将1,1x y ==-代入25x y xy -+中得()()115114-⨯-+⨯⨯-=-∴原式的值为4-.【点睛】本题考查了整式的加减运算,代数式求值.解题的关键在于正确的去括号和计算.21.(1)43x =;(2)25x =-.【分析】(1)直接进行移项合并同类项,然后系数化为1求解即可得;(2)先去分母,然后去括号,移项,合并同类项,最后系数化为1求解即可得.(1)解:231x x -=-,移项得:213x x +=+,合并同类项得:34x =,系数化为1得:43x =;(2)解:212134x x -+=-,去分母得:()()4213212x x -=+-,去括号得:843612x x -=+-,移项得:836124x x -=-+,合并同类项得:52x =-,系数化为1得:25x =-.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的方法步骤是解题的关键.22.60°【分析】根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出∠BOC ,∠EOC ,代入∠BOE=∠EOC-∠BOC 求出即可.【详解】解:∵AB 是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的5倍,∴∠AOD=16×180°=30°,∴∠BOC=∠AOD=30°,OE ⊥DC ,∴∠EOC=90°,∴∠BOE=∠EOC-∠BOC=90°-30°=60°.【点睛】本题考查了垂直,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.23.(1)该商场计划6天完成销售任务(2)该批商品的总成本为6000元【分析】(1)设该商场计划x 天完成销售任务,则由题意得()()101021x x =+⨯-,计算求解即可;(2)由题意知商品的成本为2008060⨯%-元/件,该批商品共有10660⨯=件,该批商品的总成本为60100⨯,计算求解即可.(1)解:设该商场计划x 天完成销售任务则由题意得()()101021x x =+⨯-解得6x =∴该商场计划6天完成销售任务.(2)解:由题意知商品的成本为2008060100⨯=%-元/件该批商品共有10660⨯=件∵601006000⨯=∴该批商品的总成本为6000元.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意列方程.24.(1)图见解析;(2)22;(3)2a-3.【分析】(1)由题意画出图形即可;(2)由平移的性质得ABCPEF S S ∆∆=,进而得出COEF ABOP S S =四边形四边形=22;(3)由平移的性质和直角梯形面积公式求解即可.(1)如图1,延长AC 到F ,使CF=AP ,过点P 作PE ∥AB ,且PE=AB ,连接EF ,得到平移后的△PEF ;(2)如图2,由平移的性质得:AB=PE ,BC=EF ,AC=PF ,∠B=∠E=90°,∴ABC PEF S S ∆∆=,ABC POC ABOP S S S ∆∆=+四边形,22COEF ABOP S S ∴==四边形四边形,故答案为:22.(3)由平移的性质得:AB=PE ,BC=EF ,AC=PF ,∠B=∠E=90°,BC ∥EF ,AB ∥PE ,∴四边形ABOP 、四边形COEF 都是直角梯形,OC=BC-OB=a-3,EF=BC=a ,11=()(3)22322COEF S OC EF OE a a a ∴+⨯=⨯-+⨯=-,∴由(2)得:COEFABOP SS =四边形四边形,∴四边形ABOP 的面积为:2a-3,故答案为:2a-3.【点睛】本题是四边形综合题目,考查了平移的性质、直角梯形的性质、三角形面积等知识,本题综合性强,熟练掌握平移的性质和直角梯形的性是解题的关键.25.(1)()122t cm -;()212t cm -;(2)当t 为4或12时,PB BQ =.【分析】(1)结合图形,根据速度、时间、路程之间的关系即可列出代数式;(2)根据(1)中结论分两种情况进行讨论:①点P 在AB 上运动时;②当点P 运动到BC 上时;列出相应一元一次方程求解即可得.(1)解:点P 在AB 上运动时,2AP tcm =,()122PB t cm =-;当点P 运动到BC 上时,()212PB t cm =-,故答案为:()122t cm -;()212t cm -;(2)解:点P 运动过程中总的运动时间为:()1216214s +÷=,点Q 运动过程中总的运动时间为:16116s ÷=,∴总的运动时间为14s ,①点P 在AB 上运动时,PB BQ =,则122t t -=,解得:4t =s ;②当点P 运动到BC 上时,212t t -=,解得:12t =s ,综合可得当t 为4s 或12s 时,PB BQ =.【点睛】题目主要考查列代数式的应用及一元一次方程的应用,理解题意,结合图形,进行分类讨论列出方程是解题关键.26.(1)见解析;(2)0.5cm.【分析】(1)①画直线AB,直线向两边无限延伸;②画射线DC,D为端点,再沿CD方向延长;③画线段DA和AE,线段不能向两方无限延伸;④画线段CE,与直线AB相交于P;(2)利用线段之间的关系解答即可;【详解】解:(1)如图,该图为所求,(2)∵AB=2cm,AB=AE,∴AE=2cm,AD=1cm,∵点F为DE的中点,∴EF=12DE=32cm,∴AF=AE-EF=2-32=12cm;∴AF=0.5cm.【点睛】本题主要考查了作图—应用与设计作图,两点间的距离,掌握作图—应用与设计作图,两点间的距离是解题的关键.27.(1)323;(2)4或20;(3)4或14.5【分析】(1)根据点P运动的路程+点Q运动的路程=全程长度,即可得出关于x的一元一次方程,解之即可得出结论;(2)分点P在AB边上时,点Q在CD边上和点Q运动到A点,点P运动到点C两种情况进行讨论即可求解.(3)先分析变速前和变速后两种情况进行即可得.【详解】(1)根据题意得:x+2x=12×2+8,解得:x=32 3.故答案:当x的值为323时,点P和点Q相遇.(2)∵PQ平分矩形ABCD的面积,当点P在AB边上时,点Q在CD边上,有题意可知:2x=12−x,解得:x=4.当点Q运动到点A时,用时(12+8+12)÷2=16秒,此时点P运动到点C时,PQ平分矩形ABCD 面积,此时用时:(12+8)÷1=20秒故答案:当运动4秒或20秒时,PQ平分矩形ABCD的面积.(3)变速前:x+2x=32-20解得x=4变速后:12+(x-6)+6+3×(x-6)=32+20解得x=14.5综上所述:x的值为4或14.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一学期期末考试试卷
出卷人 : 姚俊 审核:
亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力! 说明:考试时间100分钟,全卷满分120分 一、你能填得又快又准吗?
(本题12小题,每题2分,共24分)
1、收入200元记作+200,那么-100表示_____________________
2、计算:-3+(-1)= -2×(-3)= 3用科学记数法表示:380 000 000=______ 4、3
1
-
的相反数是 ,平方等于16的数是 5、已知(2
)2-x +1+y =0,则y x
=_____
6、小明已经解出方程2x -■(墨水滴落处)=4x +1的解是x =-2
3
,但他不慎将墨水滴到方程的一个数上,这个数是 . 7、若72
+-n m b a
与443b a -是同类项,则m= .n= .
8、如图,O 是直线AD 上一点,射线OC 、OE 分别是BOD AOB ∠∠,的平分线,若
030=∠AOC , 则=∠BOE _________.
9、对正有理数a 、b 规定运算★如下:a ★b=b
a ab
-,则6★8= 10、“二十四点”游戏规则:用给定的四个数(用且只用一次)进行加、减、乘、除运算,使其结果等于24。

如果所给四数为:—6, 4,10,3,那么算式是 。

11、如图,是一个简单的数值运算程序,
当输入的值为2时,则输出的数值为
学校______________ 班级:__________ 姓名:____________ 学号:_________
……………………………………… 密 …………… 封 …………… 线 ………………………
输入n
计算
()2
1+n n 的值
>200
输出结果
no
yes
第8题
12、在实数的原有运算法则中我们补充定义新运算“⊕”如下:
当a ≥b 时,a ⊕b=b 2;当a<b 时,a ⊕b=a .则当x=2时,(1⊕x )-(3⊕x)的值为_______.(“·”和“-”仍为实数运算中的乘号和减号)
二、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入括号内,每小题3分,共24分)
13、左图中的图形绕虚线旋转一周,可得到的几何体是( )
.
14、关于0的下列几种说法不正确...
的是( ) A 0既不是正数也不是负数 B 0的相反数是0 C 0的绝对值是0 D 0是最小的数
15、从各个不同的方向观察如图所示的实物几何体,不可能看到的视图 ( )
A 、
B 、
C 、
D 、
16、如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( ) A .0a b +> B .0ab >
C .0a b ->
D .||||0a b ->
17、解方程:2-
342-x =-6
7
-x ,去分母得 ( ) A.2-2 (2x -4)= -(x -7) B .12-2 (2x -4)= -x -7
C .12-2 (2x -4)= -(x -7)
D .2-(2x -4)= -(x -7)
18、已知-x+2y=1,则6)2(5)2(32
+---y x y x = ----------------------------- ( ) A. 13
B. 14
C. 4
D. 15
19、左图是正方体的表面展开图,如果将其合成原来的正方体(右图)时,与点P 重合的
B A
1- 1 0 a b (第16题)
两点应该是 ( )
A .S 和Z
B .T 和Y
C .U 和Y
D .T 和V
20、一种商品的单价为a(a>0),先按原价提高10%,再按新价降低10%,最后该商品的价格为b 元,那么a 、b 的大小关系是 ( ) A 、无法确定 B 、a>b C 、a=b D 、a<b 三、你来算一算!千万别出错!
21、(本题共2小题,每小题5分,共10分) 计算: (1)()24436183-⨯⎪⎭

⎝⎛-- 解:
(2)[]
24
)3(36
1
1--⨯-- 解:
22、(本题共2小题,每小题6分,共12分) 计算:xy y x xy y x ---)2(322
2
解:
(2) 先化简,再求值: (1) )2()824(412y x y x x ----+-,其中x=2
1
,y=2008。

解:
23、解方程:(本题共2小题,6+8共14分)
(1)(6分)3(x+1)-1=x-2 解:
(2)(8分)实验中学七年级学生小丽做作业时解方程:13
3221=--+x
x 的步骤如下:
①去分母,得3(x +1)-2(2-3x )=1 ②去括号,得3x +3-4-6x =1 ③移项,得3x -6x =1-3+4 ④合并同类项得-3x =2 ⑤系数化为1,得x =-
3
2
⑴聪明的你知道小丽的解答过程正确吗?答: (填“是”或“否”),如果不正确,第 步(填序号)出现了问题;(提示:有两步..有错误...噢) ⑵请你对小玲同学在解方程时应该注意什么提两点建议好吗?
①: ; ②: . ⑶请你写出这题正确的解答过程:
四、几何问题(13分)
24、(6分)已知一个角的补角比这个角的4倍大,求这个角的余角
25、如图,已知OC ⊥AB ,OD ⊥OE ,(本题7分) (1)如果∠1=38°,求∠BOE 的度数。

(2)写出图中与∠1互余的角
(3) 写出图中与∠1互补的角
五、数学与我们的生活
26、(7分)某初一同学在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如
下字样:“甲、乙两站相距448 km ,一列慢车从甲站出发,速度为60km/h ,一列快车从乙站出发,速度为100km/h , ?” (横线部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答。

27、(8分)“老牛:累死我了!
小马:你还累?这么大的个,才比我多驮了2个。

老牛:哼,我从你背上拿来1个,我的包裹数就是你的2倍! 小马:真的?!”
根据老牛和小马的对话,你能求出它们各驮了多少个包裹吗?
1
E
O
D C
B
A
28、(8分)某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费。

如甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费用为60×0.8+(80-60)×1.2=72元。

(1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费. 若x≤60,则费用表示为____________;若x>60,则费用表示为_____________________。

(2) 若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?
初中数学试卷
金戈铁骑制作。

相关文档
最新文档