数控车削加工圆弧中的刀尖半径补偿
刀尖半径补偿的概念和指令格式

刀尖半径补偿的概念和指令格式
刀尖半径补偿是数控编程中的一种功能,用于在铣削、切割等加工过程中对刀具进行补偿,以保证加工精度和避免工具干涉。
以下是刀尖半径补偿的概念和指令格式的简要说明:
概念:
刀尖半径补偿是指在进行数控加工时,通过编程指令将加工轮廓的实际位置与所设定的轮廓进行调整,以补偿刀具切削时的偏差,从而获得准确的加工结果。
刀尖半径补偿通常适用于具有曲线形状的轮廓加工,如圆弧、椭圆等。
指令格式:
刀尖半径补偿指令通常分为两种,分别为G41和G42,其指令格式如下:
1. G41 Dn (n为刀具号):
- 启用刀尖半径补偿,并指定刀具的刀尖半径补偿偏移量为Dn。
- 刀具号(n)可根据实际情况进行设置。
2. G42 Dn (n为刀具号):
- 启用刀尖半径补偿,并指定刀具的刀尖半径补偿偏移量为Dn。
- 刀具号(n)可根据实际情况进行设置。
注意事项:
- 在启用刀尖半径补偿之前,需要先定义刀具的刀尖半径补偿偏移量,可以通过G10指令来定义和修改。
- 刀尖半径补偿的偏移量Dn可以为正值或负值,具体取决于刀具和加工的特性。
- 在加工中,刀具路径将根据刀尖半径补偿的偏移量进行自动调整,以保证加工精度和避免工具干涉。
以上是关于刀尖半径补偿概念和指令格式的简要说明,具体的应用还需要根据不同的数控系统和加工需求进行详细设置和调整。
刀尖圆弧补偿(详细介绍)

刀尖圆弧补偿数控车削加工是以假想刀尖进行编程,而切削加工时,由于刀尖圆弧半径的存在,实际切削点与假想刀尖不重合,从而产生加工误差。
为满足加工精度要求,又方便编程,需对刀尖圆弧半径进行补偿。
本文对刀尖半径补偿的概念,刀尖方位的确定、补偿方法和参数设置进行了介绍。
同时阐述了刀尖半径补偿的过程并分析了实例,就应用过程中出现的问题加以介绍。
数控机床是按照程序指令来控制刀具运动的。
众所周知,我们在编制数控车床加工程序时,都是把车刀的刀尖当成一个点来考虑,即假想刀尖,如图1所示的A点。
编程时就以该假想刀尖点A来编程,数控系统控制A点的运动轨迹。
但实际车刀尤其是精车刀,在其刀尖部分都存在一个刀尖圆弧,这一圆角一方面可以提高刀尖的强度,另一方面可以改善加工表面的表面粗糙度。
由于刀尖圆弧的存在,车削时实际起作用的切削刃是圆弧各切点。
而常用的对刀操作是以刀尖圆弧上X、Z方向相应的最突出点为准。
如图1所示,这样在X向、Z向对刀所获得的刀尖位置是一个假想刀尖。
按假想刀尖编出的程序在车削外圆、内孔等与Z轴平行的表面时,是没有误差的,即刀尖圆弧的大小并不起作用;但当车右端面、锥面及圆弧时,就会造成过切或少切,引起加工表面形状误差,如图2所示为以假想刀尖位置编程时的过切及少切现象。
编程时若以刀尖圆弧中心编程,可避免过切和少切的现象,但计算刀位点比较麻烦,并且如果刀尖圆弧半径值发生变化,还需改动程序。
数控系统的刀具半径补偿功能正是为解决这个问题所设定的。
它允许编程者不必考虑具体刀具的刀尖圆弧半径,而以假想刀尖按工件轮廓编程,在加工时将刀具的半径值R存入相应的存储单元,系统会自动读入,与工件轮廓偏移一个半径值,生成刀具路径,即将原来控制假想刀尖的运动转换成控制刀尖圆弧中心的运动轨迹,则可以加工出相对准确的轮廓。
这种偏移称为刀尖半径补偿。
如图3所示。
一、刀尖半径补偿的方式现代机床基本都具有刀具补偿功能,为编程提供了方便。
刀尖圆弧半径补偿是通过G41、G42、G40代码及T代码指定的假想刀尖号加入或取消的,如表所示。
刀尖半径补偿计算公式

刀尖半径补偿计算公式刀尖半径补偿是数控加工中常用的技术,用于解决加工过程中刀具的半径误差。
该技术可以在加工过程中根据刀具的真实半径,自动调整加工轨迹,从而达到更高的加工精度和效率。
在实际应用中,刀尖半径补偿计算是非常重要的一环。
刀尖半径补偿计算公式的初衷是为了解决因刀具半径误差产生的加工误差。
在CNC数控机床的加工中,刀具的半径并不是完全一致的,而是有一定的偏差。
为了保证加工精度,就需要进行补偿,把偏差考虑进去。
在常见的加工中,刀具的偏差主要分为两种:正向补偿和负向补偿。
如果刀具实际半径大于理论半径,则需要进行负向补偿,即在加工程序中的刀补指令后加上“-”符号,以表示半径补偿量。
如:G41 X... Y... D... Z... H... -R0.5 F...。
其中,-R0.5表示刀具实际半径比理论半径小0.5mm,这个值是由加工过程中的实际测量得出的。
如果刀具实际半径小于理论半径,则需要进行正向补偿,即在加工程序中的刀补指令后加上“+”符号,以表示半径补偿量。
如:G42 X... Y... D... Z... H... +R0.2 F...。
其中,+R0.2表示刀具实际半径比理论半径大0.2mm。
在实际应用中,刀具的半径偏差需要通过测量得出,然后根据计算公式进行补偿。
刀具的半径偏差可以通过多种方法进行测量,常见的方法有“触发法”和“影像测量法”。
触发法是将刀具接触到工件上,然后使用触发测量仪器来测量刀具的半径。
常用的测量仪器有三角板、球规、千分表和测微计等。
影像测量法则是使用光学测量仪器来测量刀具的大小和形状,一般采用CCD影像测量仪、激光扫描仪等设备。
相比于触发法,影像测量法更加准确和精确,成为目前主要的刀具测量方法之一。
刀尖半径补偿计算公式的求解过程是比较复杂的,在实际应用中一般使用数控加工机床自带的计算软件或专业的刀具选型软件来进行计算。
一般来说,计算公式是由加工轨迹、刀具半径、刀具方向等多个因素组成的,具体的数学推导过程较为繁琐,在此不进行详细介绍。
刀尖半径补偿计算公式

刀尖半径补偿计算公式
刀尖半径补偿是数控加工中的一项重要技术,用于保证加工轮廓的尺寸精度。
刀具的尺寸并不是完全准确的,因此在加工过程中会出现误差,特别是在弯曲或曲线轮廓的加工中,误差会更加明显。
为了解决这个问题,引入了刀尖半径补偿技术。
刀尖半径补偿的基本原理是将刀具轨迹进行补偿,以抵消刀具的尺寸误差。
在进行刀尖半径补偿时,需要计算出刀尖半径补偿量,以便于校正刀具的轨迹。
刀尖半径补偿的计算公式可以根据不同的数控系统和加工方式有所不同,下面是一种常见的计算公式作为参考:
补偿值 = 理论值 - 实际值
其中,理论值是在进行数控编程时设定的轮廓大小,实际值是实际加工得到的轮廓大小。
通过计算补偿值,可以得到刀尖半径补偿量,从而进行刀具轨迹的补偿。
此外,刀尖半径补偿还涉及到切入角度和切入刀宽等参数的计算。
在进行刀尖半径补偿时,需要根据刀具的特性和加工要求,综合考虑切入角度和切入刀宽等因素,确定合适的补偿值。
刀尖半径补偿的计算公式不仅仅是一个简单的公式,还涉及到数学模型、机床的调整参数等一系列的考虑因素。
在实际应用中,还需要结合具体的加工情况和数控系统的要求,选择合适的计算公式和计算方法。
总之,刀尖半径补偿是数控加工中的一项重要技术,可以有效提高加工精度。
在实际应用中,需要根据具体情况选择合适的计算公式和方法,以实现刀具轨迹的精确控制。
刀具半径补偿(G41、G42)和刀尖号

(1)、在数控车床中,着先沿着 Z 轴的正方向向负方向观察,然后顺着刀具运动的方向观察,若 刀具在工件的左边,用 G41;反之用 G42。外圆加工用 G41,内孔加工取 G42
G40(G41/G42) G01(G00) X Z F G40:取削刀尖圆弧半径补偿. G41:刀尖圆弧半径左补偿(左刀补)。顺着刀具运动方向看,刀具在工件左侧,如图(左)。 G42:刀尖圆弧半径右补偿(右刀补)。顺着刀具运动方向看,刀具在工件右侧,如图(右).
(2)、在刀具形状参数里输入刀尖圆弧半径 R 和刀位点 T(1 到 9 九个),编程时程序里使用刀 尖圆弧半径补偿功能指令 G41(左)/G42(右)就可以了, 这样在车削的时候系统就可以对刀尖圆弧 半径进行补偿了,一般在车角度直线(或圆椎)和圆弧(倒角或倒圆弧)才用,车单一的圆柱或平面 可以不用。 一般情况下,常用的是 2、3、9。分别对应内形加工(镗孔)、外形加工(外圆),和球 头刀加工,如图 2.4 所示。
4 5 1
8 9 6
+X
数控车床刀尖圆弧半径补偿

数控车床刀尖圆弧半径补偿真实的刀具刃是由圆弧构成的(刀尖半径)就像右图所示,在圆弧插补和攻螺纹的情况下刀尖半径会 带来误差。
偏置功能命令切削位置刀具路径 G40取消刀具按程序路径的移动 G41右侧刀具从程序路径左侧 移动G42左侧刀具从程序路径右侧移动补偿的原则取决于刀尖圆弧中心的动向,它总是与切削表面法向里 的半径矢量不重合。
因此, …不会发生问题。
不过,真实的刀具刃是由圆弧构成的 (刀尖半径)就像右图所示,在圆弧插补和攻 螺纹的情况下刀尖半径会带来误差。
2.偏置功能命令切削位置刀具路径G40取消刀具按程序路径的移动 G41右侧刀具从程序路径左侧移动 G42 左侧刀具从程序路径右侧移动 补偿的原则取决于刀尖圆弧中心的动向, 它总是与切削表面法向里 的半径矢量不重合。
因此,补偿的基准点是刀尖中心。
通常,刀具 I'-度和刀尖半径的补偿是按一个基准点来测量刀具长度刀尖半径i- i r i 1R ,以及用于假想刀尖半径补偿所需的刀尖形式数 (0-9)。
洋3这些 内容应当事前输入刀具偏置文件。
论这个命令是不是带圆弧插补, “刀尖半径偏置” 应当用 G00或者G01功能来下达命令或取消。
不 刀不会正确移动,导致它逐渐偏离所执行的路径。
因此,刀尖半径偏置的命令应当在切削进程启动之前完成; 并且能够防止从工件外部起刀带来的过切现象。
反之,要在切削进程之后用移动命令来执行偏置的取消过。
刀尖半径补偿编程原则一、 将刀具的刀尖圆角半径值及刀具的指向编码数存入刀具偏置文档的相应偏置序号处,偏置序号必须先于刀尖半径补偿激活。
二、 为了激活刀尖半径补偿,再一个或两个坐标轴都处于非 切削状态的直线运动段中编入 G41或G42至少其中一个坐标轴的移动编程量大于或等于刀尖圆角半径值。
三,进入和退岀工件切削时必须垂直于工件表面。
四,刀尖半径补偿在下列的工作模式中不起作用: G32 G34 G71、G72、G73 G74 G75 G76 G92 五,若在G90 G94固定循环中使用刀尖半径补偿,刀尖半径补偿必须先于在刀具刃国三 尖利时, 切削进程按照程序指定的形状执行假想的刀刃为基准,因此为测量带来一些困难。
经济型数控车床刀尖圆弧半径补偿的解决方法

经济型数控车床刀尖圆弧半径补偿的解决方法1. 背景介绍经济型数控车床是一种用于加工各种零部件的自动化机床。
在加工过程中,刀具的切削效果和精度直接影响到加工零件的质量和精度。
刀具的刀尖圆弧半径补偿是一种常用的解决方法,它可以通过调整刀尖圆弧半径来改善刀具的切削性能和精度。
2. 刀尖圆弧半径补偿的原理刀尖圆弧半径补偿是一种数控编程技术,通过在数控程序中设置刀尖圆弧半径的补偿值,使刀具在加工过程中能够按照期望的路径进行切削。
具体原理如下:•在数控程序中,设置刀尖圆弧半径补偿的值,通常表示为G40、G41或G42。
•G40表示取消刀尖圆弧半径补偿,即刀具沿着程序中定义的路径进行切削。
•G41表示左刀尖圆弧半径补偿,即刀具沿着程序中定义的路径的左侧进行切削。
•G42表示右刀尖圆弧半径补偿,即刀具沿着程序中定义的路径的右侧进行切削。
•刀尖圆弧半径补偿的值可以是正数或负数,正数表示刀具向外延伸,负数表示刀具向内缩进。
通过设置合适的刀尖圆弧半径补偿值,可以实现刀具的切削半径调整,从而改善加工效果和精度。
3. 经济型数控车床刀尖圆弧半径补偿的应用经济型数控车床刀尖圆弧半径补偿主要应用于以下几个方面:3.1 内外圆加工在内外圆加工过程中,刀具的切削路径通常是曲线形状,而刀具的尺寸是固定的。
为了保证刀具能够顺利地切削出期望的形状,需要进行刀尖圆弧半径补偿。
通过设置合适的补偿值,可以使刀具沿着期望的路径进行切削,从而保证加工零件的精度和质量。
3.2 复杂曲面加工在复杂曲面加工过程中,刀具需要按照复杂的路径进行切削。
由于刀具的尺寸是固定的,因此需要通过刀尖圆弧半径补偿来调整刀具的切削半径。
通过设置合适的补偿值,可以使刀具沿着期望的路径进行切削,从而实现复杂曲面的加工。
3.3 螺纹加工在螺纹加工过程中,刀具需要按照螺纹的轮廓进行切削。
为了保证螺纹的精度和质量,需要进行刀尖圆弧半径补偿。
通过设置合适的补偿值,可以使刀具沿着螺纹轮廓进行切削,从而实现高精度的螺纹加工。
弧模式中半径补偿

弧模式中半径补偿
弧模式中半径补偿是一种用于调整刀具路径的技术,以确保加工零件的准确性。
半径补偿通常分为刀具半径补偿和刀尖半径补偿两种类型。
刀具半径补偿:
在弧模式中,刀具的实际尺寸可能会与理论尺寸略有偏差,为了弥补这种偏差,刀具半径补偿用于调整刀具轨迹。
刀具半径补偿主要包括刀具半径偏差的正负值,用来指导数控系统计算实际刀具路径。
刀尖半径补偏:
刀尖半径补偏是为了考虑刀具的圆弧切削轮廓,因为实际切削轮廓是由刀尖的轨迹所决定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车削加工圆弧中的刀尖半径补偿
陕西省机电工程学校 秦 琪江苏海四达电源股份有限公司 徐菏莲
摘 要 车刀刀尖半径补偿是数控车削加工中的常见问题,本文就刀尖半径的影响进行分析,根据不同功能的数
控系统进行刀尖半径补偿方法等的介绍。
关键词 数控加工 刀尖半径补偿
一、引言
编制数控车床加工程序时,理论上是将车刀刀尖看成一个点,如图1a 所示的P 点就是理论刀尖。
但为了提高刀具的使用寿命和降低加工工件的表面粗糙度,通常将刀尖磨成半径不大的圆弧(一般圆弧半径R =014~116),如图1b 所示X 向和Z 向的交点P 称为假想刀尖,该点是编程时确定加工轨迹的点,数控系统控制该点的运动轨迹。
然而实际切削时起作用的切削刃是圆弧的切点A 、B ,它们是实际切削加工时形成工件表面的点。
很显然,假想刀尖点P 与实际切削点A 、B 是不同点,所以在数控加工或数控编程时不对刀尖圆角半径进行补偿,仅按照工件轮廓进行编制的程序来加工,势必会产生加工误差。
图1 圆头刀假想刀尖
二、加工圆弧面的误差分析
图2是加工1/4凸凹圆弧的示意图,C D 为工件轮廓线,O 点为圆心,半径为R ,刀具与圆弧轮廓起点、终点的切削点分别为C 和D ,对应假想刀尖为C 1和D 1。
对图2a 所示凸圆弧加工情况,圆弧C 1D 1为假想刀尖轨迹,O 1点为圆心,半径为(R +r );对图2b 所示凹圆弧加工情况,圆弧C 2D 2为假想刀尖轨迹,其圆心是O 2点,半径为(R -r )。
如果按假想刀尖轨迹编程,则要以图中所示的圆弧C 1D 1或C 2D 2(虚线)有关参数进行程序编制。
图2 圆头车刀加工90°凸凹圆弧
三、刀尖圆角半径补偿方法
对于全功能型数控车床,一般都具有刀尖圆弧半径补偿功能(即G 41左补偿和G 42右补偿功能),对于这类数控车床,编程员可直接根据零件轮廓形状进行编程。
编程时可假设刀具圆角半径为零,在数控加工前,必须把数控机床上的相应刀具补偿号输入刀具圆弧半径值,加工过程中,数控系统根据加工程序和刀具圆弧半径自动计算假想刀尖轨迹,进行刀具圆角半径补偿,完成零件的加工。
对于有些不具备补偿功能经济型数控系统的车床,可根据刀尖圆角半径大小,绘制刀具圆弧中心相对工件轮廓运动轨迹进行编程,并将刀具刃磨成圆弧刃以减少加工误差。
当重磨或更换新刀具而使刀尖半径发生变化时,需要重新计算刀尖中心轨迹、修改加工程序,这样既复杂烦琐,又不易保证加工精度。
四、结束语
通过车刀刀尖半径对加工工件的影响的分析可知,要保证零件加工精度,在数控加工尤其是精加工一定要进行车刀刀尖半径补偿。
鉴于目前数控系统的功能参差不齐,针对不同类型数控系统,采取不同方法补偿因刀具半径对加工所带来的影响,保证工件的顺利加工。
(04)
3
92009年第1期
农 机 使 用 与 维 修。