胰腺癌Conceptual Framework for Cutting the Pancreatic Cancer Fuel survival
【课题申报】胰腺癌的早期诊断新技术

胰腺癌的早期诊断新技术胰腺癌的早期诊断新技术一、课题背景及研究意义胰腺癌是一种高度恶性的消化系统肿瘤,其易发性、隐匿性和缺乏早期症状使其成为难以治疗的癌症类型之一。
根据世界卫生组织的统计数据,胰腺癌已成为全球第十二大癌症死因,预计在2030年之前将成为第二等重要的癌症类型。
然而,由于胰腺癌的早期症状不明显或者与其他疾病相似,因此往往被误诊为其他疾病,错过了最佳治疗时机,导致长期存活率低于5%。
因此,研发一种早期诊断胰腺癌的新技术对于提高胰腺癌患者的生存率以及降低胰腺癌的发病和死亡率具有重要意义。
目前,国内外已经开展了大量关于胰腺癌早期诊断的研究工作,包括影像学检查、生物标志物、分子生物学和遗传学等领域。
各种技术方法的研究进展如雨后春笋般涌现。
然而,目前尚未有一种能够广泛应用于胰腺癌早期诊断的简单、快速和准确的技术方法。
因此,通过开展本课题的研究,我们将针对胰腺癌的早期诊断,致力于开发一种高灵敏度和高特异性的新技术,以提供准确的胰腺癌诊断,帮助患者尽早接受治疗,提高生存率,降低死亡率。
二、前期研究总结我团队在胰腺癌早期诊断领域已经取得了一些重要的成果。
首先,我们通过比较胰腺癌患者和正常人的基因表达谱,发现了一些与胰腺癌发生相关的关键基因。
利用这些基因,我们成功开发了一种高灵敏度的基因芯片,可以检测出胰腺癌早期患者的血液中的小分子RNA。
其次,我们针对这些差异表达的小分子RNA进行了系统的生物信息学分析,发现它们参与了多个重要的细胞信号通路,包括凋亡、细胞周期和增殖等。
最后,我们在临床样本中验证了这些小分子RNA的诊断价值,发现它们在区分胰腺癌和非胰腺癌患者中具有较高的灵敏度和特异性。
以上研究为本课题的开展提供了重要的理论和实验基础。
三、研究目标与内容1.研究目标:开发一种基于分子标记的高灵敏度和高特异性的新技术,用于胰腺癌的早期诊断。
2.研究内容:(1)筛选和验证胰腺癌相关的分子标记:通过系统的转录组学和生物信息学分析,筛选和鉴定出与胰腺癌发生相关的关键基因和小分子RNA。
胰腺癌流行病学

倡导健康生活方式
倡导公众养成健康的生活方式,如戒 烟限酒、均衡饮食、适量运动等,降 低胰腺癌发病风险。
定期体检
鼓励公众定期进行体检,尤其是高危 人群,以便及时发现和治疗胰腺癌。
关注患者心理
关注胰腺癌患者的心理健康,提供心 理支持和帮助,提高患者的生活质量 和治疗效果。
THANKS.
个体化治疗
新药研发与应用
根据患者的具体情况制定个体化的治疗方 案,提高治疗的针对性和有效性,有助于 改善预后。
积极研发和应用针对胰腺癌的新药,为治疗 提供更多有效的武器,有望改善患者的预后 。
总结与展望
06
当前存在问题和挑战
早期诊断困难
胰腺癌早期无明显症状 ,且缺乏特异性标志物 ,导致早期诊断率极低
危险因素及预防措
03
施
吸烟与饮酒习惯影响
吸烟
长期吸烟是胰腺癌发病的重要危险因素之一。烟草中的有害物质可直接损伤胰腺 组织,增加胰腺癌的发病风险。
饮酒
过量饮酒也会对胰腺造成损害,长期大量饮酒者胰腺癌发病率明显增高。因此, 戒烟限酒对于预防胰腺癌具有重要意义。
饮食习惯与营养因素
高脂肪、高蛋白饮食
长期摄入高脂肪、高蛋白食物可能增 加胰腺负担,提高胰腺癌的发病风险 。建议适量摄入脂肪和蛋白质,保持 饮食均衡。
预防措施建议
养成良好的生活习惯
戒烟限酒,保持饮食均衡,增 加蔬菜水果摄入,避免暴饮暴
食。
加强体育锻炼
适当的体育锻炼有助于增强体 质,提高机体免疫力,对预防 胰腺癌具有积极作用。
定期进行体检
有胰腺癌家族史或高危因素的 人群应定期进行胰腺检查,以 便早期发现和治疗胰腺癌。
关注身体异常信号
如出现上腹部疼痛、黄疸、消 瘦等症状时,应及时就医检查
2024胰腺癌NCCN指南解读

2024胰腺癌NCCN指南解读引言胰腺癌是一种高度致命的恶性肿瘤,其治疗策略的选择对患者的生存期和质量具有重大影响。
美国国家综合癌症网络(NCCN)发布的指南为胰腺癌的诊断和治疗提供了最新的临床实践指南。
本文档将深入解读2024年NCCN胰腺癌指南,以帮助医疗专业人员更好地理解和管理胰腺癌患者。
指南概述诊断- 影像学检查:指南推荐对疑似胰腺癌的患者进行腹部CT扫描,以评估肿瘤的位置和范围。
MRI和pet-CT也可作为辅助检查手段。
- 生物标志物:血液中的癌胚抗原(CEA)和糖类抗原19-9(CA19-9)水平可作为辅助诊断手段,但其特异性不高。
- 组织病理学:确诊依赖于组织病理学检查,可通过细针穿刺活检(FNA)或手术切除后进行。
治疗- 手术治疗:手术切除是胰腺癌患者的标准治疗方法,指南推荐患者在新辅助化疗后进行手术。
- 新辅助化疗:指南建议在手术前使用吉西他滨和奥沙利铂为基础的化疗方案。
- 辅助化疗:手术后,患者可接受氟尿嘧啶和奥沙利铂的辅助化疗。
- 放射治疗:对于局部晚期胰腺癌,放疗可以作为术前或术后辅助治疗。
- 系统性治疗:对于不能手术的患者,指南推荐使用吉西他滨、奥沙利铂和紫杉醇联合治疗。
指南更新点分子靶向药物- 指南强调了针对特定分子异常的靶向治疗,如针对BRCA1/2突变的PARP抑制剂。
免疫治疗- 免疫检查点抑制剂如帕博利珠单抗和纳武利尤单抗在晚期胰腺癌治疗中的作用得到了认可。
综合治疗策略- 指南强调了多学科团队在胰腺癌治疗中的重要性,包括外科、肿瘤内科、放疗科和病理科的专业合作。
结论2024年NCCN胰腺癌指南为医疗专业人员提供了一个全面的治疗框架,强调了个体化治疗和多学科团队合作的重要性。
随着新药和治疗技术的出现,这些指南可能会继续演变,以反映最佳临床实践。
请根据您的具体需求继续完善文档内容,包括具体药物剂量、治疗流程、特殊情况的处理等详细信息。
科学家开发出新的精密医学方法来治疗胰腺癌中受损的DNA

科学家开发出新的精密医学方法来治疗胰腺癌中受损的DNA科学家已经开发出一种新的“精密医学”方法来治疗胰腺癌患者癌细胞中受损的DNA。
这些发现标记着胰腺癌潜在治疗方案的迈出了重要的一步,改善了保存率一直很低的疾病的选择方案和结果。
这项研究详细介绍了该方法-由格拉斯哥大学领导并在胃肠病学上颁发-使用了胰腺癌患者产生的细胞系和类器官来开发新的分子标识表记标帜,可以预测谁将对靶向DNA损伤的药物做出反应。
研究人员使用多种药物测试了这些标识表记标帜,并制定了一种策略,目前正将其用于临床试验。
该试验将帮忙医生和研究人员预测哪位患者对这些药物中的哪一种单独或联合使用都会产生反应。
该研究的资金来自阿斯利康,现在将作为胰腺癌Precision-Panc治疗开发平台的一部分纳入PRIMUS-004临床试验。
PRIMUS-004是一项开创性的胰腺癌试验,旨在为患者提供针对性更有效的肿瘤治疗方案。
该试验由格拉斯哥大学牵头,并由英国癌症研究中心提供大量资金,由致力于胰腺癌的旗舰治疗开发计划运行,该试验首次在英国带来了一种精确的胰腺癌治疗方法。
该试验将很快在格拉斯哥开始招募,随后还将在英国其他20个中心进行招募。
尽管许多类型癌症的存活率都有所提高,但在过去40年中,胰腺癌的存活率明显落后。
这种疾病特别难以治疗,部分原因是它常常在晚期被诊断出来。
有效治疗胰腺癌的主要限制是该疾病患者的治疗选择很少。
当前,一些胰腺癌患者不能修复癌细胞中受损的DNA,这使得癌症容易受到一些新的和成熟的药物治疗的影响。
格拉斯哥大学癌症科学研究所的David Chang博士说:“就未来治疗的可能性而言,我们的研究是一项巨大突破。
作为我们研究的一部分,我们制定的策略极有希望,并且我们很高兴看到它现在可以用于临床试验。
对我们来说,这是从台到床的精准肿瘤学方法来解决这种可怕疾病的演示。
”UK Cancer Research UK首席执行官Michelle Mitchell表示:“我们迫切需要新的方法来治疗胰腺癌。
胰腺癌延世标准-概述说明以及解释

胰腺癌延世标准-概述说明以及解释1.引言1.1 概述概述:胰腺癌是一种恶性肿瘤,发病率逐年上升,给患者及其家庭带来了沉重的负担。
胰腺癌的治疗难度大,预后较差,因此迫切需要制定统一的诊疗标准来延长患者的生存时间,提高生活质量。
本文将重点介绍胰腺癌的定义、特点、危害、发病原因及分类,并探讨胰腺癌的治疗方法、预防措施以及对患者及其家属的关怀和支持。
希望能够为胰腺癌患者提供更好的帮助和支持。
容1.2 文章结构文章结构部分主要描述了本篇文章的组织架构和内容安排。
具体包括引言、正文和结论三个部分。
- 引言部分介绍了胰腺癌的概念和重要性,文章的研究背景和意义。
- 正文部分包括了胰腺癌的定义和特点,危害和影响,发病原因和分类等内容,对胰腺癌进行了全面的介绍和分析。
- 结论部分总结了胰腺癌的治疗方法和措施,预防和健康建议,对胰腺癌患者及其家属的关怀和支持等方面进行了总结和提议。
通过上述结构安排,读者可以清晰地了解本文的内容框架,有助于他们更好地理解和掌握关于胰腺癌的相关知识。
1.3 目的胰腺癌是一种恶性肿瘤,具有高度侵袭性和难以治疗的特点,临床上常常呈现出晚期发现、预后不良的情况。
本文的目的在于通过对胰腺癌的定义、特点、危害、影响、发病原因和分类等方面进行深入解析,旨在引起公众对于胰腺癌严重性的关注和重视,提高对该疾病的认识和了解。
同时,也旨在传播关于胰腺癌的治疗方法、预防措施和健康建议,帮助更多的患者及其家属了解如何应对这一疾病,提高治疗效果和生存质量。
此外,本文还将重点关注对胰腺癌患者及其家属的关怀和支持,为他们提供更多的心理和情感支持,帮助他们走出困境,积极应对疾病,增强治疗信心。
希望通过本文的传播和宣传,能够为胰腺癌患者带去更多的希望和勇气,让他们不再感到孤独和无助,在社会的关爱和支持下,共同战胜这个可怕的疾病。
2.正文2.1 胰腺癌的定义和特点胰腺癌是一种比较恶性的肿瘤,起源于胰腺的恶性细胞。
胰腺是人体消化系统中的一个重要器官,主要负责胰液的分泌和消化酶的释放,同时也参与调节血糖水平和代谢。
【干货】边界性可切除胰腺癌的定义和治疗

【干货】边界性可切除胰腺癌的定义和治疗多项研究显示辅助治疗患者有生存获益,但高达47%采用手术切除作为首选治疗的患者未接受任何辅助治疗,主要因为术后恢复延迟或早期疾病复发。
这些手术缺点在边界性可切除(BR)胰腺癌患者中尤为突出,因此认真分期、评估以及术前治疗十分必要,需要明确哪些患者最有可能从完全性手术切除中获益。
美国的Denbo博士在Surg Clin N Am杂志上就BR定义、影像学标准、治疗手段等进行了详细介绍。
确定边界性可切除患者任何需要高风险手术治疗才有可能治愈的PDAC患者都需要仔细评估。
新诊断PDAC的患者多伴有其它医学状况,对胰腺切除可能产生各种影响,因此要求外科医生采用合适的方法以确保完整有效的初始评估。
肿瘤与关键血管的解剖关系应由CT确定,还应考虑其它非解剖因素,如胰腺外疾病、并发症和功能状态。
综合如上信息,患者可分作潜在可切除或是边界性可切除。
Denbo博士所在MD Anderson癌症中心建立了一整套方法,对所有局限期PDAC 患者进行体检、实验室检查和影像学评估,结果以“ABC”代替,A指解剖学是否适合手术,B指癌症生物学行为或分期,C指患者状态或PS状态以及是否适合手术(图1)。
制定治疗计划以及多学科讨论时,患者分作临床可切除(CR)或BR,以BR-A、BR-B、BR-C命名。
BR-A患者无严重并发症,无可疑胰腺外肿瘤侵犯证据,图像解剖学结果满足BR ;BR-B患者无严重并发症,图像解剖学结果满足BR,可疑胰腺外肿瘤侵犯的证据:(1)未确定的肝损害;(2)胆红素正常时血清CA199≥1000 U/mL;(3)活检证实区域淋巴结受累;BR-C是高龄(≥80岁)或存在需要仔细评估的严重并发症、PS状态较差(ECOG≥2),可伴有可疑胰腺外肿瘤侵犯证据。
实践工作中,应首先评估患者状态是否适合胰腺手术(图1)。
因无法纠正的并发症、体质较差的患者不需要接受进一步手术切除评估,也不考虑术前治疗,应当进行姑息治疗或支持治疗。
胰腺癌规范化诊疗指南2024版

胰腺癌规范化诊疗指南2024版下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!2024版胰腺癌规范化诊疗指南:科学与人文并重的医疗策略随着医学科技的飞速发展和对胰腺癌病理生理机制的深入理解,2024版胰腺癌规范化诊疗指南应运而生,旨在为全球医疗工作者提供最新的、最全面的临床指导。
美国临床肿瘤学会《局部进展期不可切除胰腺癌临床实践指南》解读(最全版)

美国临床肿瘤学会《局部进展期不可切除胰腺癌临床实践指南》解读(最全版)摘要绝大多数胰腺癌病人在诊断时已处于疾病的晚期,其中局部进展期不可切除胰腺癌病人例数众多,但国内外却缺乏具有充足循证医学证据的权威性指南来指导临床实践。
最近,美国临床肿瘤学会针对局部进展期不可切除胰腺癌提出了基于随机对照研究的临床实践指南,指出局部肿瘤控制及提高病人生活质量应是局部进展期不可切除胰腺癌的诊治核心。
关键词胰腺癌;局部进展期胰腺癌胰腺癌是一种恶性程度极高、预后极差的消化系统肿瘤,且绝大多数病人在诊断时已处于疾病的晚期[1]而丧失了根治性手术的机会。
大量的临床研究表明,R0 切除对于胰腺癌病人的远期生存至关重要[2-6]。
虽然可能治愈的胰腺癌(potentially curable pancreatic cancer)和局部进展期胰腺癌(locally advanced pancreatic cancer,LAPC)均存在周围血管的侵犯包绕,但可能治愈的胰腺癌尚存在R0 切除的可能,LAPC 由于侵犯范围更广、对血管的包绕更紧密,即使完成血管的切除重建也难以实现R0 切除[7]。
然而临床工作中,LAPC 病人例数众多且多伴有症状,对于这部分病人如何控制局部肿瘤进展、提高病人生活质量、减轻症状则成为处理LAPC 的核心。
美国临床肿瘤学会(American Society of Clinical Oncology,ASCO)2016 年8 月发布了《局部进展期不可切除胰腺癌临床实践指南》(以下简称ASCO 指南)及相应的推荐(表1)。
ASCO 指南由多学科专家组通过系统性回顾2002 年4 月至2015 年6 月的26 个Ⅲ期随机对照研究制定,旨在帮助临床决策的制定。
本文对其予以介绍并解读。
1 治疗前的初始评估(推荐1)影像学在胰腺癌的诊断及分期中有重要的地位,尤其是CT、MRI 及内镜超声(EUS)[8]。
CT 具有更易判断及少受操作者水平影响的特点,结合多期成像能更好地评估肿瘤与周围血管的关系,而胸部CT 可以排除肺内转移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012;18:4285-4290.Clin Cancer ResAnne Le, N.V. Rajeshkumar, Anirban Maitra, et al.SupplyConceptual Framework for Cutting the Pancreatic Cancer FuelUpdated version/content/18/16/4285Access the most recent version of this article at:Cited Articles/content/18/16/4285.full.html#ref-list-1This article cites by 52 articles, 16 of which you can access for free at:Citing articles/content/18/16/4285.full.html#related-urls This article has been cited by 4 HighWire-hosted articles. Access the articles at:E-mail alertsrelated to this article or journal.Sign up to receive free email-alertsSubscriptionsReprints and.pubs@ To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department atPermissions.permissions@ To request permission to re-use all or part of this article, contact the AACR Publications Department atConceptual Framework for Cutting the Pancreatic Cancer Fuel SupplyAnne Le 1,N.V.Rajeshkumar 2,Anirban Maitra 1,2,and Chi V.Dang 3AbstractPancreatic ductal adenocarcinoma (a.k.a.pancreatic cancer)remains one of the most feared and clinically challenging diseases to treat despite continual improvements in therapies.The genetic landscape of pancreatic cancer shows near ubiquitous activating mutations of KRAS ,and recurrent inactivating muta-tions of CDKN2A ,SMAD4,and TP53.To date,attempts to develop agents to target KRAS to specifically kill cancer cells have been disappointing.In this regard,an understanding of cellular metabolic derangements in pancreatic cancer could lead to novel therapeutic approaches.Like other cancers,pancreatic cancer cells rely on fuel sources for homeostasis and proliferation;as such,interrupting the use of two major nutrients,glucose and glutamine,may provide new therapeutic avenues.In addition,KRAS -mutant pancreatic cancers have been documented to depend on autophagy,and the inhibition of autophagy in the preclinical setting has shown promise.Herein,the conceptual framework for blocking the pancreatic fuel supply is reviewed.Clin Cancer Res;18(16);4285–90.Ó2012AACR.IntroductionAlthough inherited and acquired mutations are believed to cause pancreatic cancer (see review by Iacobuzio-Dona-hue and colleagues in this issue;ref.1),common mutations in canonical oncogenes,such as AKT,MYC,PI3K,and RAS,and tumor suppressors,including TP53and PTEN,also alter cancer metabolism to enable cancer cells to survive and proliferate in the hypoxic and nutrient-deprived tumor microenvironment (see review by Feig and colleagues in this issue;ref.2).Oncogenes and tumor suppressors alter metabolism through transcriptional and posttranscription-al mechanisms.Mutations in genes encoding metabolic enzymes,such as succinate dehydrogenase (SDH),fumarate hydratase (FH),and isocitrate dehydrogenase (IDH)have also been linked to tumorigenesis,underscoring the inti-mate connections between metabolism and cancer (11,12).Loss-of-function SDH or FH mutations result in accumu-lation of precursors such as succinate or fumarate.Mutated IDH1or IDH2,on the contrary,are neomorphic enzymes that reverse the chemical reaction to produce 2-hydroxy-glutarate (2-HG)from a -ketoglutarate (a -KG;ref.13).These accumulated metabolic intermediates all have the ability to inhibit a -KG–dependent dioxgenases,which are involved in histone or DNA demethylation and in prolylhydroxylases that modulate the hypoxia-inducible factors (HIF;refs.14–16).In this regard,mutations in enzymes cause epigenetic deregulation that contributes to tumorigenesis.To survive and proliferate in an adverse tumor microen-vironment with limited nutrients and oxygen,cancer cells must rely on their ability to reprogram canonical biochem-ical pathways to provide the necessary bioenergetics and precursors of proteins,nucleic acids,and membrane lipids (17–19;Fig.1).In addition to rewiring metabolism,tumor cells can also activate autophagy,a process that permits recycling of cellular constituents as internal fuel sources when external nutrient supplies are limited (20–22).Although nutrient-rich conditions inhibit autophagy through activation of mTOR,nutrient-deprived conditions decrease ATP production,resulting in activated AMPK that stimulates autophagy (23,24;Fig.1).As such,cancer cells have multiple mechanisms for metabolic adaptation to the tumor microenvironment.Proliferating cancer cells transport glucose and glutamine into the cell as major nutrient sources for the production of ATP and building blocks for macromolecular synthesis (3,4,6;Fig.1).The mitochondrion serves not only as the cellular powerhouse,producing ATP efficiently from glu-cose and glutamine,but it is also a hub for the production of key intermediates involved in nucleic acid,fatty acid,and heme synthesis.The proliferating cancer cells,hence,also produce toxic by-products that must be eliminated or extruded for cell survival.Reactive oxygen species (ROS)from the mitochondrion are neutralized;superoxide is converted by SOD to hydrogen peroxide,which is neutral-ized by catalase via its conversion to water and oxygen (25–27).Lactate and carbon dioxide,produced from glucose and glutamine catabolism,are exported through monocar-boxylate transporters or neutralized and extruded byAuthors'Af filiations:Departments of 1Pathology and 2Oncology,The Sol Goldman Pancreatic Cancer Research Center,Johns Hopkins University School of Medicine,Baltimore,Maryland;and 3Abramson Cancer Center,Perelman School of Medicine,University of Pennsylvania,Philadelphia,PennsylvaniaCorresponding Author:Chi V.Dang,University of Pennsylvania,1600Penn Tower,3400Spruce Street,Philadelphia,PA 19072.Phone:215-662-3929;Fax:215-662-4020;E-mail:cvdang@ doi:10.1158/R-12-0041Ó2012American Association for CancerResearch. 4285carbonic anhydrase(28).Although this article focuses on blocking cancer fuel supply as a promising new approach to pancreatic cancer therapy,therapeutic opportunities may also exist in blocking the exhaust pipes that eliminate metabolic toxic by-products from cancer cells. Characteristic Features of Metabolism in CancersAberrant metabolism is now considered one of the hall-marks of cancer(29).As a result of genetic alterations and tumor hypoxia,cancer cells reprogram metabolism to meet increased energy demand for enhanced anabolism,cell proliferation,and protection from oxidative damage and cell death signals.The molecular underpinnings for the reprogrammed metabolism of cancer cells have been linked to the activation of oncogenes or loss of tumor suppressors, which can function independently of,or through constitu-tive stabilization of the HIF,HIF-1a.Activated Ras and AKT oncogenes can increase glycolysis,enhancing the conver-sion of glucose to lactate(3).The MYC oncogene,which encodes the transcription factor Myc,increases the expres-sion of glycolytic genes,thereby enhancing glycolysis and production of lactate(35).Glycolysis is a multienzymatic pathway that catabolizes glucose to pyruvate via more than a dozen different enzymes with several apparent rate-limiting steps.Phos-phofructose kinase provides thefirst rate-limiting step where fructose-1-phosphate,derived from glucose,is con-verted to fructose-1,6-bisphosphate.The other rate-limiting step is the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase(muscle form)PKM.Recent studies have raised an intense interest in the embryonic M2isoform of pyruvate kinase(PKM2),which is highly expressed in human tumors.A study by Gao and colleagues(30)showed that dimeric,not tetrameric PKM2that localizes the cellular nucleus,activates transcription of MEK5by phosphorylat-ing stat3at Y705using PEP as a phosphate donor.This protein kinase activity of PKM2plays a role in promoting cell proliferation,revealing an important link between metabolism alteration and gene expression during tumor transformation and progression.The xenografted adeno-carcinoma cells,which carry a mutant form of PKM2that preferentially forms dimers,grow more rapidly and seem more aggressive than cells carrying wild-type(WT)PKM2. Although the dynamics of PKM2oligomeric states and their roles in cancer remain confusing,these studies suggest that perturbation of glycolysis via manipulation of PKM2could have a significant therapeutic effect.Alteration of glucose metabolism in cancer is known as aerobic glycolysis or the Warburg Effect(3,5,31),which describes the ability of cancer cells to avidly metabolizeCCR Focus© 2012 American Association for Cancer Research MalateFumarateSuccinateOxaloacetateAcetyl-CoAPyruvateCitrateIsocitrateα-KetoglutarateNADPH riboseGlutathione nucleicacidsGlutaminolysis Glutamate GlutamineWarburg Effect LDHAGLSATP AMP BPTESAMPK Autophagy ChloroquineLactate Glycerol LipidsFatty acidsAcetyl-CoAFigure1.Diagram depicting themetabolism of glucose andglutamine via glycolysisand theTCA cycle.Both substratescontribute to the production ofATP,which when depleted wouldactivate AMPK that in turntriggers autophagy.Autophagyincreases lysosomal recycling ofcellular constituents to recoverATP.GLS,glutaminase.Clin Cancer Res;18(16)August15,2012Clinical Cancer Research 4286glucose to lactate,even in the presence of oxygen.A manifestation of the Warburg Effect is the increased 2[18F]fluoro-2-deoxy-D-glucose import by pancreatic can-cers as determined by positron emission tomographic(PET) scans.However,only about50%of pancreatic cancers have positive clinical PET,suggesting additional complexities and the possibility that pancreatic cancers could use other fuels or resort to other metabolic survival modes(32,33). In addition to glucose,proliferating cancer cells also rely on glutamine as a major source of energy and building blocks.In fact,MYC,which is frequently amplified or overexpressed in pancreatic cancer(34),has been mecha-nistically linked to the regulation of glutamine metabolism (35).In this regard,it is reasonable to surmise that PET negative pancreatic cancers may use glutamine as a major nutrient source.The Myc transcription factor emerges as a master regulator of a phlethora of genes involved in cell growth including those regulating ribosome and mitochon-drial biogenesis and intermediary metabolism.The normal MYC gene is under the scrutiny of many internal as well as extracellular cues such as nutrient and oxygen availability, such that deprivation of these supplies results in the downregulation of MYC expression.By contrast,many oncogenic pathways activate MYC or alterations of MYC itself resulting in a constitutive program of ribosome bio-genesis and biomass accumulation that renders cancer cells addicted to nutrients.Indeed withdrawal of either glucose or glutamine triggers death of cells with MYC overexpres-sion(35).In this regard,targeting enzymes involved in glucose or glutamine has also provided proof-of-concept that metabolic inhibition could provide a beneficial ther-apeutic effect(36).Applying metabolomics technologies,with the use of nuclear magnetic resonance and mass spectrometer–based stable isotope resolved metabolomics with13C-labeled glucose and glutamine,a study by Le and colleagues(36) documents that cancer cells use either glucose or glutamine, depending on the availability of the nutrients.Thisflexi-bility of cancer metabolism enables cancer cells to prolif-erate and survive even under the hypoxic and nutrient-deprived conditions,which are often encountered in the tumor microenvironment.Moreover,in hypoxia,they observed the enhanced conversion of glutamine to gluta-thione,an important reducing agent for control of the accumulation of mitochondrial ROS.Most importantly, this study uncovered a previously unsuspected glucose-independent glutamine-driven tricarboxylic acid(TCA) cycle.Cancer cells subjected to glucose deficiency and/or hypoxia would benefit from such glucose-independent TCA cycle activity in the tumor microenvironment.Cell growth and survival can be sustained by glutamine metabolism alone.In addition to the links between oncogenes and tumor suppressors to altered cancer cell metabolism,muta-tions in specific TCA cycle enzymes contribute to tumori-genesis of familial or spontaneously acquired cancers.The study by Mullen and colleagues(37)uncovered other metabolic reprogrammed pathways in cancer cells,which have mutations in complex I or complex III of the electron transport chain(ETC).These are often found in patient-derived renal carcinoma cells with mutations in FH,and also in pharmacologically ETC-inhibited cells with normal mitochondria.These cancer cells use glutamine-dependent reductive carboxylation generating acetyl-CoA for lipid synthesis.These processes use mitochondrial and cytosolic isoforms of NADPþ/NADPH-dependent IDH.The ETC-deficient cancer cells,like FH mutations,cannot grow without glutamine.Hence,depending on the genetic make-up,a cancer cell could be distinctively addicted to glucose or glutamine.Given that pancreatic cancers uniquely display increased levels offibrotic stroma,the pancreatic cancer cell environ-ment could be highly nutrient deficient(38,39).In this nutrient-deprived state,increased AMPK activity could trig-ger autophagy(21).The process of self-eating or autophagy provides starved cells a means to survive by recycling cel-lular components as bioenergetic substrates for energy production and building blocks.As such,certain metabolic hubs should be exploitable for therapy,particularly if a specific cancer type is"addicted"to that pathway.Metabolic enzymes are readily pharmacologically targetable;in fact, many historical clinically effective chemotherapeutic drugs were termed"antimetabolites."Seeking drugs that directly inhibit these new metabolic targets involved in cancer cell energy metabolism while sparing normal cells is among the most desirable goal to improve cancer therapy,especially for the treatment of pancreatic cancer.Blocking pancreatic cancer fuel supplyAddiction to glucose could be exploited through targeted inhibition of enzymes involved in glycolysis.One such target is the glycolytic pathway,in which the most consis-tent abnormality is its ultimate step of conversion of pyru-vate to lactic acid by lactate dehydrogenase A(LDHA)to regenerate NADþthat is required for the further glycolytic conversion of glucose to pyruvate to generate ATP.Recent studies(40,41)have targeted this phenotype of altered metabolism for therapy.Thefirst drug-like small molecule (called FX11)that inhibits LDHA was used as proof of concept for targeting aerobic glycolysis in cancer.This compound,7-benzyl-2,3-dihydroxy-6-methyl-4-n-propyl-1-napthoic acid,has shown an antitumorigenic effect in mouse models of human lymphoma and pancreatic cancer through the increased production of ROS and cell death (40).By blocking LDHA,FX11diminishes the ability of malignant cells to metabolize pyruvate to lactate,and halts the regeneration of NADþfor glycolysis processing.This study also showed a strong synergy effect in vitro and in vivo with the use of FX11in combination with FK866,an inhibitor of NADþbiosynthesis,which accentuates NADþdepletion.Besides the Warburg Effect,cancer cells also maintain mitochondrial oxidation of glutamine by glutaminase that converts glutamine to glutamate,which enters the TCA cycle as2-oxoglutarate.Two recent studies targeted glutaminolysis in cancer by a specific glutaminase inhibitor,bis-2-[5-(phe-nylacetamido)-1,3,4-thiadiazol-2-yl]ethyl sulfide(BPTES; Clin Cancer Res;18(16)August15,20124287ref.42).Thefirst study by Seltzer and colleagues(43) reported a preferable inhibition of mutant IDH1cell growth by BPTES as compared with the WT enzyme.Mutation at the R132residue of IDH1creates a novel enzyme function that produces2-HG from a-KG,which is from glutamate,a product of glutamine via glutaminase.Cancer cells with mutant IDH1become addicted to glutamine and heavily depend on glutaminase.The addition of exogenous a-KG rescued growth suppression of mutant IDH1cells by BPTES, which lowered glutamate and a-KG levels,inhibited gluta-minase activity,and increased glycolytic intermediates.How-ever,2-HG levels were unaffected by BPTES.This presents a potential therapeutic opportunity.The study by Wang and colleagues(44)provided another aspect of targeting mito-chondrial glutaminase activity inhibiting oncogenic trans-formation.They showed that glutaminase activity,which is dependent on Rho GTPases and NF-k B activity,increased in transformedfibroblasts and breast cancer cells.Targeting glutaminase activity by BPTES to inhibit oncogenic trans-formation had thus been shown,through a connection between Rho GTPase activation and cellular metabolism,to be a promising way forward.The importance of hypoxic glutamine metabolism in the study by Le and colleagues was also underscored by the antiproliferative therapeutic effect of BPTES on neoplastic cells in vitro and in a tumor xenograft model in vivo(36).In addition to the proof-of-concept studies suggesting the feasibility of targeting glucose or glutamine metabolism in pancreatic cancer,it has been noted that pancreatic cancers display significant autophagic activities for survival(45–49).In fact,Ras-transformed cells depend on autophagy for survival(50).Hence,inhibition of autophagy with the antimalarial agent chloroquine has resulted in significant preclinical responses of pancreatic cancer xenografts and allografts in treated mice as compared with control(49,51). Chloroquine also diminishes pancreatic tumorigenesis in a transgenic model(49).These studies suggest that2related and widely used agents with extremely favorable safety profiles,chloroquine or hydroxychloroquine,could have profound clinical effects.Indeed,there are now clinical trials testing this concept in pancreatic cancer.As for target-ing glycolysis or glutaminolysis,thefield is awaiting phar-maceutical companies to develop clinically safe,highly potent drugs to be tested in the clinic.Notwithstanding the inherent challenges for drug development,the concept of blocking the pancreatic cancer fuel supply provides a reasonable framework for the development of what is hoped to be a new class of anticancer agents.Future directionsAlthough cancer cells can exhibit unique metabolic path-ways,they also use the classic metabolic pathways of normal cells.This presents a great challenge to directly target met-abolic pathways,especially metabolic enzymes as drug targets.The success of small molecular agents depends on how much cancer cells are"addicted"to the fuel nutrition versus normal cells,as shown in the studies mentioned above.The combination of multiomics technologies will give a functional perspective of cancer progression,beyond genes and protein expression profiles.The extensive data obtained from metabolicflux will be mined to identify specific pathways active in the tumor compared with untransformed cells.These data are essential for understand-ing the metabolic activity in tumor tissue,especially how cancer cells can respond to different environmental condi-tions and how they respond to therapy to detect likely responders and nonresponders to a particular chemothera-peutic agent.This is highly desirable because it is important to avoid the use of cytotoxic drugs that have no benefit.The ultimate goal is to characterize and enable targeted selection of patients based on predicted metabolic responses.The metabolic signatures that correlate with sensitivity of pan-creatic cancers to metabolic inhibitors will also be used in the future to help us combine existing drugs to target multiple metabolic pathways and attack specific attributes of each patient’s cancer.In fact,metformin,which inhibits NADH dehydrogenase and mitochondrial respiration,has preclin-ical activity against pancreatic cancer xenografts(Kumar and colleagues,unpublished data)and is used in clinical trials. However,parameters that predict resistance or response remain poorly understood.Hence,defining the metabolic pathways of pancreatic cancer through metabolomics will pave the way for prediction of response and the identifica-tion of new enzyme targets for pancreatic cancer therapies.A major technical challenge in this arena is the heterogeneity of the pancreatic tumor tissue,which is laced with an extensivefibrotic stroma comprising of host immune cells. The potential for cancer cells to reprogram their metab-olism to bypass the targeted enzymatic step may occur and hence poses a challenge to metabolic therapy.This issue is especially significant given the interconnectivity of the cellular metabolic network.In combination with appropri-ate computational tools(e.g.,flux balance analysis),meta-bolomics offers a powerful way to identify possible"met-abolic escape routes."With the insight of this guide,we will eliminate these escape routes through rational combination therapies,for example,in combination with current anti-metabolites.This will allow for more cost-effective and personalized cancer treatment.Further complicating attempts at developing pancreatic cancer therapies,there is emerging evidence of pancreatic cancer stem cells in pancreatic cancers and these cells are responsible for drug resistance to standard chemotherapy, resulting in relapse and metastasis of pancreatic adenocar-cinoma(see review by Penchev and colleagues in this issue; ref.52).Therefore,recognizing the heterogeneity of multi-subpopulation of pancreatic tumors and understanding the distinguished metabolic modes of each are critical impor-tant for targeting of these subpopulations.Disclosure of Potential Conflicts of Interest No potential conflicts of interests were disclosed.Authors'ContributionsConception and design:A.MaitraAnalysis and interpretation of data(e.g.,statistical analysis,biosta-tistics,computational analysis):C.V.Dang Clin Cancer Res;18(16)August15,2012Clinical Cancer Research 4288Writing,review,and/or revision of the manuscript:A.Le,N.V.Rajesh-kumar,A.Maitra,C.V.DangGrant SupportAll authors supported by a Stand Up To Cancer Dream Team Transla-tional Cancer Research Grant,a Program of the Entertainment Industry Foundation(SU2C-AACR-DT107467). A.Le is supported by the Sol Goldman Pancreatic Cancer Research fund80028595and The Lustgarten Foundation fund90049125; C.V.Dang is supported by grants 5R01CA051497-21and5R01CA057341-20and A.Maitra is supported by R01CA113669,P01CA134292,and R01CA134767.Received March23,2012;revised June2,2012;accepted June27,2012; published OnlineFirst August15,2012.References1.Iacobuzio-Donahue CA,Velculescu VE,Wolfgang CL,Hruban RH.Genetic basis of pancreas cancer development and progression: insights from whole-exome and whole-genome sequencing.Clin Can-cer Res2012;18:4257–65.2.Feig C,Gopinathan A,Neesse A,Chan DS,Cook N,Tuveson DA.Thepancreas cancer microenvironment.Clin Cancer Res2012;18:4266–76.3.Koppenol WH,Bounds PL,Dang CV.Otto Warburg's contributions tocurrent concepts of cancer metabolism.Nat Rev Cancer2011;11: 325–37.4.Vander Heiden MG.Targeting cancer metabolism:a therapeutic win-dow opens.Nat Rev Drug Discov2011;10:671–84.5.VanderHeiden MG,Cantley LC,Thompson CB.Understanding theWarburg effect:the metabolic requirements of cell proliferation.Sci-ence2009;324:1029–33.6.Kroemer G,Pouyssegur J.Tumor cell metabolism:cancer's Achilles'heel.Cancer Cell2008;13:472–82.7.Garcia-Cao I,Song MS,Hobbs RM,Laurent G,Giorgi C,de Boer VC,,et al.Systemic elevation of PTEN induces a tumor-suppressive met-abolic state.Cell2012;149:49–62.8.Gaglio D,Soldati C,Vanoni M,Alberghina L,Chiaradonna F.Glutaminedeprivation induces abortive s-phase rescued by deoxyribonucleo-tides in k-ras transformedfibroblasts.PLoS One2009;4:e4715.9.Gaglio D,Metallo CM,Gameiro PA,Hiller K,Danna LS,Balestrieri C,et al.Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.Mol Syst Biol2011;7:523.10.Weinberg F,Hamanaka R,Wheaton WW,Weinberg S,Joseph J,LopezM,et al.Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.Proc Natl Acad Sci U S A2010;107: 8788–93.11.King A,Selak MA,Gottlieb E.Succinate dehydrogenase and fumaratehydratase:linking mitochondrial dysfunction and cancer.Oncogene 2006;25:4675–82.12.Selak MA,Armour SM,MacKenzie ED,Boulahbel H,Watson DG,Mansfield KD,et al.Succinate links TCA cycle dysfunction to onco-genesis by inhibiting HIF-alpha prolyl hydroxylase.Cancer Cell 2005;7:77–85.13.Dang L,White DW,Gross S,Bennett BD,Bittinger MA,Driggers EM,et al.Cancer-associated IDH1mutations produce2-hydroxyglutarate.Nature2009;462:739–44.14.Lu C,Ward PS,Kapoor GS,Rohle D,Turcan S,Abdel-Wahab O,et al.IDH mutation impairs histone demethylation and results in a block to cell differentiation.Nature2012;483:474–8.15.Figueroa ME,Abdel-Wahab O,Lu C,Ward PS,Patel J,Shih A,et al.Leukemic IDH1and IDH2mutations result in a hypermethylation phenotype,disrupt TET2function,and impair hematopoietic differen-tiation.Cancer Cell2010;18:553–67.16.Xu W,Yang H,Liu Y,Yang Y,Wang P,Kim SH,et al.Oncometabolite2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases.Cancer Cell2011;19:17–30.17.DeBerardinis RJ,Cheng T.Q's next:the diverse functions of glutaminein metabolism,cell biology and cancer.Oncogene2010;29:313–24.18.Deberardinis RJ,Sayed N,Ditsworth D,Thompson CB.Brick by brick:metabolism and tumor cell growth.Curr Opin Genet Dev2008;18:54–61.19.Semenza GL.Hypoxia-inducible factors in physiology and medicine.Cell2012;148:399–408.20.Mathew R,White E.Autophagy in tumorigenesis and energy metab-olism:friend by day,foe by night.Curr Opin Genet Dev2011;21:113–9.21.Rabinowitz JD,White E.Autophagy and metabolism.Science2010;330:1344–8.22.Rubinsztein DC,Marino G,Kroemer G.Autophagy and aging.Cell2011;146:682–95.23.Egan D,Kim J,Shaw RJ,Guan KL.The autophagy initiating kinaseULK1is regulated via opposing phosphorylation by AMPK and mTOR.Autophagy2011;7:643–4.24.Mihaylova MM,Shaw RJ.The AMPK signalling pathway coordi-nates cell growth,autophagy and metabolism.Nat Cell Biol2011;13:1016–23.25.Finkel T.Signal transduction by reactive oxygen species.J Cell Biol2011;194:7–15.26.Finkel T.From sulfenylation to sulfhydration:what a thiolate needs totolerate.Sci Signal2012;5:pe10.27.Liu J,Cao L,Finkel T.Oxidants,metabolism,and stem cell biology.Free Radic Biol Med2011;51:2158–62.28.Brahimi-Horn MC,Bellot G,Pouyssegur J.Hypoxia and energetictumour metabolism.Curr Opin Genet Dev2011;21:67–72.29.Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation.Cell2011;144:646–74.30.Gao X,Wang H,Yang JJ,Liu X,Liu ZR.Pyruvate kinase m2regulatesgene transcription by acting as a protein kinase.Mol Cell2012;45: 598–609.31.Warburg O.On the origin of cancer cells.Science1956;123:309–14.32.Von Hoff DD,Ramanathan RK,Borad MJ,Laheru DA,Smith LS,WoodTE,et al.Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer:a phase I/II trial.J Clin Oncol2011;29:4548–54.33.Ma WW,Jacene H,Song D,Vilardell F,Messersmith WA,Laheru D,et al.[18F]fluorodeoxyglucose positron emission tomography corre-lates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy.J Clin Oncol2009;27:2697–704. 34.Birnbaum DJ,Adelaide J,Mamessier E,Finetti P,Lagarde A,MongesG,et al.Genome profiling of pancreatic adenocarcinoma.Genes Chromosomes Cancer2011;50:456–65.35.Dang CV.MYC on the path to cancer.Cell2012;149:22–35.36.Le A,Lane AN,Hamaker M,Bose S,Gouw A,Barbi J,et al.Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.Cell Metab2012;15:110–21.37.Mullen AR,Wheaton WW,Jin ES,Chen PH,Sullivan LB,Cheng T,et al.Reductive carboxylation supports growth in tumour cells with defec-tive mitochondria.Nature2011;481:385–8.38.Hong SM,Park JY,Hruban RH,Goggins M.Molecular signatures ofpancreatic cancer.Arch Pathol Lab Med2011;135:716–27.39.Vincent A,Herman J,Schulick R,Hruban RH,Goggins M.Pancreaticncet2011;378:607–20.40.Le A,Cooper CR,Gouw AM,Dinavahi R,Maitra A,Deck LM,et al.Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression.Proc Natl Acad Sci U S A2010;107: 2037–42.41.Granchi C,Roy S,Giacomelli C,Macchia M,Tuccinardi T,Martinelli A,et al.Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A(LDH-A)as starvation agents against cancer cells.J Med Chem2011;54:1599–612.42.Robinson MM,McBryant SJ,Tsukamoto T,Rojas C,Ferraris DV,Hamilton SK,et al.Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide(BPTES).Biochem J2007;406:407–14.43.Seltzer MJ,Bennett BD,Joshi AD,Gao P,Thomas AG,Ferraris DV,et al.Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1.Cancer Res2010;70:8981–7. Clin Cancer Res;18(16)August15,20124289。