黄铜矿和黄铁矿浮选分离存在的难点问题
浮游选矿技术问答(第一稿)

浮游选矿技术问答印万忠白丽梅荣令坤编目录第1章浮选基本知识 01.1 浮选基本定义 01 什么是浮选? 02 浮选方法的发展历史是什么? 01.2 浮选的过程及特点 03 浮选包括哪几个作业? 04 浮选的过程是什么? 05 什么是正浮选和反浮选? (1)6 什么是优先浮选和混合浮选? (1)7 浮选的使用领域是什么? (1)8 浮选的优缺点是什么? (2)第2章浮选的基本原理 (3)2.1 矿物表面的润湿性和可浮性 (3)1 什么是润湿现象? (3)2 润湿现象中的沾湿(a)、铺展(b)和浸湿(c) 三种类型有何区别和联系? (3)3 什么是接触角、三相润湿周边? (3)4 如何通过接触角鉴别颗粒表面的润湿性? (4)5 润湿方程的物理意义是什么? (4)6 什么是矿物的润湿阻滞现象?产生润湿阻滞现象的因素是什么?阻湿阻滞现象对浮选有何影响? (4)7 接触角的测量方法有那些?躺滴法测润湿角应注意什么? (5)8 固体颗粒表面润湿性的度量有哪些参数?和颗粒浮选行为有何联系? (5)9 矿物的表面润湿性是如何分类的? (5)10 如何改变固体间表面的天然润湿性差异,创造出较大的人工润湿性差异,从而有利于实现浮选? (6)11 什么是矿物的可浮性指标?为什么矿物和气泡的粘附是一种热力学自发过程? (6)2.2 矿物的表面能和水化作用 (6)12 矿物表面的极性和矿物可浮性之间的关系是什么? (6)13 非极性矿物和极性矿物的矿物内部结构和价键特性就是什么? (7)14 矿物表面自由能的数值取决于晶体断裂面的几何形状及表面原子所处的位置,在矿物颗粒表面不同的位置,即晶面上、棱面上和尖角上的表面张力的关系如何? (7)15 矿物表面的极性和矿物水化作用之间的关系是什么? (7)16 矿物表面水化层厚度和矿物润湿性之间的关系是什么? (7)17 表面水化性不同的矿物在水化层变薄过程中自由能变化和水化层厚度的关系是什么? (8)18 矿粒向气泡附着的过程可分为哪几个阶段?各阶段水化膜是如何变化的? (8)2.3 矿物的结构和自然可浮性 (9)19 什么是矿物的天然可浮性和自然可浮性? (9)20 矿物的晶体结构按其键型不同分为哪几种?各自的特点是什么?和可浮性有什么关系? (9)21 矿物结构和天然可浮性之间有何关系? (11)2.4 矿物在水中的溶解和氧化 (12)22 什么是难免离子?难免离子对矿物浮选有何影响? (12)23 消除难免离子对矿物浮选影响的措施有哪些? (12)24 矿物溶解对浮选过程有何影响? (12)25 矿物的氧化对其可浮性的影响是什么?采取什么措施控制矿物的氧化? (12)26 硫化矿物表面氧化的几种形式及规律是什么? (13)2.5 两相界面双电层 (13)27 矿物表面荷电的起源是什么? (13)28 形成双电层的原因是什么? (15)29 双电层的的主要模型有哪些? (15)30 Stern双电层模型结构是什么? (15)31 表面电位、电极电位、静电位和残余电位之间的关系是什么? (16)32 什么是矿物的定位离子?硫化矿、氧化矿、盐类矿物的定位离子是什么? (16)33 什么是固体的动电电位?动电位的测定方法有哪些? (16)34 什么是矿物的零电点和等电点,两者的区别是什么? (17)35 什么是特性吸附?特性吸附对双电层有何影响? (17)36 影响双电层的因素有哪些? (17)37 有机浮选药剂(指捕收剂)能否改变矿物(包括氧化矿和硫化矿)的表面电性质?为什么?能改变表面电位还是电动电位?为什么? (17)38 颗粒表面电性和浮选药剂的吸附、颗粒可浮性的关系是什么? (17)39 锡石的pHpzc=6.6。
山东某黄金选矿厂浮选系统优化改造实践

世界有色金属 2023年 6月下42采矿工程M ining engineering山东某黄金选矿厂浮选系统优化改造实践秦香伟,李光胜,朱幸福,蔡明明,徐 超(山东黄金矿业科技有限公司选冶实验室分公司,山东 莱州 261400)摘 要:山东胶东某黄金选矿厂通过浮选系统优化改造,实现了“分散磨矿、集中浮选”。
采用11台大型、节能、高效的圆型浮选机替代48台小型U型浮选机,设备装机总功率降低186.5kw,捕收剂用量降低20g/t,起泡剂用量降低10g/t。
浮选精矿富集比提高1.37,浮选作业回收率提高0.24%,每年可创造经济效益374万元,经济效益显著。
关键词:黄金选矿厂;浮选改造;节能优化中图分类号:TD94 文献标识码:A 文章编号:1002-5065(2023)12-0042-3Optimization and transformation practice of flotation system in a gold concentratorQIN Xiang-wei, LI Guang-sheng, ZHU Xing-fu, CAI Ming-ming, XU Chao( Metallurgical Laboratory Branch of Shandong Gold Mining Technology Co., Ltd., Laizhou 261400, China)Abstract: A gold concentrator plant in Jiaodong, Shandong province, has realized the "scattered mill and centralized flotation" through the optimization and transformation of the flotation system. Eleven large, energy-saving and efficient circular flotation machines are used to replace 48 small U-type flotation machines. The total installed power of the equipment is reduced by 186.5kw, the amount of collector is reduced by 20g / t, and the amount of foaming agent is reduced by 10g / t. The enrichment ratio of flotation concentrate increased by 1.37, and the recovery rate of flotation operation increased by 0.24%, which can create annual economic benefits of 3.74 million yuan.Keywords: gold concentrator;flotation transformation;energy saving optimization收稿日期:2023-04作者简介:秦香伟,男,生于1988年,山东昌乐人,工程硕士,工程师,研究方向:选矿工艺。
解析黄铜矿与黄铁矿浮选分离技术

解析黄铜矿与黄铁矿浮选别离技术我国铅锌资源十分丰富,遍布全国各地,全国铅锌生产矿山数百个,铅锌比例为1∶1至1∶5,锌含量较高,目前的锌矿物58种,工业利用有7种,其中闪锌矿约占锌矿总量的90%以上。
由于氧化锌矿石构造复杂,含泥高,迄今对氧化锌矿石的回收仍不令人满意。
因此在有效回收硫化锌的同时,综合回收氧化锌矿物显得十分有意义。
一、矿石性质**某地含碳混合锌矿为海相沉积成因的碳酸盐类型,矿石中主要金属矿物为闪锌矿、黄铜矿、黄铁矿、褐铁矿、菱锌矿等,主要脉石矿物为白云石、方解石、石英、碳质,碳以有机碳为主。
闪锌矿主要呈自形、半自形或它形粒状晶体,嵌布粒度不均匀。
氧化锌矿物主要为菱锌矿,嵌布呈很细小的粒状晶体,粒径一般为0.005~0.01mm,并与黄铜矿形成锌、铜硫化物固溶体构造。
脉石矿物主要为白云质灰岩,90%以上为硅化白云质**岩。
原矿多元素及锌物相分析结果见表1、表2。
表1 小型试验原矿多元素分析结果表2 原矿锌物相分析结果二、浮选条件试验研究〔一〕脱碳与不脱碳试验在粗磨细度-74μm 65%条件下,加松醇油24g/t,进展脱碳与不脱碳试验。
试验结果见表3。
表3试验结果说明,采用预先脱碳浮选,可获得锌品位40%以上的锌精矿,而不脱碳浮选,锌精矿品位不到30%,碳对锌精矿品位影响明显。
〔二〕磨矿细度试验研究原矿预先脱碳后按“先硫后氧〞原那么,并以硫化锌为主进展了磨矿细度试验。
试验条件为石灰1000g/t、硫酸铜400g/t、31号黑药60g/t、丁基黄药40g/t。
试验结果见图1。
图1磨矿细度试验结果说明,当磨矿细度到达-74μm 65%时,可获得锌品位45%、锌回收率87%以上锌精矿。
磨矿细度再增加锌回收率略有上涨,但锌品位却大幅度下降,因此确定磨矿细度为-74μm65%。
表3 脱碳与不脱碳试验结果图1 磨矿细度对浮选的影响1-锌品位;2-锌回收率;下同〔三〕pH值对浮选结果的影响石灰是硫化锌浮选常用的pH值调整剂,石灰不仅价廉,还可以有效地抑制黄铁矿,而且对矿泥有凝聚作用。
难选铁矿石的分步与分散浮选技术现状

二次磨矿
44.33,34.41 48.82
42.42,15.53 21.08
反浮选
56.17,34.64 62.29
精选
53.05 11.22 19.07
弱磁
25.08,55.90 44.88
强磁
39.67,27.77 35.26
10.56,28.13 9.51
43.52,39.00 54.32
正浮选
分步浮选技术:根据矿石中铁矿物之间交互 影响严重的问题,利用不同矿物在不同介质条件 下可浮性的差异,首先在中性条件下将容易发生 罩盖的细颗粒菱铁矿和绿泥石等含泥硅酸铁矿物 第一步提前分离,减少其对后续分选的影响;然 后第二步在强碱性条件采用正常的反浮选技术分 选赤铁矿。
东鞍山铁矿石的特点
可划分为假象赤铁石英岩、磁铁石英岩、磁铁赤铁石 英岩、赤铁磁铁石英岩和绿泥假象赤铁石英岩、绿泥赤铁 磁铁石英岩、菱铁磁铁石英岩等。其中菱铁磁铁石英岩主 要分布在西部矿区中部,往深部其含量越来越高。在生产 管理中划分为未氧化矿、半氧化矿、高亚铁矿、氧化矿石 、含碳酸盐矿石和含绿泥石矿石。
几种物理化学性质相近有用矿物或脉石互含混杂
有用 矿物
有用 矿物
脉石 矿物
产品中互含情况严重,降低各有用矿物 的品位和回收率,严重时造成精尾不分。
例如含碳酸盐铁矿的选别中,硬度较小 的菱铁矿在磨矿过程中形成10μm 以下的矿 泥,可以同时吸附在石英和赤铁矿表面,而 在阴离子捕收剂体系中菱铁矿的可浮性在赤 铁矿和石英之间,当原矿中菱铁矿的含量超 过3%时,对阴离子反浮选体系破坏严重,造 成精尾不分。
铜硫浮选分离的研究进展(国外金属矿)

综 述铜硫浮选分离的研究进展李崇德3 孙传尧3北京矿冶研究总院摘 要 本文从分析铜硫浮选的难点问题出发,回顾和总结了铜硫浮选理论研究和实际应用的进展。
理论方面包括黄铜矿和黄铁矿的电化学浮选研究,以及黄铜矿和黄铁矿微生物浮选研究。
应用方面包括硫化铜矿物选择性捕收剂及新药剂制度的应用、铜硫在低碱矿浆条件下的浮选分离、被高钙强烈抑制的黄铁矿活化以及铜硫浮选分离工艺优化。
关键词 浮选 铜硫分离引 言硫化铜矿的浮选是获取铜金属的重要粗加工环节,而硫化铜矿物的浮选主要是将硫化铜矿物与硫化铁矿物及脉石分离,因此,提高铜硫浮选分离的效果具有重要的意义。
可见,铜硫浮选分离就是硫化铜矿浮选处理的重要技术问题。
本文从分析铜硫分离浮选的难点出发,回顾和总结了铜硫浮选分离的理论研究和实际应用进展。
1 铜硫浮选分离的难点〔1、2、3〕1)黄铁矿可浮性变化的影响铜硫矿石浮选的关键是铜矿物与硫化铁矿物的分离,生产实践中大都采用抑制硫化铁矿物,浮选出铜矿物的工艺,其中包括铜硫混浮后再抑硫浮铜、优先浮铜再活化选硫的工艺。
在铜硫矿石中硫化铁矿物以黄铁矿为主,因而黄铁矿的浮游性能直接影响到铜硫浮选分离的效果。
黄铁矿是易浮的硫化矿物,适当氧化的黄铁矿容易用黄药、黑药、脂肪酸及皂类捕收剂浮选。
同时,黄铁矿的可浮性变化很大。
不同矿床,即使在同一矿床中,因产出地段不同,铜矿物的可浮性也有很大变化,这时因为不同产出地的黄铁矿,其表面结构不均匀性,以及晶格缺陷不同所致。
黄铁矿的可浮性还与以下因素有关:第一,杂质含量,含Au 、Cu 、Co 的黄铁矿可浮性较好;第二,结晶形态,八面体的黄铁矿可浮性比六面体的好;第三,铜离子的活化,矿床中受铜离子活化的黄铁矿可浮性好。
黄铁矿可浮性的变化,使铜硫分离难以控制,因此,对黄铁矿的有效抑制是铜硫矿石浮选的难点之一。
2)被抑制黄铁矿的活化问题对于原矿品位低的铜硫矿石,采用优先浮选、半优先浮选或等可浮的浮选工艺,会遇到对硫的先抑制,然后活化捕收硫的问题。
磨矿和浮选过程中黄铁矿电化学行为的研究进展

工程科学学报,第 43 卷,第 1 期:58−66,2021 年 1 月Chinese Journal of Engineering, Vol. 43, No. 1: 58−66, January 2021https:///10.13374/j.issn2095-9389.2020.06.29.001; 磨矿和浮选过程中黄铁矿电化学行为的研究进展龚志辉,戴惠新✉,路梦雨,武立伟,赵可可昆明理工大学国土资源工程学院,昆明 650093✉通信作者,E-mail:***************摘 要 综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构特性、溶液中氧化、金属离子作用和抑制剂对黄铁矿电化学行为的影响;此外,还讨论了磨矿过程中电偶相互作用、研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响.其中黄铁矿晶体结构的不同对黄铁矿表面的氧化具有较大影响,从而间接的影响黄铁矿的可浮性,半导体性质对黄铁矿的导电率具有显著的影响;同时适度的氧化有利于黄铁矿的无捕收剂浮选,而强烈的还原电位或氧化电位会抑制黄铁矿的浮选;电位的增加,对铜活化黄铁矿有不利影响,主要原因是电位增加导致活化Cu+的浓度降低,同时黄铁矿表面被铁氧化物覆盖阻碍了铜离子的吸附.抑制剂的加入可以直接参与捕收剂与黄铁矿之间的氧化还原反应,从而抑制黄铁矿的浮选;同时磨矿介质及气氛条件的不同也会影响黄铁矿电化学行为.关键词 选矿;黄铁矿;研磨;浮选;电化学分类号 TD952Research progress in the electrochemical behavior of pyrite during grinding and flotationGONG Zhi-hui,DAI Hui-xin✉,LU Meng-yu,WU Li-wei,ZHAO Ke-keFaculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China✉Correspondingauthor,E-mail:***************ABSTRACT Metal sulfides are highly desirable owing to their semiconductor properties promoting electrochemical reactions for sulfide flotation. As the most common sulfide mineral, pyrite is found in coal and can contain a small amount of gold. The potential of electrochemical reactions for the beneficiation of pyrite makes it necessary to study its electrochemical behavior. The present work focuses on the electrochemical behavior and working mechanisms of pyrite in mineral processing. The effects of the structural characteristics of pyrite, oxidation in solution, the presence of metal ions, and inhibitors on the electrochemical behavior of pyrite were discussed emphatically. The effects of galvanic interaction and grinding medium shape, material, and atmosphere on the electrochemistry of pyrite in grinding were also discussed. It has been shown that the different crystal structures and semiconductor properties of pyrite can greatly influence the oxidation of its surface, which indirectly affects its floatability. Moreover, moderate oxidation conditions are beneficial to the collector-free flotation of pyrite, whereas strong reduction or oxidation potentials inhibit its flotation. It has also been shown that increase in potential and iron oxide on the pyrite surface lead to the decrease in the concentration of copper (Cu+) ions, thereby adversely affecting the activation of pyrite by copper. Furthermore, inhibitors can directly participate in the redox reaction between the collector and pyrite, thus inhibiting the flotation of pyrite. Different grinding media and atmosphere conditions also affect the electrochemical behavior of pyrite.KEY WORDS mineral processing;pyrite;grinding;flotation;electrochemical收稿日期: 2020−06−29基金项目: 国家自然科学基金资助项目(51764023)黄铁矿(FeS 2)是自然界最常见的硫化矿物.通常与闪锌矿、黄铜矿、方铅矿、金和煤等有价值的矿物共伴生[1−2]. 黄铁矿的经济价值低,通常被作为脉石矿物处理,黄铁矿进入有价值的精矿中会导致精矿品位降低,同时在冶炼过程中会产生大量的硫化气体,造成环境污染[3]. 天然黄铁矿在厌氧环境中是疏水的,因此常用浮选的方法选别.然而当黄铁矿长时间暴露于大气或水性条件下时,黄铁矿表面会被氧化从而降低其疏水性[4−5].大多数金属硫化物具有半导体特性,硫化矿物浮选取决于发生的电化学反应[6]. 黄铁矿浮选过程中发生的各种现象,如氧化引起的黄铁矿表面化学变化、黄铁矿与其他组分的相互作用、捕收剂的吸附和其他金属离子在黄铁矿表面的沉淀,通常都是由电化学机制引起的[7−9]. 影响电化学反应的主要因素是矿物/溶液界面的电化学势,该电位是一种混合电位,其中发生在矿物表面的阳极反应和阴极反应的速率完全相等,该电化学反应不仅控制着矿物在浮选过程中表面物种的形成,还抑制其表面物种的形成[10−11]. 因此电化学反应机理的研究对黄铁矿的浮选研究具有重要的意义. 本文综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构、溶液氧化、离子活化和抑制剂对黄铁矿电化学行为的影响. 此外,还讨论了磨矿过程中研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响. 并对今后的研究思路和方向进行了展望.1 黄铁矿晶体性质1.1 黄铁矿晶面特性黄铁矿的晶体类型众多,对黄铁矿晶体研究表明,大多数天然黄铁矿主要有三个解离面,分别为{100},{210}和{111},这三个晶面的比例为224∶42.8∶1[12−14]. 一些研究表明,黄铁矿的反应活性在晶体方向上是特定的. Zhu 等[15]研究了黄铁矿晶体结构对黄铁矿表面氧化的影响. 结果表明,在潮湿的空气中,黄铁矿{111}和{210}的初始氧化速率均大于黄铁矿{100};在干燥的空气中,黄铁矿{210}的初始氧化速率大于黄铁矿{111}的初始氧化速率;在潮湿的空气中,黄铁矿{111}的初始氧化速率最大;同时{111}是黄铁矿氧化最敏感的面. 黄铁矿氧化相关反应如图1所示. 这些研究的发现明确了黄铁矿的晶面与反应活性的关系,不仅对黄铁矿氧化机理有了新的认识,也为发生在矿物-水界面的其他界面反应提供参考.S O 42−S O 32−/S 2O 32−+H +S 22−Fe 3+Fe 2+O 2ee e+H 2OPyrite①①S 22−−e (to Fe 3+)+H 2O → S O 32−/S 2O 32−+H +S O 32−/S 2O 32−+O 2→S O 42−②②③③④④Oxidation routeFe 2+−e (to O 2) → Fe 3+H 2OFe 3++e (from S 22−) → Fe 2+H 2O 图 1 黄铁矿空气中氧化反应路线图Fig.1 Mechanisms of pyrite oxidation in airXian 等[16]对纯黄铁矿、砷取代黄铁矿、钴取代黄铁矿和晶间金黄铁矿四种类型的黄铁矿进行了浮选研究. 浮选结果表明,钴取代黄铁矿和晶间金黄铁矿的可浮性随矿浆充气时间的延长而增加,而纯黄铁矿和砷取代黄铁矿的可浮性随矿浆充气时间的延长而降低. 通过电子结构和能带结构研究发现黄铁矿的稳定性受晶格缺陷和电子结构的影响,所观察到的浮选行为差异是由于黄铁矿的稳定性和氧化强度不同所致.1.2 半导体特性黄铁矿具有高电子迁移率和高光吸收系数,是一种潜在的光伏吸收材料. 然而天然黄铁矿的半导体性质存在较大的差异,从而影响了黄铁矿的电化学反应[17]. Abratis 等[18]综合评述了黄铁矿的半导性,发现已报道的电导率相差四个数量级.根据地质条件的不同,天然黄铁矿既可以作为n 型半导体存在,也可以作为p 型半导体存在. 在较高温度下形成的黄铁矿通常具有n 型特征,而在较低温度下形成的黄铁矿通常为p 型. 使用n 型黄铁矿作为微电极在混合硫化物矿物矿浆中(不考虑动力学因素),具有较高静息电位的黄铁矿将成为阴极,而更具活性的硫化物将成为阳极.龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 59 ·但是,所产生的阳极硫化物优先溶解的速率将取决于由杂质或半导体类型引起的黄铁矿静止电位的变化.Savage 等[19]研究发现,杂质元素Co ,As 对黄铁矿半导性具有较大的影响. 富含Co 的黄铁矿是具有低电阻率和高载流子迁移率的n 型半导体,而砷黄铁矿倾向于p 型且具有较高的电阻率. 硫化矿物与捕收剂之间相互作用的差异是由矿物表面不同的半导体特性引起的. 与n 型半导体相比,p 型半导体对黄药的吸附更为有益.2 浮选中黄铁矿电化学行为2.1 黄铁矿在矿浆中的氧化黄铁矿在水溶液中通过电化学反应被氧化,氧化速率受溶液pH 、溶液电位值、氧化剂种类和浓度、粒径、温度、搅拌速度等多种因素的影响.由于铁硫比、晶体结构和表面形态不同,导致黄铁矿表现出不同的电化学反应活性. 黄铁矿在氧化过程中通常是不完全氧化,除亚铁离子和硫酸根离子外,还生成了单质硫. 亚铁离子进一步反应生成的氢氧化铁沉淀附着在黄铁矿表面,并抑制黄铁矿的进一步氧化[20−22].矿浆中溶解氧含量对矿浆电位变化和黄铁矿亲水性表面的生成有一定影响. Owusu 等[23]通过需氧量试验和泡沫浮选,研究了两种黄铁矿矿物的电化学反应活性及其对黄铜矿浮选的影响. 通过氧化还原电位(E h )、溶解氧(DO )、pH 等参数控制矿浆化学,可显著提高硫化矿物的浮选回收率、品位和选择性. 需氧量测试表明,不同黄铁矿的电化学反应活性有明显差异. 此外,矿浆的持续充气降低了黄铁矿的氧化速度. 溶液和表面分析结果表明,随着充气的进行,黄铁矿表面会形成氢氧化物表面涂层,防止或最大限度地减少黄铁矿进一步被氧化反应. 图2显示了25 ℃下黄铁矿电化学势与pH 的关系[24].S 2−2S 2−2S 2−n 硫的氧化行为的研究对于理解黄铁矿的氧化非常重要,但是在不同的溶液条件下,各种中间的硫氧化产物会使其复杂化. Chandra 和Gerson [25]研究表明在新鲜破碎的黄铁矿表面存在四种不同的硫:(体相)(4配位)、(表面)(3配位)、S 2−和S 0/(分别为缺金属硫化物和多硫化物).这些硫在破碎的黄铁矿表面呈不均匀分布. 当O 2解离和H 2O 分子吸附到存在高密度悬挂键的表面Fe 位时,开始氧化. 同时H 2O 可能会解离产生OH 自由基. 研究表明,Fe−O 键先于Fe−OH 键SO 2−4O 2−3S 2−3形成. S 的氧化是通过Fe 位上形成的OH 自由基的相互作用进行的,而的形成是通过S 2/中间体进行的. 从而进一步证明黄铁矿的氧化过程本质上是电化学的过程.S 2−n Tu 等[26]研究了黄铁矿在pH 为2的电解液中的电化学氧化机理. 研究表明在0.50 V 的低电位下,黄铁矿表面形成并覆盖一层富硫层(S 0)使得黄铁矿表面钝化,从而造成黄铁矿电化学氧化扩散受限. 当电位增加到0.60 V 时,由于无定形单质硫转化为晶态,黄铁矿氧化的扩散限制和表面钝化停止,导致先前被覆盖的活性位重新暴露,从而造成黄铁矿继续氧化. 在较高电位(0.70 V 和0.80 V )下,在黄铁矿表面形成并积累了较多的单质硫和多硫化物(),以及由Fe(OH)3、FeO 和Fe 2O 3组成的富铁层,这些产物导致了氧化速率降低. 表面粗糙度随氧化电位的增加而增加,黄铁矿表面的氧化是不均匀的. 这些发现进一步揭示了黄铁矿在电化学氧化过程中所经历的物理和化学变化.Tao 等[27]对表面氧化的黄铁矿进行了无捕收剂泡沫浮选试验. 在原位断裂电极上进行的计时安培分析表明,在pH 为9.2时,表面氧化的黄铁矿电位为−0.28 V (SHE ),在pH 为4.6时为0 V. 在稍高的正电势下进行初始氧化会生成疏水性富硫物质,最有可能是多硫化物或缺乏金属的硫化物,从而使黄铁矿表面具有疏水性. 无捕收剂的浮选试验结果表明,黄铁矿在表面氧化后具有较好的可浮性. 黄铁矿的无捕收剂浮选回收率取决于氧化过程中产生的多硫化物,可溶物和不溶物的相对量,这取决于溶液的pH 值和电位.2.2 不同金属离子对黄铁矿的影响2.2.1 铜离子对黄铁矿的影响活化是硫化物浮选过程中最常用的方式之一,SO 42−SO 42−Fe(OH)3Fe(OH)2Fe 2++2SFe 2++H 2SFe+H 2SFeS+H 2SFe+HS −FeS+HS −Fe FeS 2F e (O H )2+F e (O H )2+Fe 3+pH02468101214图 2 25 ℃下FeS 2–H 2O 体系E h –pH 图Fig.2 E h –pH diagram for the FeS 2–H 2O system at 25 ℃· 60 ·工程科学学报,第 43 卷,第 1 期在这个过程中金属离子沉淀或吸附在矿物表面,为捕收剂的吸附创造合适的位点. 在碱性溶液中黄铁矿可被铅离子和铜离子活化.Owusu 等[28]使用黄铜矿和黄铁矿组成的混合矿物体系,研究了黄铁矿对矿浆化学和黄铜矿回收率的影响. 浮选试验表明,随着黄铁矿含量的增加,黄铜矿的可浮性、回收率、品位和矿浆氧化电位降低,而黄铁矿回收率增加.Peng 等[29]在pH 值为9的条件下,以不同的电化学势测量了铜离子的浓度. 研究发现铜离子的浓度在很大程度上取决于电化学势. 在−185 mV 的电势下,溶液中几乎所有的铜都以亚铜离子的形式存在,而在−10 mV 的电势下,溶液的铜质量分数降低到28%;电位为+260 mV 时,溶液中亚铜离子不存在. 在−10 mV 和+260 mV 范围内,几乎所有的铜都以Cu(OH)2的形式析出;而在−185 mV 的电位下,只有少量铜以Cu(OH)2的形式析出. 因此,提高矿浆的电化学电位可以增加Cu(OH)2的生成,降低Cu +在黄铁矿表面的浓度. 由于铜离子活化黄铁矿强烈依赖于Cu(I)−硫化物的形成,因此在还原条件下更有利于黄铁矿活化.S 2−n S 2−2Chandra 等[30]用光发射电子显微镜(PEEM )分析研究了弱酸性条件下铜离子活化黄铁矿. 研究发现Cu 以Cu +形式吸附在黄铁矿表面. 与未活化黄铁矿相比,活化黄铁矿中存在较多的和S−OH ,较少的S 2−和. 这一现象是由于O 2/H 2O 的存在和铜离子在黄铁矿表面吸附而引起的氧化,并证实了离子交换、铜离子还原和硫氧化是同时进行的.综上,电势的增加对铜离子活化黄铁矿具有不利的影响. 主要有以下三个原因:一是电势的增加加快了Cu(I)到Cu(II)的氧化速率,结果导致用于活化的Cu(I)离子浓度降低;二是在高电势下,黄铁矿被氧化形成氧化铁/氢氧化物薄膜阻碍了亚铜离子与黄铁矿的作用;三是已经作用在黄铁矿表面的亚铜离子在高电势的作用下形成了亲水性碳酸铜/铜羟基物质影响了活化效果.2.2.2 铅离子对黄铁矿的影响在方铅矿和黄铁矿的电偶中,方铅矿充当阳极,黄铁矿充当阴极,通过电流作用将硫离子从方铅矿中氧化为元素硫,并将溶解的氧还原为氢氧根离子. 在没有捕收剂仅方铅矿存在的情况下,黄铁矿可表现出较强的可浮性. Peng 等[29]对铅活化黄铁矿进行了ζ电位测量,发现铅活化黄铁矿在不同的电化学电位下表现出相似的ζ电位性质. 铅活化的黄铁矿具有类似于氢氧化铅、氧化物或碳酸盐的等电点. 另一方面,在活化过程中加入的铅离子几乎都可以用乙二胺四乙酸溶液提取. 这些发现显然表明,铅对黄铁矿的活化主要是通过形成铅表面络合物如氢氧化物来实现的.2.2.3 铁离子对黄铁矿的影响铁离子和溶解氧在黄铁矿氧化过程中起着至关重要的作用,黄铁矿氧化过程可看作是黄铁矿,铁离子与氧之间的一系列反应. Liu 等[31]研究了Fe 3+对黄铁矿电化学行为的影响. 结果表明,三价铁在黄铁矿的溶解中起重要作用,黄铁矿电极的开路电势随Fe 3+浓度的增加而增加;Tafel 极化曲线表明,Fe 3+浓度的增加引起了黄铁矿电极极化电流的增加.黄铁矿的氧化是在黄铁矿电极和电解质界面发生的,并且在氧化过程中形成了由元素硫、多硫化物组成的钝化膜. 黄铁矿电极的极化电流随着Fe 3+浓度的增加而增加.2.2.4 金对黄铁矿的影响金常与黄铁矿伴生,以细小包裹体形式赋存于黄铁矿基质中,从而导致金不能被浸出剂浸出.为了使金能够被浸出剂浸出,通常需要通过氧化剂对黄铁矿基质进行强化氧化,然后释放出金颗粒.Huai 等[32]研究了金耦合对黄铁矿被铁离子氧化后的表面性能的影响. 研究表明,金可以催化三价铁还原,金的耦合显著促进了黄铁矿的氧化,在黄铁矿表面形成更多的铁氧化物. 同时,金的耦合还使黄铁矿的比表面积变的更粗糙、更大,从而提高黄铁矿氧化溶解的电化学活性.2.3 抑制剂对黄铁矿的影响2.3.1 无机抑制剂黄铁矿的无机抑制剂种类众多,通过电化学反应影响黄铁矿可浮性的主要有氰化物、硫化物和硫氧化物. 氰化物对黄铁矿浮选的抑制可能有以下几种机制[33−35]:在非离子活化条件下,当黄药存在时,主要是形成不溶性硫氰酸盐络合物取代了双黄药吸附位;当无捕收剂时,氰化物在黄铁矿表面的吸附导致形成不溶性的铁氰化物,使黄铁矿表面亲水性;在铜离子活化条件下,主要是通过降低矿浆铜离子含量,并形成铜氰化合物抑制黄药的吸附. Janetski 等[36]使用伏安法研究了氰化物抑制黄铁矿时对黄药的影响. 结果表明在黄原酸盐浓度和pH 恒定的情况下,氰化物离子浓度的增加会导致黄原酸盐的氧化电势向更正值移动. 氰化物离子对黄药的氧化过程具有抑制作用. 同时还发现在恒定的黄原酸酯浓度下,随着氰化物离龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 61 ·子浓度的增加,黄原酸酯氧化电位的阳极位移随着溶液pH 的降低而逐渐降低.由于氰化物有剧毒,硫化物作为替代物被广泛应用,硫化物、亚硫酸盐和硫酸盐的抑制机理主要是消耗溶液中的氧气,降低了溶液的混合电位,从而阻止了双黄药在黄铁矿表面的吸附. Janetski 等[36]通过伏安法研究了硫化钠如何抑制黄铁矿的浮选,并发现硫化钠的存在引入了新的阳极反应.相对于黄原酸盐氧化,新的阳极反应归因于溶解的硫化物(S 2−或HS −)在阴极电位下发生氧化. 硫化钠消耗了氧气并降低了混合电位,从而阻止了双黄药的生成和黄铁矿浮选. Khmeleva 等[37]研究了亚硫酸盐对黄铁矿浮选的影响. 结果发现,在有空气的情况下,黄铁矿表面上会形成多种氧化产物,亚硫酸盐可以在溶液中与黄铁矿和捕收剂相互作用. 亚硫酸盐的存在消耗了溶液中溶解的氧气,从而导致矿浆电位下降. 2.3.2 有机抑制剂无机抑制剂虽然有效,但对环境有害,并在处理过程中会造成额外费用. 有机抑制剂具有来源丰富、可生物降解和相对便宜等优点. 黄铁矿的有机抑制剂主要有羧甲基纤维素(CMC ),木质素磺酸盐. 由于聚合物结构复杂和矿物表面的非均质性,聚合物与矿物表面之间的相互作用非常复杂. 但可以简单的解释为有机抑制剂与黄铁矿矿物表面的吸附或结合,如图3所示[35]. 一是有机抑制剂与黄铁矿表面带相反电荷,二者之间存在静电吸引;二是有机抑制剂的非极性链段与矿物表面疏水区域之间的疏水相互作用驱动抑制剂聚集在矿物表面;三是羟基或羧基与矿物表面水合金属位点之间相互作用形成氢键,特别是在碱性pH 值下;四是阴离子官能团(如羧基或磺酸基团)与矿物表面的金属阳离子之间形成化学键驱动有机聚合物与矿物表面结合[38−39].(1) Electrochemical attraction(3) Hydrogen bonding(4) Chemical interaction(2) Hydrophobic interactionHydrophobic carbon chainHydrophobic sitesPyrite surfaceH HC C OHHO H HH H H OH OH O OO OH COOHOHHOH HHOMeMeMeMeC CC C C C C O OOH++图 3 有机聚合物与黄铁矿矿表面可能的相互作用机制:静电吸附(1),疏水相互作用(2),氢键(3)和化学相互作用(4)Fig.3 Possible interaction mechanisms of organic polymers with pyrite surface: electrochemical attraction (1), hydrophobic interaction (2), hydrogen bonding (3), and chemical interaction (4)羧甲基纤维素(CMC )是通过醚化过程产生的纤维素衍生物. 与天然多糖相比,CMC 结构中带负电荷的羧基和羟基的存在增加了CMC 的选择性. 与羟基不同的是,羧基能够与各种形式的金属物种相互作用,而羟基只能与金属羟基物种相互作用. Bicak 等[40]研究了高取代度和低取代度两种CMC 对黄铁矿的抑制效果. 研究表明,低取代度的CMC 比高取代度的CMC 抑制效果更好,主要是因为低取代度的CMC 自身负电荷较少,与黄铁矿表面的静电斥力较小,CMC 能更多的吸附在黄铁矿表面. 同时溶液中的pH 可以通过对羧基的解离、矿物表面羟基化及矿物表面电荷影响,从而影响CMC 在黄铁矿表面的吸附. 钙离子的存在可以增强CMC 在黄铁矿表面的吸附和抑制能力. 通过Zate 电位测定表明,Ca(OH)+在黄铁矿表面的吸附降低了黄铁矿表面的电负性,从而减小了CMC 与黄铁矿之间的静电排斥力. 除了静电作用外,黄铁矿表面的氢氧化物与CMC 的羟基和羧基之间形成氢键,从而抑制黄铁矿.木质素磺酸盐或磺化木质素可用作黄铁矿抑制剂. 对非活化黄铁矿浮选的电化学研究表明,生物聚合物吸附在黄铁矿表面后,使黄铁矿表面钝化,抑制了黄铁矿表面发生的电化学反应,包括黄铁矿自身的氧化还原反应和黄药在表面的氧化[35].Mu 等[41]比较了三种木质素磺酸盐聚合物(DP-1775,DP-1777和DP-1778)的抑制表现,研究表明生物· 62 ·工程科学学报,第 43 卷,第 1 期聚合物的分子量决定了其在黄铁矿表面的吸附密度,分子量越高,导致吸附能力越高,黄铁矿的抑制程度也更高.Mu等[42]通过电化学技术研究了在戊基黄原酸钾(PAX)和木质素磺酸盐类生物聚合物抑制剂(DP-1775)存在下黄铁矿表面性质的变化,对黄铁矿进行了电阻抗光谱法和循环伏安法测试.发现在不存在PAX的情况下,DP-1775不连续地分布在黄铁矿表面上并逐渐钝化黄铁矿表面;在PAX存在的情况下,预吸附的DP-1775降低了PAX的电化学氧化程度.3 研磨对黄铁矿电化学性能的影响3.1 电偶相互作用的影响磨矿对矿物/溶液界面的电化学势有很大影响,在磨矿过程中黄铁矿与磨矿介质之间存在电子相互流动,这种作用被称为电偶相互作用[29].不同电化学反应引起的电偶相互作用可以通过矿物的静息电位来预测,静息电位决定了不同硫化矿的电化学反应[43].在电偶相互作用中,黄铁矿由于具有较高的静息电位而表现出阴极的作用,从而导致其表面的氧还原和氢氧离子的产生.充当阳极的研磨介质被氧化并释放出亚铁离子.生成的亚铁离子进一步氧化成铁离子,然后与氢氧化物离子反应,以氢氧化铁的形式沉淀在黄铁矿表面,同时磨矿介质中产生的氧化铁物种对抑制黄铁矿浮选有重要作用[44],反应如下:阳极氧化:阴极还原:水解:Huang等[45]使用低碳钢作为磨矿介质研究了黄铁矿与介质的电偶作用及对浮选的影响.研究表明,低碳钢和黄铁矿之间的电流取决于极化行为、几何关系和研磨环境.低碳钢与黄铁矿的比表面积对低碳钢的电偶电流密度影响较大,同时溶解氧在电偶电流中起着显著的作用.研磨过程中研磨介质氧化产生的可被乙二胺四酸(EDTA)提取的铁含量与低碳钢上的电流密度成线性关系.电流与铁氧化物种的数量和黄铁矿的还原速率有关.溶解O2与硫化物反应、研磨介质的腐蚀和电相互作用降低了溶解的O2浓度.由于溶解O2的减少阻碍了黄药在硫化物矿物表面的吸附,从而抑制了这些矿物的浮选.3.2 研磨介质的形状及材料在矿石粉碎过程中会涉及到许多不同变量,例如研磨介质的形状和材料可能会对所产生颗粒的性质产生重大影响.研磨介质和硫化物矿物之间的电流相互作用产生的铁氧化物质对矿物浮选具有抑制作用.研磨介质形状主要有棒介质和球介质,材料类型主要有低碳钢、锻钢、低铬钢和高铬钢.Corin等[46]使用不同类型的磨矿介质研究其对金属硫化矿浮选的影响.结果表明,棒磨和球磨对金属硫化物的浮选影响差异不大,而研磨材料对金属硫化矿的矿浆化学和浮选性能有显著影响.Mu等[47]研究了锻钢、含铬15%(质量分数)的钢和含铬30%的钢3种磨矿介质材料在一定捕收剂(戊基黄药)浓度范围内分别在pH为5.0、7.0和8.5条件下对黄铁矿浮选的影响.结果表明,在pH值为5.0时,30%铬钢研磨的黄铁矿回收率最高,其次是使用15%铬钢和锻钢,磨矿介质中的铁污染和黄药氧化对黄铁矿浮选都有一定影响.黄铁矿表面的铁污染抑制了黄铁矿的浮选,黄药氧化可降低黄铁矿表面的铁污染.pH为7.0时,黄铁矿浮选主要受黄药浓度控制.黄药浓度较低时,阳极反应以黄铁矿氧化为主,黄药不能形成双黄药,浮选效果较差.当黄药浓度较高时,双黄药的形成占优势,有利于黄铁矿的浮选.pH为8.5时,黄铁矿的氧化作用超过黄药的氧化作用,矿浆电位在黄铁矿的浮选中起主要作用,高铬钢研磨介质产生的高矿浆电位促进了黄铁矿的氧化,而黄药的氧化降低,黄铁矿的浮选性能下降;锻钢研磨介质产生的低矿浆电位可使黄药氧化形成双黄药,从而促进了黄铁矿的浮选[48].3.3 研磨环境氧气在研磨过程的电流相互作用中起关键作用.氧气的存在会增加电流相互作用,因为氧气会在接受电子时形成羟基,从而促进研磨介质的氧化并增加矿物表面上氢氧化铁的浓度.在大多数硫化物系统中,这些电化学反应消耗氧气,导致矿浆电位降低[43].Huang和Grano[45]研究了在氮气、空气和氧气的不同气氛下,磨矿过程中黄铁矿的浮选回收率随原电池电流的变化.结果表明,氮气充入产生的龚志辉等:磨矿和浮选过程中黄铁矿电化学行为的研究进展· 63 ·。
有色金属矿山采矿方法存在的问题及对策

有色金属矿山采矿方法存在的问题及对策目前,我国在金属矿山的开采已经比较先进,但方法上仍存在许多问题,制约着采矿业的进一步发展。
笔者根据多年的实际工作经验,对问题进行简单的汇总,以案例的形式分析并提出相关解决方法。
标签:采矿方法采场金屬矿山是通过高温或高热的条件下,多种物质化学反应后形成某种或多种金属矿,开采形式多以采场的形式出现。
目前,有色金属的市场疲软,国际金价一路跌宕起伏,给我们的生产经营造成极大的压力。
如何在保证现有的生产经营规模的前提下,不断完善生产工艺,提高劳动效率,降低生产成本是我们面临的重要问题。
采矿方式主要是露天和地下开采两种,有色金属矿山开采方法按照地压分为,采场法,充填法和崩落法,前两者居多。
伴随回采工作面的进度,逐步使用充填法充填采空区的采矿方法称为充填采矿法。
充填采空区是为了利用现有的充填体进行地压管理,控制围岩崩落和地表下沉,并为回采创造安全和便利的条件。
按照矿石结构和回采工作面推进的方向,又分为单层充填采矿法、上向分层充填采矿法、下向分层充填采矿法和分采充填采矿法。
按照采用的充填材料和输出方式不同,则分为矸石充填采矿法、水力充填采矿法和胶结充填采矿法。
以现有的生产环境,采场的规模一定,在规定范围内,炮眼的设置,炸药的安放都经过严格的计算和监督,人为的任意性大大降低。
但仍然存在许多问题难以协调解决。
1目前存在的问题第一,生产成本高。
我国开采矿山的历史悠久,采矿方法多种多样,但资源开发利用率很低,很多地区甚至还在沿用传统的人工挖掘为主的陈旧模式,有的地区仅仅在部分采场进行新技术的使用,而大规模的机械化只能在国有大矿山才能看到,这不仅给采矿业带来安全隐患,也直接带来成本控制问题。
新技术、机械化在矿山投入开采之初,的确存在成本高昂的问题。
这种困难让很多想采用新技术的中小型矿山企业望而却步,实际上,在国有矿山企业中,同样存在这一难题。
第二,企业为保持持续不断的利润,不愿更新设备,更不愿改善工人工作环境。
基于活性位点调控的黄铁矿浮选抑制研究进展

第 54 卷第 5 期2023 年 5 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.5May 2023基于活性位点调控的黄铁矿浮选抑制研究进展张晚佳1, 2, 3,陶黎明1, 2, 3,曹建1, 2, 3,孙伟1, 2, 3,高志勇1, 2, 3(1. 中南大学 资源加工与生物工程学院,湖南 长沙,410083;2. 中南大学 战略含钙矿物资源清洁高效利用湖南省重点实验室,湖南 长沙,410083;3. 中南大学 湖南省关键金属矿产资源高效清洁利用国际联合研究中心,湖南 长沙,410083)摘要:黄铁矿(FeS 2)是地壳中分布最广的硫化矿,也是黄铜矿(CuFeS 2)、方铅矿(PbS)、闪锌矿(ZnS)等硫化矿的常见脉石矿物。
在浮选中,主要通过抑制黄铁矿表面活性位点来实现黄铁矿与其他硫化矿的分离,常用的抑制方法可归纳为以下两类:1) 通过吸附掩盖黄铁矿表面活性位点并增强其润湿性。
该方法主要借助抑制剂的使用,在抑制剂亲固端与黄铁矿表面活性位点稳定键合后,抑制剂亲水端显著提升了黄铁矿表面润湿性,从而实现对黄铁矿的有效抑制。
该抑制方法的抑制效率较高但选择性不足。
2) 通过氧化转化黄铁矿表面活性位点,例如通过磨矿或使用微生物及无机抑制剂等将黄铁矿表面的MS 活性位点转化为MO/MOOH/MOH 等,削弱捕收剂在黄铁矿表面的吸附强度,同时亲水的氧化产物也增强了黄铁矿表面的润湿性。
该抑制方法的选择性较高,但仍存在抑制过程耗时长或抑制剂毒性高等不足。
本文基于掩盖或转化活性位点的角度综述近年来黄铁矿抑制领域的研究进展,通过对比目前各类黄铁矿抑制方法的优缺点,就吸附掩盖活性位点和氧化转化活性位点两个方向提出具有潜力的研究方向。
在吸附掩盖活性位点方面,可以结合机器学习(ML)和定量构效关系(QSAR)助力人工智能浮选(AI-Flotation)的发展,开发高通量筛选浮选药剂的新技术框架与新方法;在氧化转化活性位点方面,基于黄铁矿与其他硫化矿氧化还原电位的差异,选择合适的光催化剂或光敏化剂钝化黄铁矿表面,有望实现黄铁矿的选择性氧化抑制。