高中物理高考复习题教案牛顿运动定律的应用
高考物理一轮复习第三章牛顿运动定律第2单元牛顿运动定律的应用教案

第2单元 牛顿运动定律的应用一、牛顿运动定律在动力学问题中的应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(1)已知受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.(2)已知运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.常用的运动学公式为匀变速直线运动公式,2/2,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型.(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.(3)分析研究对象的受力情况和运动情况.(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.(6)求解方程,检验结果,必要时对结果进行讨论.3.应用例析【例1】一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g 取10 m/s 2)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.【例2】如图所示,一高度为h =0.8m 粗糙的水平面在B 点处与一倾角为θ=30°光滑的斜面BC 连接,一小滑块从水平面上的A 点以v 0=3m/s 的速度在粗糙的水平面上向右运动。
高三物理复习 第3讲 牛顿运动定律的综合应用精品教案

第3讲牛顿运动定律的综合应用对应学生用书P441.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)等于零的情况称为完全失重现象.(2)1.理解及掌握以下几个问题:(1)灵活运用隔离法和整体法求解加速度相等的连接体问题;(2)用正交分解法解决受力复杂的问题;(3)综合运用牛顿运动定律和运动学规律分析、解决多阶段(过程)的运动问题;(4)运用超重和失重的知识定性分析一些力学现象.另外,还应具有将实际问题抽象成物理模型的能力.2.牛顿定律应用中的整体法和隔离法(1)整体法当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力和运动情况,运用牛顿第二定律对整体列方程求解的方法.(2)隔离法当研究对象涉及由多个物体组成的系统时,若要求出连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.1.关于超重和失重的下列说法中,正确的是( ).A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了B.物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用C.物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化解析物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,超重和失重并非物体的重力发生变化,而是物体对支持物的压力或对悬挂物的拉力发生了变化,综上所述,A、B、C均错,D正确.答案 D2.下列说法正确的是( ).A.体操运动员双手握住单杠吊在空中不动时处于失重状态B.蹦床运动员在空中上升和下落过程中都处于失重状态C.举重运动员在举起杠铃后不动的那段时间内处于超重状态D.游泳运动员仰卧在水面静止不动时处于失重状态解析运动员是否超失重取决于加速度方向,A、C、D三个选项中,运动员均处于平衡状态,不超重也不失重.答案 B3.图3-3-1如图3-3-1所示,质量m=1 kg、长L=0.8 m的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F=5 N的水平力向右推薄板,使它翻下桌子,力F的作用时间至少为(取g=10 m/s2)( ).A.0.8 s B.1.0 sC.255 s D.2510 s解析板在F作用下做加速运动F-μmg=ma1,a1=1 m/s2,v2=2a1s1,F撤去后物体做减速运动,μmg=ma2,a2=4 m/s2.速度减为零v 2=2a 2s 2.当板的重心越过桌子边缘会自动翻下桌子, 则有s 1+s 2=L2.v 22a 1+v 22a 2=L2,v =0.8 m/s , t 1=va 1=0.8 s ,故A 项正确.答案 A4.如图3-3-2所示,两个质量分别为m 1=1 kg 、m 2=4 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接.两个大小分别为F 1=30 N 、F 2=20 N 的水平拉力分别作用在m 1、m 2上,则达到稳定状态后,下列说法正确的是( ).图3-3-2A .弹簧秤的示数是25 NB .弹簧秤的示数是50 NC .在突然撤去F 2的瞬间,m 2的加速度大小为7 m/s 2D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 2解析 本题考查用整体法、隔离法分析物体受力以及牛顿第二定律的应用.以m 1、m 2以及弹簧为研究对象,则整体向右的加速度a =F 1-F 2m 1+m 2=2 m/s 2;再以m 1为研究对象,设弹簧的弹力为F ,则F 1-F =m 1a ,则F =28 N ,A 、B 错误;突然撤去F 2的瞬间,弹簧的弹力不变,此时m 2的加速度a =Fm 2=7 m/s 2,C 正确;突然撤去F 1的瞬间,弹簧的弹力也不变,此时m 1的加速度a =F m 1=28 m/s 2,D 错误.答案 C 5.一个小孩从滑梯上滑下的运动可看作匀加速直线运动,第一次小孩单独从滑梯上滑下,运动时间为t 1,第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),运动时间为t 2,则( ).A .t 1=t 2B .t 1<t 2C .t 1>t 2D .无法判断t 1与t 2的大小解析 设滑梯与水平面的夹角为θ,则第一次时,a 1=m 1g sin θm 1=g sin θ,第二次时a 2=m 1+m 2g sin θm 1+m 2=g sin θ,所以a 1=a 2,与质量无关.又s =12at 2,t 与m 也无关,A 正确.答案 A对应学生用书P45考点一 超重、失重的理解及应用(小专题)1.不论超重、失重或完全失重,物体的重力不变,只是“视重”改变.2.物体是否处于超重或失重状态,不在于物体向上运动还是向下运动,而在于物体是有向上的加速度还是有向下的加速度.3.当物体处于完全失重状态时,重力只产生使物体具有a =g 的加速度效果,不再产生其他效果.平常一切由重力产生的物理现象都会完全消失.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma . 【典例1】一枚火箭由地面竖直向上发射,其速度和时间的关系图线如图3-3-3所示,则( ).图3-3-3A .t 3时刻火箭距地面最远B .t 2~t 3的时间内,火箭在向下降落C .t 1~t 2的时间内,火箭处于失重状态D .0~t 3的时间内,火箭始终处于失重状态解析 由速度图象可知,在0~t 3内速度始终大于零,表明这段时间内火箭一直在上升,t 3时刻速度为零,停止上升,高度达到最高,离地面最远,A 正确、B 错误.t 1~t 2的时间内,火箭在加速上升,具有向上的加速度,火箭应处于超重状态,而在t 2~t 3时间由火箭在减速上升,具有向下的加速度,火箭处于失重状态,故C 、D 错误.答案 A 【变式1】在升降电梯内的地面上放一体重计,图3-3-4电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg ,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图3-3-4所示,在这段时间内下列说法中正确的是( ).A .晓敏同学所受的重力变小了B .晓敏对体重计的压力小于体重计对晓敏的支持力C .电梯一定在竖直向下运动D .电梯的加速度大小为g5,方向一定竖直向下解析 晓敏在这段时间内处于失重状态,是由于晓敏对体重计的压力变小了,而晓敏的重力没有改变,A 选项错;晓敏对体重计的压力与体重计对晓敏的支持力是一对作用力与反作用力,大小一定相等,B 选项错,以竖直向下为正方向,有:mg -F =ma ,即50g -40g =50a ,解得a =g5,方向竖直向下,但速度方向可能是竖直向上,也可能是竖直向下,C 选项错、D 选项正确.答案 D 【变式2】(2012·梅州模拟)图3-3-52009年当地时间9月23日,在位于印度安得拉邦斯里赫里戈达岛的萨蒂什·达万航天中心,一枚PSLV—C14型极地卫星运载火箭携带七颗卫星发射升空,成功实现“一箭七星”发射,相关图片如图3-3-5所示.则下列说法不正确的是( ).A.火箭发射时,喷出的高速气流对火箭的作用力大于火箭对气流的作用力B.发射初期,火箭处于超重状态,但它受到的重力却越来越小C.高温高压燃气从火箭尾部喷出时对火箭的作用力与火箭对燃气的作用力大小相等D.发射的七颗卫星进入轨道正常运转后,均处于完全失重状态解析由作用力与反作用力大小相等,可知A错误;火箭发射初期,因为火箭向上加速运动,故处于超重状态,随着火箭距地越来越远,所受的重力也越来越小,B正确;由作用力与反作用力的关系可知C正确;卫星进入轨道正常运转后,所受的万有引力充当向心力,此时各卫星均处于完全失重状态,D正确.答案 A考点二牛顿定律解题中整体法和隔离法的应用1.隔离法的选取原则:若连接体或关联体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.2.整体法的选取原则:若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体来分析整体受到的外力,应用牛顿第二定律求出加速度(或其他未知量).3.整体法、隔离法交替运用原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典例2】如图3-3-6所示,图3-3-6车厢在运动过程中所受阻力恒为F阻,当车厢以某一加速度a向右加速时,在车厢的后壁上相对车厢静止着一物体m,物体与车厢壁之间的动摩擦因数为μ,设车厢的质量为M,则车厢内发动机的牵引力至少为多少时,物体在车厢壁上才不会滑下来?解析以车厢和物块整体为研究对象,则由牛顿第二定律得:F-F阻=(M+m)a.①以物块为研究对象,受力情况如图所示,其中F摩擦力则F=mg=μF N.而F N=ma,所以a=gμ,代入①得F=F阻+(M+m)gμ.答案F阻+(M+m)gμ(1)研究对象的选取方法:整体法和隔离法.(2)对研究对象所受力的处理方法①合成法若物体只受两个力作用而产生加速度时,利用平行四边形定则求出两个力的合外力方向就是加速度方向.②分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法.分解方式有两种:分解力或者分解加速度.【变式3】质量为M的光滑圆槽放在光滑水图3-3-7平面上,一水平恒力F作用在其上促使质量为m的小球静止在圆槽上,如图3-3-7所示,则( ).A.小球对圆槽的压力为MF m+MB.小球对圆槽的压力为mF m+MC.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力增加D.水平恒力F变大后,如果小球仍静止在圆槽上,小球对圆槽的压力减小解析利用整体法可求得系统的加速度为a=FM+m,对小球利用牛顿第二定律可得:小球受到圆槽的支持力为mg2+m2F2M +m2,由牛顿第三定律可知只有C选项正确.答案 C对应学生用书P462.传送带模型图3-3-8(2)模型特点物体在传送带上运动时,往往会牵涉到摩擦力的突变和相对运动问题.当物体与传送带相对静止时,物体与传送带间可能存在静摩擦力也可能不存在摩擦力.当物体与传送带相对滑动图3-3-9200 cm/s的速度匀速运动,如图点由静止释放,物体与传送带间的动摩擦因数0.011 km=11由牛顿第二定律得物体的加速度图3-3-10皮带以12 m/s的速率沿顺时针方向转动,如图度地放上一个质量为度为24 m,g取10 m/s对应学生用书P47一、对超重、失重的考查(中频考查)1.图3-3-11(2010·海南高考)如图3-3-11所示,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为( ).①加速下降 ②加速上升 ③减速上升 ④减速下降 A .①② B .③④ C .①③ D .②④解析 木箱静止时物块对箱顶有压力,则物块受到箱顶向下的压力,当物块对箱顶刚好无压力时,表明系统有向上的加速度,是超重,所以木箱的运动状态可能为减速下降或加速上升,故②④正确.答案 D 2.图3-3-12(2010·浙江理综,14)如图3-3-12所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力).下列说法正确的是( ).A .在上升和下降过程中A 对B 的压力一定为零 B .上升过程中A 对B 的压力大于A 物体受到的重力C .下降过程中A 对B 的压力大于A 物体受到的重力D .在上升和下降过程中A 对B 的压力等于A 物体受到的重力解析 对于A 、B 整体只受重力作用,做竖直上抛运动,处于完全失重状态,不论上升还是下降过程,A 对B 均无压力,只有A 项正确.答案 A3.(2011·天津卷,9(1))某同学利用测力计研究在竖直方向运行的电梯的运动状态.他在地面上用测力计测量砝码的重力,示数为G .他在电梯中用测力计仍测量同一砝码的重力,发现测力计的示数小于G ,由此判断此时电梯的运动状态可能是______________.解析 由加速度a 方向向上超重,加速度a 方向向下失重,得电梯此时向上减速或向下加速.答案 减速上升或加速下降二、对整体法和隔离法应用的考查(中频考查) 4.图3-3-13(2011·课标全国卷,21)如图3-3-13所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2.下列反映a 1和a 2变化的图线中正确的是( ).解析 刚开始木块与木板一起在F 作用下加速,且F =kt ,a =Fm 1+m 2=ktm 1+m 2,当相对滑动后,木板只受滑动摩擦力,a 1不变,木块受F 及滑动摩擦力,a 2=F -μm 2g m 2=Fm 2-μg ,故a 2=ktm 2-μg ,a -t 图象中斜率变大,故选项A 正确,选项B 、C 、D 均错误. 答案 A。
高中物理三牛顿运动定律的应用-教案

三/D 牛顿运动定律的应用一、任务分析本节内容是对牛顿运动定律的综合提高和延伸,也为学习以后的物理学习打好力学基础。
学习本节内以受力分析、力的合成与分解、匀加速直线运动规律、牛顿运动定律等基础知识和相应的技能为基础。
通过实例情景和学生活动,了解建立国际单位制的重要性和必要性,介绍用国际单位制及其应用。
通过对典型示例的分析和讨论,归纳出用牛顿运动定律解决力学问题的一般规律和方法。
通过对观察录像、演示实验和学生小实验,感受超重、失重现象,应用牛顿第二定律分析、探究超重、失重现象的本质与规律。
二、教学目标知识与技能:1、知道国际单位制。
知道基本单位和导出单位。
理解力学中的三个基本单位。
2、学会导出单位的推演方法并能进行单位换算。
3、掌握用牛顿运动定律解决力学问题的一般规律和方法。
4、知道超重和失重现象。
5、学会用牛顿第二定律分析超重、失重现象。
过程与方法:1、通过对典型示例的分析、讨论过程,认识分析、比较、等效、演绎、归纳、验证等科学方法。
2、通过对电梯中进行的超重失重实验的定性观察和学生小实验,感受用牛顿运动定律解决实际问题的一般规律和方法。
情感态度与价值观:1、通过阅读关于“火星探测器失事原因”的STS材料,在了解统一单位重要性的同时,感悟严谨的治学态度对科学发展的重大意义。
2、通过应用牛顿运动定律解决实际问题的过程,感悟物理学在社会发展中的重要作用。
3、通过学生实验的过程,激发求知欲,获得成就感。
4、通过观察神舟六号飞船录像片段,了解我国航天事业的发展,激发民族自豪感。
三、教学重点和难点重点:怎样应用牛顿运动定律解决力学问题。
难点:对超重失重现象的认识。
四、教学媒体1、器材:演示超重、失重的DIS实验器材,改锥,饮料瓶(人手一个)。
2、课件:宇航员躺在舱内座椅上的图片,刊登宇航员训练过程的报道文章。
3、录像:神舟六号飞船升空的相关片断,神舟号航天员在太空失重的录像(或在电梯中进行的超重失重演示实验)。
2021年高考一轮复习教案之牛顿运动定律的应用Word版含答案

牛顿运动定律的应用一、牛顿第确定律一切物体总保持匀速运动状态或静止状态,直到有外力迫使它转变这种状态为止。
1.牛顿第确定律导出了力的概念力是转变物体运动状态的缘由。
(运动状态指物体的速度)又依据加速度定义:tva ∆∆=,有速度变化就确定有加速度,所以可以说:力是使物体产生加速度的缘由。
(不能说“力是产生速度的缘由”、“力是维持速度的缘由”,也不能说“力是转变加速度的缘由”。
)2.牛顿第确定律导出了惯性的概念一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态转变的难易程度(惯性大的物体运动状态不简洁转变)。
质量是物体惯性大小的量度。
3.牛顿第确定律描述的是抱负化状态牛顿第确定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的。
物体不受外力和物体所受合外力为零的效果都是保持原有运动状态,但它们在本质上是有区分的,不能把牛顿第确定律当成牛顿其次定律在F =0时的特例。
二、牛顿第三定律两个物体间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。
1.区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。
不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力确定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力确定是同时产生同时消逝的,而平衡力中的一个消逝后,另一个可能照旧存在。
2.一对作用力和反作用力的冲量和功一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量确定为零,但作的总功可能为零、可能为正、也可能为负。
这是由于作用力和反作用力的作用时间确定是相同的,而位移大小、方向都可能是不同的。
三、牛顿其次定律物体的加速度跟所受的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同。
即F =ma 。
特殊要留意表述的第三句话。
由于力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。
牛顿运动定律高考复习教案

牛顿运动定律高考复习教案一、教学目标1. 知识与技能:(1)理解牛顿运动定律的基本概念和原理;(2)掌握运用牛顿运动定律解决实际问题的方法。
2. 过程与方法:(1)通过复习牛顿运动定律,提高学生的分析问题和解决问题的能力;(2)培养学生运用物理知识解决实际问题的能力。
3. 情感态度价值观:(1)激发学生对物理学科的兴趣和热情;(2)培养学生科学思维和探索精神。
二、教学内容1. 牛顿运动定律的概述(1)牛顿运动定律的定义;(2)牛顿运动定律的内容及其相互关系。
2. 牛顿第一定律(1)惯性的概念及其性质;(2)静止和匀速直线运动状态的判断;(3)外力作用下物体运动状态的改变。
3. 牛顿第二定律(1)力与加速度的关系;(2)质量的概念及其作用;(3)矢量合成的方法。
4. 牛顿第三定律(1)作用力和反作用力的概念;(2)作用力和反作用力的大小和方向关系;(3)作用力和反作用力在实际中的应用。
三、教学重点与难点1. 教学重点:(1)牛顿运动定律的基本概念和原理;(2)运用牛顿运动定律解决实际问题的方法。
3. 教学难点:(1)牛顿运动定律在不同情境下的应用;(2)矢量合成的方法。
四、教学方法1. 讲授法:讲解牛顿运动定律的基本概念和原理;2. 案例分析法:分析实际问题,引导学生运用牛顿运动定律解决问题;3. 讨论法:分组讨论,分享各自解决问题的方法和经验;4. 练习法:布置练习题,巩固所学知识。
五、教学过程1. 引入新课:通过回顾生活中的实例,引导学生思考物体运动规律;2. 讲解牛顿运动定律的基本概念和原理;3. 分析实际问题,讲解运用牛顿运动定律解决问题的方法;4. 学生分组讨论,分享各自解决问题的方法和经验;5. 布置练习题,让学生巩固所学知识。
教学反思:在教学过程中,要关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。
通过案例分析和练习题,让学生充分理解和掌握牛顿运动定律的应用。
在讨论环节,鼓励学生积极参与,培养学生的合作意识和沟通能力。
高考物理一轮复习教案: 牛顿运动定律的综合应用 Word版含解析

考点二牛顿运动定律的综合应用基础点知识点1牛顿运动定律的综合应用1.动力学的两类基本问题第一类:已知受力情况求物体的运动情况;第二类:已知运动情况求物体的受力情况。
2.解决两类基本问题的方法:以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:知识点2超重和失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较知识点3动力学中的图象问题1.动力学中常见的图象v-t图象、x-t图象、F-t图象、F-a图象等。
2.解决图象问题的关键:(1)看清图象的横、纵坐标所表示的物理量及单位并注意坐标原点是否从零开始。
(2)理解图象的物理意义,能够抓住图象的一些关键点,如斜率、截距、面积、交点、拐点等,判断物体的运动情况或受力情况,再结合牛顿运动定律求解。
重难点一、应用牛顿运动定律解决两类动力学问题1.两类动力学问题及解题思路(1)已知物体的受力情况,求解物体的运动情况解决这类题目,一般是先分析物体的受力情况,求出合外力,再应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体运动的情况,即求出物体在任意时刻的位置、速度及运动轨迹。
流程图如下:物体的受力情况―→物体的合外力―→加速度―→运动学公式―→物体的运动情况(2)已知物体的运动情况,求解物体的受力情况解决这类题目,一般是先应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。
流程图如下:物体的运动情况―→运动学公式―→加速度―→物体的合外力―→物体的受力情况2.解决两类动力学问题的一般步骤可简记为:选对象,建模型;画草图,想情景;分析状态和过程;找规律、列方程;检验结果行不行。
高中物理 第3章 牛顿运动定律 5 牛顿运动定律的应用教案 教科版必修1

学习资料牛顿运动定律的应用学习目标知识脉络(教师用书独具)1。
进一步掌握受力分析的方法,并能结合物体的运动情况进行受力分析.(重点)2.知道动力学的两类问题.理解加速度是解决两类动力学问题的桥梁.(重点)3.掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学公式解决有关问题.(重点、难点)一、已知受力确定运动情况1.牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况和受力情况联系起来.2.如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学规律确定物体的运动情况.二、已知运动确定受力情况1.如果已知物体的运动情况,根据运动学公式求出物体的加速度,再根据牛顿第二定律就可以确定物体所受的力.2.解决动力学问题的关键:对物体进行正确的受力分析和运动情况分析,并抓住受力情况和运动情况之间联系的桥梁——加速度.1.思考判断(1)根据物体加速度的方向可以判断物体所受合外力的方向.(√)(2)根据物体加速度的方向可以判断物体受到的每个力的方向.(×)(3)物体运动状态的变化情况是由它的受力决定的.(√)(4)物体运动状态的变化情况是由它对其他物体的施力情况决定的。
(×)(5)物体的运动情况仅由物体所受的合力所决定的.(×)2.A、B两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B相比为() A.x A=x B B.x A〉x BC.x A<x B D.不能确定A[A、B两物体在滑行过程中所受合外力等于它们所受的滑动摩擦力,由牛顿第二定律知,-μmg=ma,得a=-μg,由运动学公式v错误!-v错误!=2ax得,x=错误!,故x A=x B,选项A正确,选项B、C、D错误.]3.质量为0.2 kg的物体从36 m高处由静止下落,落地时速度为24 m/s,则物体在下落过程中所受的平均阻力是多少?(g取10 m/s2)[解析] 由运动学公式v错误!-v错误!=2ax得加速度a=错误!=错误!m/s2=8 m/s2.物体受力分析如图所示,由牛顿第二定律得F合=ma=0.2×8 N=1.6N,而F合=mg-F阻,则物体在下落过程中所受的平均阻力F阻=mg-F合=0.2×10 N-1。
高中物理总复习--物理牛顿运动定律的应用

高中物理总复习--物理牛顿运动定律的应用一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度; (2)物块沿x 轴正方向运动的最远距离; (3)物体运动的总时间为多长? 【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s 【解析】 【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间. 【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v vs t t +==,得:t 1=0.4s 接着物块向左作匀加速直线运动:221m/s qE mg a m=μ-=.根据:212212s a t =得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mga g mμμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++= 【点睛】本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.3.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理高考复习题教案牛顿运动定律的应用教学目标:1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解3.理解超重、失重的概念,并能解决有关的问题4.掌握应用牛顿运动定律分析问题的基本方法和基本技能教学重点:牛顿运动定律的综合应用教学难点:受力分析,牛顿第二定律在实际问题中的应用教学方法:讲练结合,计算机辅助教学教学过程:一、牛顿运动定律在动力学问题中的应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题):(1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.两类动力学基本问题的解题思路图解如下:可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。
点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如2/2,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型.(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.(3)分析研究对象的受力情况和运动情况.(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个牛顿第二定律 加速度a 运动学公式 运动情况 第一类问题 受力情况 加速度a另一类问题牛顿第二定律 运动学公式方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.(6)求解方程,检验结果,必要时对结果进行讨论.3.应用例析【例1】一斜面AB长为10m,倾角为30°,一质量为2kg的小物体(大小不计)从斜面顶端A点由静止开始下滑,如图所示(g取10 m/s2)(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B点时的速度及所用时间.(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数μ是多少?解析:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。
(1)以小物块为研究对象进行受力分析,如图所示。
物块受重力mg、斜面支持力N、摩擦力f,垂直斜面方向上受力平衡,由平衡条件得:mg cos30°-N=0沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma又f =μN由以上三式解得a =0.67m/s 2小物体下滑到斜面底端B 点时的速度:==as v B 2 3.65m/s 运动时间:5.52==as t s (2)小物体沿斜面匀速下滑,受力平衡,加速度a =0,有垂直斜面方向:mg cos30°-N =0沿斜面方向:mg sin30°-f =0又f =μN解得:μ=0.58【例2】如图所示,一高度为h =0.8m 粗糙的水平面在B 点处与一倾角为θ=30°光滑的斜面BC 连接,一小滑块从水平面上的A 点以v 0=3m/s 的速度在粗糙的水平面上向右运动。
运动到B 点时小滑块恰能沿光滑斜面下滑。
已知AB 间的距离s =5m ,求:(1)小滑块与水平面间的动摩擦因数;(2)小滑块从A 点运动到地面所需的时间;解析:(1)依题意得v B1=0,设小滑块在水平面上运动的加速度大小为a ,则据牛顿第二定律可得f =μmg =ma ,所以a =μg ,由运动学公式可得gs v μ220=得09.0=μ,t 1=3.3s(2)在斜面上运动的时间t 2=s g h 8.0sin 22=θ,t =t 1+t 2=4.1s 【例3】静止在水平地面上的物体的质量为2 kg ,在水平恒力F 推动下开始运动,4 s 末它的速度达到4m/s ,此时将F 撤去,又经6 s 物体停下来,如果物体与地面的动摩擦因数不变,求F 的大小。
解析:物体的整个运动过程分为两段,前4 s 物体做匀加速运动,后6 s 物体做匀减速运动。
前4 s 内物体的加速度为2211/1/440s m s m t v a ==-=① 设摩擦力为μF ,由牛顿第二定律得1ma F F =-μ ②后6 s 内物体的加速度为2222/32/640s m s m t v a -=-=-=③ 物体所受的摩擦力大小不变,由牛顿第二定律得2ma F =-μ ④由②④可求得水平恒力F 的大小为N N a a m F 3.3)321(2)(21=+⨯=-= 点评:解决动力学问题时,受力分析是关键,对物体运动情况的分析同样重要,特别是像这类运动过程较复杂的问题,更应注意对运动过程的分析。
在分析物体的运动过程时,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的瞬时速度即是前后过程的联系量。
分析受力时要注意前后过程中哪些力发生了变化,哪些力没发生变化。
四、连接体(质点组)在应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。
这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。
以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。
使解题过程简单明了。
二、整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
可得F m m m F BA B N += 点评:这个结论还可以推广到水平面粗糙时(A 、B 与水平面间μ相同);也可以推广到沿斜面方向推A 、B 向上加速的问题,有趣的是,答案是完全一样的。
【例5】如图所示,质量为2m 的物块A 和质量为m 的物块B 与地面的摩擦均不计.在已知水平推力F 的作用下,A 、B 做加速运动.A 对B 的作用力为多大?解析:取A 、B 整体为研究对象,其水平方向只受一个力F 的作用根据牛顿第二定律知:F =(2m +m )aa =F /3m取B 为研究对象,其水平方向只受A 的作用力F 1,根据牛顿第二定律知: F 1=ma故F 1=F /3点评:对连结体(多个相互关联的物体)问题,通常先取整体为研究对象,然后再根据要求的问题取某一个物体为研究对象.【例6】 如图,倾角为α的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。
求水平面给斜面的摩擦力大小和方向。
解:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。
可以先求出木块的加速度()αμαcos sin -=g a ,再在水平方向对质点组用牛顿第二定律,很容易得到:ααμαcos )cos (sin -=mg F f如果给出斜面的质量M ,本题还可以求出这时水平面对斜面的支持力大小为:F N =Mg +mg (cos α+μsin α)sin α,这个值小于静止时水平面对斜面的支持力。
【例7】如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。
用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。
当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。
这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2B A B A 3.3m/s =+==m m F a a αA B F(2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 2【例8】如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少?命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求.错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.解题方法与技巧:解法一:(隔离法)木箱与小球没有共同加速度,所以须用隔离法.取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图.据物体平衡条件得:F N -F f ′-Mg =0② 且F f =F f ′③ 由①②③式得F N =22m M +g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22m M +g . 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N = ma +M ×0故木箱所受支持力:F N =22m M +g ,由牛顿第三定律知: 木箱对地面压力F N ′=F N =22m M +g . 三、临界问题在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。