锐角三角函2015
锐角三角函数_知识讲解

锐角三角函数—知识讲解责编:康红梅【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值;3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即s i n A aA c∠==的对边斜边;Ca b锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c o s A bA c∠==的邻边斜边; 锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c∠==的对边斜边;cos B a B c ∠==的邻边斜边;tan B b B B a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA>0.要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【思路点拨】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【答案】D.【解析】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【总结升华】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(1)-(2)】【变式】在RtΔABC中,∠C=90°,若a=3,b=4,则c=,sinA=,c o s A=,sinB=,cosB=.a【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模) 6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==12-(2) 原式=×﹣4×()2+×=﹣3+3;(3) 原式=+﹣=2+﹣=3﹣2+2【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称: 锐角三角函数 高清ID 号:395948 关联的位置名称(播放点名称):例1(3)-(4)】【变式】在Rt ΔABC 中,∠C =90°,若∠A=45°,则∠B = , sinA = ,cosA =,sinB =,cosB = .【答案】∠B =45°,sinA =2, cosA =2,sinB =2, cosB =2.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD 与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC ,∵ AB 是⊙O 的直径,∴ ∠ACP =90°,又∵ ∠B =∠D ,∠PAB =∠PCD ,∴ △PCD ∽△PAB ,∴ PC CD PAAB=.又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CD PAAB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BC AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______. (3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB==得BC =3a ,∴4AC a ==,∴ CD =5a-4a =a ,BD ==,∴ sadA BD AD==.【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA=1;(2)在图①中设想AB =AC 的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BCWORD完美格式接近2AB,则sadA接近2但小于2,故sadA<2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.专业知识编辑整理。
2015年人教版28.2锐角三角函数提高练习题及答案

28.1锐角三角函数(3)一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30° B.45° C.60° D.90°2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.333.计算30tan 2-2sin60°cos45°+3tan30°sin45°=_______________. 4.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________ 二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( ) A.30° B.45° C.60° D.90°2.已知α为锐角,tanα=3,则cosα等于( )A.21 B.22C.23 D.333.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.4.如图1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.5.如图2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)三、课后巩固(30分钟训练)1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________.2.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.3.如图3.在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.4.如图4,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.5.如图,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?6.如图,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.28.2 解直角三角形(1)1.在下面条件中不能解直角三角形的是( )A .已知两条边B .已知两锐角C .已知一边一锐角D .已知三边3.在△ABC 中,∠C=90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,有下列关系式:•①b=ccosB ,②b=atanB ,③a=csinA ,④a=bcotB ,其中正确的有( )个 A .1 B .2 C .3 D .4 4.为测一河两岸相对两电线杆A 、B 间距离,在距A 点15m 的C 处,(AC ⊥AB ),测得∠ACB=50°,则A 、B 间的距离应为( )m A .15sin50°B .15cos50° C .15tan50°D .15/tan50° 5.在△ABC 中,∠C=90°,5/2,则斜边c=_____,∠A 的度数是____. 6.在直角三角形中,三个内角度数的比为1:2:3,若斜边为a ,•则两条直角边的和为________. 7.四边形ABCD 中,∠C=90°,AB=12,BC=4,CD=3,AD=13,•则四边形ABCD•的面积为________. 8.如图1,小明想测量电线杆AB•的高度,•发展电线杆的影子恰好落在土坡的坡面CD 和地面BC 上,量得CD=4米,BC=10米,CD 与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为_______米.1.411.73)9.如图2,在Rt △ABC 中,a ,b 分别是∠A ,∠B 的对边,c 为斜边,如果已知两个元素a ,∠B ,就可以求出其余三个未知元素b ,c ,∠A .第一步:已知:a,∠B,用关系式:_______________,求出:_________________; 第二步:已知:_____,用关系式:_______________,求出:_________________; 第三步:已知:_____,用关系式:_______________,求出:_________________. 10.在等腰梯形ABCD 中,AB ∥CD ,CD=3cm ,AB=7cm ,高为,求底角B 的度数.11.如图3,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BCD=α,• 求cos α的值.12.国家电力总公司为了改善农村用电量过高的现状,目前正在全面改造各地农村的运行电网,莲花村六组有四个村庄A ,B ,C ,D 正好位于一个正方形的四个顶点,•现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图所示的实线部分,请你帮助计算一下,哪种架).13.在Rt △ABC 中,∠C=90°,斜边c=5,两直角边的长a ,b 是关于x 的一元二次方程x 2-mx+2m-2=0的两个根,求Rt △ABC 中较小锐角的余弦值.14.如图,AD ⊥CD ,AB=10,BC=20,∠A=∠C=30°,求AD ,CD 的长.15.(宜昌)如图,•某一时刻太阳光从教室窗户射入室内,•与地面的夹角∠BPC 为30°,窗户的一部分在教室地面所形成的影长PE 为3.5m ,窗户的高度AF 为2.5m ,求窗外遮阳篷外端一点D 到窗户上椽的距离AD .(结果精确到0.1m )b c aABCD28.1锐角三角函数(二)答案一、课前预习 (5分钟训练)1.在△ABC 中,∠C=90°,AC=1,AB=2,则∠B 的度数是( )A.30°B.45°C.60°D.90° 解:∵sinB=22,∴∠B=45°.答案:B2.∠B 是Rt △ABC 的一个内角,且sinB=23,则cosB 等于( ) A.3 B.23C.21 D.33解:由sinB=23得∠B=60°,∴cosB=21.答案:C 3.计算︒30tan 2-2sin60°cos45°+3tan30°sin45°=_______________.解:︒30tan 2-2sin60°cos45°+3tan30°sin45°=322233322232332=⨯⨯+⨯⨯- 答案:324.计算cos60°sin30°-tan60°tan45°+(cos30°)2=___________________.解:cos60°sin30°-tan60°tan45°+(cos30°)2=21×21-3×1+(23)2=1-3. 答案:1-3二、课中强化(10分钟训练)1.在△ABC 中,∠C=90°,AC=1,BC=3,则∠B 的度数是( )A.30°B.45°C.60°D.90°解:tanB=33,∴∠B=30°. 答案:A2.已知α为锐角,tanα=3,则cosα等于( )A.21B.22 C.23 D.33 解析:由tanα=3求得α=60°,故cosα=21.答案:A 3.若|3-2sinα|+(tanβ-1)2=0,则锐角α=____________,β=______________.解析:由题意得sinα=23,tanβ=1, ∴α=60°,β=45°. 答案:60° 45°4.如图28-1-2-1,已知△ABC 中,∠C=90°,∠A=60°,a=15,根据定义求∠A,∠B 的三角函数值.图28-1-2-1解:在Rt △ABC 中,∠B=90°-∠A=90°-60°=30°. b=21c,c 2=a 2+b 2=152+41c 2.∴c 2=300,即c=310.∴b=35.∴sinA=23=c a ,cosA=c b =21,tanA=3=b a ,sinB=cb=21,cosB=23=c a ,,tanB=33=a b 5.如图28-1-2-2,沿倾斜角为30°的山坡植树,要求相邻两棵树的水平距离AC 为2 m ,那么相邻两棵树的斜坡距离AB 约为多少米?(精确到0.1 m ,可能用到的数据2≈1.41,3≈1.73)图28-1-2-2解:∵∠BCA=90°,∴cos ∠BAC=ABAC.∵∠BAC=30°,AC=2,∴AB=︒30cos 2≈2.3.答:相邻两棵树的斜坡距离AB 约为2.3 m.三、课后巩固(30分钟训练) 1.已知△ABC 中,∠C=90°,a=35,∠B=30°,则c=_____________. 解析:由cosB=ca ,得c=Bacos =10.答案:102.已知Rt △ABC 中,∠C=90°,∠A=60°,a -b=2,则c=________________.解析:tanA 3=ba,又a -b=2, ∴a=3+3,c=Aasin =2+32. 答案:2+323.如图28-1-2-4,在△ABC 中,∠B=30°,sinC=54,AC=10,求AB 的长.图28-1-2-4解:作AD ⊥BC,垂足为点D ,在Rt △ADC 中,AD=AC·sinC=8, 在Rt △ADB 中,AB=BADsin=16.4.如图28-1-2-5,已知在Rt △ABC 中,∠C=90°,∠A=30°,D 在AC 上且∠BDC=60°,AD =20,求BC.图28-1-2-5解:设DC=x,∵∠C=90°,∠BDC=60°, 又∵DCBC=tan ∠BDC,∴BC=DCtan60°=3x.∵∠C=90°,∠A=30°,tanA=ACBC,∴AC=3x.∵AD=AC -DC,AD=20, ∴3x -x=20,x =10. ∴BC=3x=103.5.如图28-1-2-7,在旧城改造中,要拆除一建筑物AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区.现在从离点B 24 m 远的建筑物CD 的顶端C 测得点A 的仰角为45°,点B 的俯角为30°,问离点B 35 m 处的一保护文物是否在危险区内?图28-1-2-7解:在Rt △BEC 中,CE=BD=24,∠BCE=30°, ∴BE=CE·tan30°=38.在Rt △AEC 中,∠ACE=45°,CE=24,∴AE=24.∴AB=24+38≈37.9(米).∵35<37.9,∴离点B 35 m 处的一保护文物在危险区内. 答:略.6.如图28-1-2-8,在高出海平面200 m 的灯塔顶端,测得正西和正东的两艘船的俯角分别是45°和30°,求两船的距离.图28-1-2-8.解:如题图,A 表示灯塔的顶端,B 表示正东方向的船,C 表示正西方向的船,过A 作AD ⊥BC 于D ,则AD=200 (m),∠B=30°,∠C=45°. 从而在Rt △ADC 中,得CD=AD=200,在Rt △ADB 中, ∵tanB=BDAD,∴BD=3200tan =BAD.∴BC=CD+BD=200+3200≈546.4(m).答:两船距离约为546.4 m.28.2 解直角三角形(一)答案:1.B 2.D 3.C 4.C 5°6.12a 7.36 8.8.7 9.略 10.60° • •11.cos α12.设正方形边长为a ,则(1)3a ,(2)3a ,(3)(a ,(4))a ∴第(4)种方案最省电线13.4514.,15.过点E 作EG ∥AC 交BP 于点G ,∵EF ∥DP ,∴四边形BEFG 是平行四边形. 在Rt △PEG 中,PE=3.5,∠P=30°,tan ∠EPG=EGEP,∴EG=EP ·tan ∠ADB=3.5×tan30°≈2.02(或. 又∵四边形BFEG 是平行四边形,∴BF=EG=2.02,∴AB=AF-BF=2.5-2.02=0.48(或).又∵AD ∥PE ,∠BDA=∠P=30°, 在Rt•△BAD 中,tan30°=,ABADtan 30AB AD ∴=︒=0.48)≈0.8(m ),∴所求的距离AD 约为0.8m .。
5.2特殊角的三角函数值的计算(2015年)

1. (2015 内蒙古兴安盟) 计算:2sin45°+(﹣2)2﹣+(2015﹣π)0.答案:解:原式=2×+4﹣+1=5.2. (2015 黑龙江省绥化市) 先化简 ,再求值。
x x x x x x x 444122x 22-÷⎪⎭⎫⎝⎛+----+ , 其中 x =tan 600+2。
答案:解:原式=[﹣]•=•=•=,当x=tan60°+2=+2时,原式=.3. (2015 四川省南充市) 计算的结果是_____.答案:答案解析试题分析:首先根据二次根式和三角函数求出各式的值,然后进行计算.原式=2-2×=.4. (2015 山东省淄博市) 若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°答案:分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得出45°<α<90°;再由特殊角的三角函数值及正切函数随锐角的增大而增大,得出0<α<60°;从而得出45°<α<60°.解答:解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.点评:本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.5. (2015 江苏省无锡市) tan45º的值为()A.12B.1 C.22D. 2答案:】.分析:根据45°角这个特殊角的三角函数值,可得tan45°=1,据此解答即可.解答:解:tan45°=1,即tan45°的值为1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是牢记30°、45°、60°角的各种三角函数值.6. (2015 湖南省湘西市) 】.计算:32﹣20150+tan45°.答案:】.分析:分别进行乘方、零指数幂、特殊角的三角函数值等运算,然后合并.解答:解:原式=9﹣1+1=9.点评:本题考查了实数的运算,涉及了乘方、零指数幂、特殊角的三角函数值等知识,属于基础题.7. (2015 黑龙江省大庆市) sin60°=()A. B. C. 1 D.答案:分析:原式利用特殊角的三角函数值解得即可得到结果.解答:解:sin60°=,故选D点评:此题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键.8. (2015 甘肃省武威市) 已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .答案:分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.9. (2015 甘肃省庆阳市) 在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°答案:分析:根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C的度数.解答:解:由题意得,cosA=,tanB=1,则∠A=30°,∠B=45°,则∠C=180°﹣30°﹣45°=105°.故选D.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.。
2015中考夺分自主复习课件_第20讲锐角三角函数(共40张PPT)

图 20-1 第20讲┃ 锐角三角函数
【归纳总结】
如图 20-2,在 Rt△ABC 中,∠C=90°,∠A,∠B, a b ∠C 的对边分别为 a,b,c,则 sinA=________ ,cosA= , c c a tanA=________ . b
图 20-2 第20讲┃ 锐角三角函数
考点2
第20讲┃ 锐角三角函数
【归纳总结】
如图 20-3,在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为 a,b,c,则有下列关系: (1)三边的关系:a2+b2=________ ; c2 (2)角的关系:∠A+∠B=________ 90° ; b a (3)边与角的关系:sinA=cosB= ,sinB=cosA=________ , c c a tanA= ; b 1 ab . (4)面积关系:S△ABC=________ 2
第20讲
锐角三角函数
┃考点自主梳理与热身反馈 ┃ 考点1 锐角三角函数 1.在 Rt△ABC 中,∠C=90°,CD 是斜边 AB 上的中 线,已知 CD=5,AC=6,则 tanB 的值是 ( C ) 4 3 3 4 A. B. C. D. 5 5 4 3 2.如图 20-1,在 Rt△ABC 中,∠C=90°,若 AB= 1 3 2,BC=1,则 sinA=________ ,cosA=________ . 2 2
图 20-3
第20讲┃ 锐角三角函数
考点4
解直角三角形的应用
1.如图 20-4 是一水库大坝横断面的一部分,坝高 h= 6 m,迎水斜坡 AB=10 m,斜坡的坡角为 α,则 tanα 的值
3 为________ . 4
图 20-4
第20讲┃ 锐角三角函数
锐角三角函数教案

锐角三角函数一.知识框架二、知识概念1、正弦,余弦,正切的概念ac 如图,在Rt ABC中,(1)sinA=,bc (2)cosA=,ab (3)tanA=。
2、a sina cosa tana30°12323345°2222160°3212 32. 坡度(坡比)的概念及表示形式如图所示,我们通常把坡面的铅直高度和水平宽度l的比叫做坡度(或坡比),坡度常用字母i表示.斜坡的坡度i 阳坡角的正切值有如下关系:hi tan ,即坡度是坡角的正切值.l1.正切与梯子的倾斜程度的关系:tan A 的值越大,梯子越陡.注意:梯子的倾斜程度与梯子和地面的夹角的大小有关,夹角越大说明梯子越倾斜.2.正弦、余弦与梯子的倾斜程度的关系:sin A 的值越大,梯子越陡;cos A的值越小,梯子越陡.3.解直角三角形:锐角A的正弦,余弦和正切都是∠A的三角函数,直角三角形中,除直角外,共 5 个元素:3 条边和 2 个角.除直角外只要知道其中 2 个元素(至少有 1 个是边),就可利用以上关系求出另外 3 个元素.4.仰角,俯角当从低处观测高处的目标时,视线与水平线所成的锐角,如图所示,为仰角,俯角:当从高处观测低处的目标时,仰角:视线与水平线所成的锐角,如图所示,为俯角,例题:题型一:三角函数的定义例1、(2015?崇左)如图,在Rt△ABC 中,∠C=90°,AB=13 ,BC=12 ,则下列三角函数表示正确的是( A )A.sinA= B.cosA= C.tanA= D.tanB=2=0,则∠C 的大例2、(2015?庆阳)在△ABC 中,若角 A ,B 满足|cosA﹣|+(1﹣tanB)小是( D )A.45°B.60°C.75°D.105°例3、(2015?牡丹江)在△ABC 中,AB=12 ,AC=13 ,cos∠B= ,则BC 边长为( D )A.7 B.8 C.8 或17 D.7 或17【解答】解:∵cos∠B= ,∴∠B=45°,当△ABC 为钝角三角形时,如图1,∵AB=12 ,∠B=45°,∴AD=BD=12 ,∵AC=13 ,∴由勾股定理得CD=5,∴BC=BD ﹣CD=12 ﹣5=7;当△ABC 为锐角三角形时,如图2,BC=BD+CD=12+5=17 ,故选D.题型分析:(1)对于利用三角函数求线段长度的问题,一般要把这条线段放在一个直角三角形中来解决,因此必须先构造出以该条线段为边的直角三角形。
2015年河北省地区中考数学总复习课件 第34讲 锐角三角函数和解直角三角形

2.30°,45°,60°的三角函数值,如下表:
正弦 30° 45° 60° 1 __ __ 2 __ 2 __ 2 余弦 __ __ 3 __ 2 2 __ 2 正切 __ 3 __ 3
__1__ __ 3__
3 __ __ 2
1 __ __ 2
3.同角三角函数之间的关系 sin2α+cos2α=__1__; sinα tanα=__ __. cosα 互余两角的三角函数关系式:(α 为锐角) sin(90°-α)=__cosα__; cos(90°-α)=__sinα__. 函数的增减性:(0°<α<90°) (1)sinα,tanα的值都随 α__增大而增大__; (2)cosα随 α__增大而减小__.
∠FAO=∠FBP, AF AO r 2 2 和 Rt△AFO 中, ∴Rt△BFP∽Rt△AFO.∴ = = = ,∴AF= FB BP 3 3 3 ∠OFA=∠PFB, r
2 3 2 3 FB,在 Rt△FBP 中,∵PF2-PB2=FB2,∴(PA+AF)2-PB2=FB2,∴( r+ BF)2-( r)2= 2 3 2 18 r 18 BF 5 12 2 BF ,解得 BF= r,∴tan∠APB= = = ,故选 5 PB 3 5 r 2
(3)仰角:向上看时,视线与水平线的夹角; (4)俯角:向下看时,视线与水平线的夹角; (5)坡角:坡面与水平面的夹角; (6)坡度: 坡面的铅直高度与水平宽度的比叫做坡度 (或坡比), 一般 情况下,我们用 h 表示坡的铅直高度,用 l 表示坡的水平宽度,用 h i 表示坡度,即 i= l =tanα,显然,坡度越大,坡角就越大,坡面 也就越陡;
8 A. 3 m 3
B .4 m
C.4 3 m
2015年初中数学中考总复习全优设计第17课时 直角三角形与锐角三角函数

8
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
解直角三角形
1.解直角三角形 (1)解直角三角形的定义 在直角三角形中,由已知元素求出所有未知元素的过程叫做解 直角三角形. (2)解直角三角形的常用关系 ①锐角之间的关系:∠A+∠B=90°; ②三边之间的关系:a2+b2=c2; ③边角之间的关系: sin A=∠A 的对边∶斜边, cos A=∠A 的邻边∶斜边, tan A=∠A 的对边∶∠A 的邻边.
=
a .我们把∠A 的正 b
弦、余弦、正切统称为∠A 的三角函数.
7
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
2.增减性:在 0° 到 90° 之间,正弦值、 正切值随着角度的增大而增 大,余弦值随着角度的增大而减小. 3.取值范围:当∠A 为锐角时,三角函数的取值范围是 0<sin A<1,0<cos A<1,tan A>0. 4.互余两角的函数关系:如果两角互余,则其中一角的正弦等于 另一角的余弦,即:若 α 是一个锐角,则 sin α=cos(90°-α),cos α= sin(90°-α).
★
与特殊角的三角函数值 有关的计算问题. 以实际生活为背景,以解 答题为题型,利用锐角三 角函数解决简单的实际 问题.
★★★
3
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
直角三角形的概念
定义:有一个角是直角的三角形叫做直角三角形.
锐角三角函数--华师大版

基础练习
2.在△ABC中,已知AC=3,BC=4,AB=5,那么下列
结论成立的是( )。
A
sinA=
5 4
B
cosA=
4 5
C tanA= 3 4
3
D cotA= 4
3.在△ABC中,∠C=90°,BC=3,tanB= 5
3
则AB=
。
基础练习
么它所对的直角边等于斜边的一半.
小结
• 锐角三角函数的意义 • 特殊角度的三角函数值
1 2
3
3
2
3
3
2
2
1
1
2
2
3
1
2
2
3
3 3
思考:
RtABC 中, C 900,探讨 A和B 的四个三角函数之间的 关系
锐角三角函数(2)
回顾: 锐角三角函数的意义
在Rt△ABC中,∠C=90°,
B
a
b
sinA= c ,cosA= c ,
c
a
bA
a
tanA= b ,cotA= a 。 b
C
思考
sin 2 A cos2 A ?
回顾: 锐角三角函数的意义
(1)0<sin A<1,0<cos A<1,
(2) tanA>0,cotA>0
B c
(3)tan A•cot A=1
A b
a C
基础练习
1.在Rt△ABC中,∠C=90゜,∠A、∠B、∠C
的对边分别为a、b、c,下列式子中一定成立
的是( )
A.a=c·cosB
B.a= b· cosB
C.a=c · tanB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数一、选择题1.在Rt △ABC 中,∠C =90°,若sinA =,则cosB 的值是( ) A .B .C .D .2.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D .已知cos ∠ACD =,BC =4,则AC 的长为( ) ..A .B .C .D .4.如图,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为3,tan 2αα=,则t 的值是【 】 A .1 B .1.5 C .2 D .35.在Rt △ACB 中,∠C =90°,AB =10,sinA =,cosA =,tanA =,则BC 的长为( )6.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =) absinαabcosα 能,,B.C.D.﹣24米2二.填空题1.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA = .2.如图,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos ∠E = . 3.如图,在△ABC 中,∠C =90°,AC =2,BC =1,则tanA 的值是 . 4.孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为 米(结果保留整数,参考数据:sin 20°≈0.3420,sin 70°≈0.9397,tan 20°≈0.3640,tan 70°≈2.7475).5.如图,正方向ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于 cm . 6.如图,在Rt △ABC 中,∠C =90°,∠B =37°,BC =32,则AC = . (参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)7.如图,在地面上的点A 处测得树顶B 的仰角为α度,AC =7米,则树高BC 为 米(用含α的代数式表示).8.为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 个这样的停车位.(≈1.4)9.如图,在△ABC 中,∠A =30°,∠B =45°,AC =,则AB 的长为 .10如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,已知平台CD 的高度为5m ,则大树的高度为 m (结果保留根号)三.解答题 1.计算:+(π﹣3)0﹣tan 45°.2.△ABC 为等边三角形,边长为a ,DF ⊥AB ,EF ⊥AC , (1)求证:△BDF ∽△CEF ;(2)若a =4,设BF =m ,四边形ADFE 面积为S ,求出S 与m 之间的函数关系,并探究当m 为何值时S 取最大值;(3)已知A 、D 、F 、E 四点共圆,已知tan ∠EDF =,求此圆直径.3. “中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.4.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)5.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE 为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)6.如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)7.一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)8.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离(结果保留根号).9.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)10.如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)11.如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)12.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.13.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB 等于47m ,从AB 的中点C 处开启,则AC 开启至A ′C ′的位置时,A ′C ′的长为 m ;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ ,在观景平台M 处测得∠PMQ =54°,沿河岸MQ 前行,在观景平台N 处测得∠PNQ =73°,已知PQ ⊥MQ ,MN =40m ,求解放桥的全长PQ (tan 54°≈1.4,tan 73°≈3.3,结果保留整数).14.如图,小明在M 处用高1米(DM =1米)的测角仪测得旗杆AB 的顶端B 的仰角为30°,再向旗杆方向前进10米到F 处,又测得旗杆顶端B 的仰角为60°,请求出旗杆AB 的高度(取≈1.73,结果保留整数)15.如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:)16.如图,在数学实践课中,小明为了测量学校旗杆CD 的高度,在地面A 处放置高度为1.5米的测角仪AB ,测得旗杆顶端D 的仰角为32°,AC 为22米,求旗杆CD 的高度.(结果精确到0.1米.参考数据:sin 32°= 0.53,cos 32°= 0.85,tan 32°= 0.62)17.如图,从A 地到B 地的公路需经过C 地,图中AC =10千米,∠CAB =25°,∠CBA =37°,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路. (1)求改直的公路AB 的长;(2)问公路改直后比原来缩短了多少千米?(sin 25°≈0.42,cos 25°≈0.91,sin 37°≈0.60,tan 37°≈0.75)18.如图,在直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x . (1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;(3)设△ADP 与△PCB 的外接圆的面积分别为S 1、S 2,若S =S 1+S 2,求S 的最小值.19.如图,在Rt △ABC 中,∠C =90°,∠A 的平分线交BC 于点E ,EF ⊥AB 于点F ,点F 恰好是AB 的一个三等分点(AF >BF ).(1)求证:△ACE ≌△AFE ; (2)求tan ∠CAE 的值.第20题图。