二面角求法

合集下载

二面角求法大全

二面角求法大全

二面角求法之面面观求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题.总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事. 1 定义法即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!.例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。

将题目略作变化,二面角A 1-BD-C 1的余弦值为 .在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得cos ∠A 1OC 1=31例2(2006年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P.(Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。

分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=552,在△QMF 中,由余弦定理得cos ∠QMF=87。

求二面角的五种方法

求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。

一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

二面角8种求法

二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。

笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。

一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。

以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。

例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。

例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。

二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。

如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。

例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。

例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。

三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。

求二面角的六种方法

求二面角的六种方法

求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。

求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。

对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。

二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。

具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。

平面可以由三个不共线的点或者法向量和过点的方程来确定。

2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。

2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。

具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。

3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。

3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。

3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。

四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。

具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。

二面角的多种求法

二面角的多种求法

二面角的多种求法1.概念法例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。

求二面角A BC D --的大小。

分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。

解:设线段BC 的中点是E ,接AE 和DE 。

根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。

又BC 是平面ABC 和平面DBC 的交线。

根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。

可以求出32AE =,3DE =3AD =。

根据余弦定理知:22222233)372cos 243232AE DE ADAED AE DE+-+-∠==-⨯⨯⨯即二面角A BC D --的大小为7arccos4π-。

例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。

解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。

由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。

即AE PD ⊥。

由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。

通过计算可以得到:2PC =3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。

由此可以得到:63AE CE ==,又2AC =。

由余弦定理:222222133cos 22223AE CE AC AEC AE AC +-+-∠===-⋅⋅即:23AEC π∠=。

2.空间变换法空间变换法指的是基本的空间方法,包括三垂线法、补角法、垂面法、切平面法等方法。

下面用例3介绍三垂线法、补角法和垂面法。

例3:如图所示,现有平面α和平面β,它们的交线是直线DE ,点F 在平面α内,点C 在平面β内。

求二面角F DE C --的大小。

分析:过点C 作辅助线CA 垂直于DE ,作CB 垂直于平面β于点B 。

二面角的求法

二面角的求法

二面角的求法钟祥一中 金伟1、求二面角的定义法;2、求二面角的垂面法;3、求二面角的三垂线法;例1:已知正三角形ABC ,PA ⊥面ABC ,且PA=AB=a , 求二面角A-PC-B 的大小。

4、求二面角的射影面积法;例2:正方体ABCD-A 1B 1C 1D 1中,E 为棱AA 1的中点,求平面EB 1C 和平面ABCD 所成的二面角。

5、求二面角的向量法。

例4:在底面是直角梯形的四棱锥S —ABCD 中,∠ABC=90°,SA ⊥面ABCD , AD=21,SA=AB=BC=1,求面SCD 与面SBA 所成的二面角的大小.αβaO ABaαβABCOABOαβa 1113AC A BD C --例:在正方体中,求二面角的大小。

练习:如图:直四棱柱ABCD-A 1B 1C 1D 1,底面ABCD 是菱形,AD=AA 1 ,∠DAB=600,F 为棱AA 1的中点。

求:平面BFD 1与平面ABCD 所成的二面角的大小。

课后作业:1.如图,已知四棱锥P-ABCD ,底面ABCD 为菱形,PA ⊥平面 ABCD , ∠ABC =600 , E 、F 分别是BC 、PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若 H 为 PD 上的动点,EH 与平面PAD 所成最大角的正切值为 ,求二面角E-AF-C 的余弦值.2.如图,在直四棱柱 ABCD-A 1B 1C 1D 1中, 已知:DC=DC 1=2AD=2AB,AD ⊥DC, AB//DC(Ⅰ)设E 是DC 的中点,求证:D 1E //平面A 1BD ; (Ⅱ)求二面角 A 1-BD-C 1余弦值。

26PBDF AA1 D 1 C 1 B 1ADCBF。

怎样求解二面角问题

怎样求解二面角问题

二面角问题在立体几何中比较常见,常见的命题形式有求二面角的大小、求二面角的余弦值,证明两个平面互相垂直等.此类问题的难度一般较大,需综合运用立体几何知识、平面几何知识、解三角形知识、三角函数知识,才能顺利求得问题的答案.本文结合实例,重点探讨一下求解二面角问题的几种常用方法.一、定义法二面角是由从一条直线出发的两个半平面所组成的,而二面角的大小往往是用其平面角的大小来表示,因此在求二面角的大小时,通常要用到二面角的平面角的定义:过二面角的棱上的一点在两个半平面内作垂直于棱的射线,两射线所成的角.然后根据正余弦定理、勾股定理求得二面角的平面角的大小,即可求得二面角的大小.例1.如图1,已知空间中有三条射线CA 、CP 、CB ,且∠PCA =∠PCB =60°,∠ACB =90°,求二面角B -PC -A 的余弦值.图1解:在PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,连接EF ,所以∠EDF 为二面角B -PC -A 的平面角,设CD =a ,因为∠PCA =∠PCB =60°,所以CE =CF =2a ,DE =DF =3a ,因为∠ACB =90°,所以EF =22a ,在△DEF 中,根据余弦定理得:cos ∠EDF =3a 2+3a 2-8a 22∙3a2=-13.解答本题主要运用了定义法,需根据二面角的平面角的定义,在二面角B -PC -A 的棱PC 上任取一点D ,过D 分别作DE ⊥PC ,DF ⊥PC ,从而确定了二面角B -PC -A 的平面角∠EDF ,再根据余弦定理求得cos ∠EDF 的值.二、垂面法垂面法是指作一个垂直的平面,根据其中的垂直关系求得问题的答案.在求解二面角问题时,若题目中涉及的垂直关系较多,可过二面角棱上的一点在两个半平面内作棱的垂线;也可将两个半平面内的垂线平移,使其交于一点;还可过一条垂线上的一点作另一个平面的垂线,从而构成一个垂面,则垂面上的两条垂线或其平行线所形成的夹角即为二面角的平面角.最后根据勾股定理即可求得二面角的平面角的大小.例2.如图2,在四棱锥P -ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA =AB =a ,求二面角B -PC -D 的大小.图2解:因为PA ⊥平面ABCD ,ABCD 是正方形,所以PA ⊥BD ,BD ⊥AC ,所以BD ⊥平面PAC ,可得BD ⊥PC ,分别过B 、D 作DH ⊥PC ,BH ⊥PC ,则∠BHD 为二面角B -PC -D 的平面角,因为PA =AB =a ,所以BC =a ,PB =AC =2a ,所以PC =3a ,根据勾股定理可得∠PBC =90°,所以在△PBC 中,12PB ∙BC =S △PBC =12PC ∙BH ,则BH ,同理可得DH ,因为BD =2a ,所以在△BHD 中,由余弦定理可得:cos ∠BHD =ö÷2+ö÷2-2a 2-12,因为0<∠BHD <π,则∠BHD =2π3,即二面角B -PC -D 的大小为2π3.本题中的垂直关系较多,于是分别过B 、D 作DH ⊥PC ,BH ⊥PC ,得到PC 的垂面BHD ,据此确定二面角B -PC -D 的平面角∠BHD ,再在△BHD 中由怎样求解二面角问题方法集锦43余弦定理即可求得∠BHD 的大小,进而求得二面角B -PC -D 的大小.值得注意的是,二面角α的范围为:[0,π].三、三垂线法三垂线法是利用三垂线定理解题的方法.运用三垂线法求解二面角问题,需先找到平面的垂线,然后过垂线上的一点作平面的斜线,若平面内的一条直线与平面的斜线垂直,那么这条直线与斜线在平面内的射影垂直,根据这些垂直关系就可以确定二面角的平面角,最后根据勾股定理、正余弦定理即可求得平面角的大小.例3.如图3所示,在四棱锥P -ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA =AB =a ,∠ABC =30°,求二面角P -BC -A 的大小.图3解:如图3,过A 作AH ⊥BC 于H ,连接PH ,因为PA ⊥平面ABCD ,所以PA ⊥BC ,PA ⊥AH ,所以BC ⊥平面PHA ,所以BC ⊥PH ,可知∠PHA 是二面角P -BC -A 的平面角,在Rt△ABH 中,AB =a ,∠ABH =∠ABC =30°所以AH =AB sin ∠ABH =a sin 30°=12a ,因为PA ⊥AH ,所以在Rt△PHA 中,tan ∠PHA =PA AH=2,所以∠PHA =arctan 2,故二面角P -BC -A 的大小为arctan 2.根据题意作AH ⊥BC ,便可知AH 为PH 在平面ABCD 内的射影,由三垂线定理可得BC ⊥PH ,由此可确定∠PHA 是二面角P -BC -A 的平面角,再在Rt△PHA 中根据正切函数的定义求得∠PHA 的大小,进而可得到二面角P -BC -A 的大小.由此可见,求解二面角问题的关键有两步:第一步,根据二面角的平面角的定义、三垂线定理、垂面的性质,确定二面角的平面角;第二步,根据勾股定理、正余弦定理、三角函数的定义求得平面角的大小.(作者单位:江西省赣州市南康第三中学)二次函数是一种基本初等函数.二次函数问题的常见命题形式有求二次函数的解析式、最值、对称轴、单调区间、零点等.这类问题侧重于考查二次函数的图象和性质.下面重点谈一谈如何求解有关二次函数的最值问题、零点问题和不等式问题.一、二次函数的最值问题二次函数y =ax 2+bx +c 的图象是一条抛物线,若a >0,则抛物线的开口向上;若a <0,则抛物线的开口向下.当x =-b 2a 时,函数在R 上有最值b 2-4ac 4a.若函数的定义域为[m ,n ],则需分三种情况考虑:(1)当-b 2a ∈[m ,n ]时,函数在x =-b 2a 处取得最值;(2)当x =-b 2a,在[m ,n ]的左侧时,若a >0,则函数在x =m处取最小值,在x =n 处取最大值,若a <0,则相反;(3)当x =-b2a在[m ,n ]的右侧时,若a >0,则函数在x =m 处取最大值,在x =n 处取最小值;若a <0,则相反.例1.求y=-5x 2-6x +1的最大值.解:y =-5x 2-6x +1是二次函数,x 2的系数是-5,所以二次函数图象的开口向下,当x =-65时,函数有最大值1.利用二次函数的图象,即可确定二次函数在对称轴处取得最值.除了用图象法求解最值问题,还可以用配方法,比如y =x 2+4x +3=()x +22-1,可知当x =-2时函数的最小值为-1.例2.已知函数f (x )=x 2+(2a -1)x -3.方法集锦44。

求解二面角的六种常规方法

求解二面角的六种常规方法

求解二面角的六种常规方法作者:李淑芸来源:《中学教学参考·理科版》2010年第03期求解二面角问题是高考的热点问题,在近几年的高考中几乎每一年、每一套高考题的立体几何问题都涉及到求二面角的大小问题.然而通过对学生考卷的分析,我们发现这一问题的得分率却并不理想.因此,本文总结了常见的六种求解二面角的方法,希望能给部分读者以帮助.1.定义法是指过二面角的棱上任一点在两个面内分别作垂直于棱的直线,则两直线所构成的角即为二面角的平面角,继而在平面中求出其平面角的一种方法.【例1】如图1,空间四边形ABCD中,AB=BC=CD=DA=a,对角线AC=a,BD=2a,求二面角A—BD—C的大小.图1解:取BD的中点为O,分别连接AO、CO,∵AB=AD,BC=CD.∴AO⊥BD,CO⊥BD.∴∠AOC为二面角A—BD—C的平面角.∵AB=AD=a,BD=2a,∴AO=22a.∵BC=CD=a,BD=2a,∴OC=22a.在△AOC中,OC=22a,OA=22a,AC=a,OA2+OC2=AC2,∴∠AOC=90°,即二面角A—BD—C为直二面角.2三垂线法是指利用三垂线定理,根据“与射影垂直,则也与斜线垂直”的思想构造出二面角的平面角,继而求出平面角的方法.【例2】如图2,二面角α-AB-β的棱AB上有一点C,线段CDα,CD=100,∠BCD=30°,点D 到平面β的距离为253,求二面角α-AB-β的度数.图2解:过D作DE⊥β于E,DF⊥AB于F,连接EF.∵DF⊥AB,EF是DF在β内的射影,∴AB⊥EF(三垂线定理).∴∠DFE为二面角为α-AB-β的平面角.在Rt△DEF中,DF=12CD=50,DE=253,∴sin∠DFE=DEDF=25350=32.∴∠DFE=60°.即二面角α-AB-β的度数为60°.3.垂面法是指用垂直于棱的平面去截二面角,则截面与二面角的两个面必有两条交线,这两条交线构成的角即为二面角的平面角,继而再求出其平面角的一种方法.【例3】如图3,已知SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D,求二面角E-BD-C的大小.图3解:∵BS=BC,SE=EC,∴SC⊥BE,又∵SC⊥DE,∴SC⊥面BDE.∴SC⊥BD.又∵BD⊥SA,∴BD⊥面SAC.∴∠EDC为二面角E-BD-C的平面角.设SA=a,则SB=BC=2a.∵BC⊥AB,SA⊥平面ABC.∴BC⊥SB.∴SC=2a,∠SCD=30°.∴∠EDC=60°,即二面角E-BD-C的大小为60°.4.面积射影法所谓面积射影法,就是根据三角形及其在某一个平面上的射影面积之间的关系,利用cosθ=S射S来计算二面角的一种方法(其中θ为二面角).【例4】在正方体ABCD-A1B1C1D1中,K∈BB1,M∈CC1,且BK=14BB1,CM=34CC1,求平面AKM与ABCD所成角的大小.图4解:连结AC,则由题意可知,△ABC是△AKM在平面AC上的射影.设平面AKM与ABCD所成角为θ,则cosθ=S射S=S△ABCS△AKM.令正方体的棱长为4,∴S△ABC=12AB•A C=12×4×4=8.在△AKM中,AK=12+42=17,AM=42+42+32=41,KM=42+22=20.由海伦公式可知S△AKM=221,∴cosθ=421,θ=arccos421.5.法向量法法向量法是通过求与二面角垂直的两个向量所成的角,继而利用这个角与二面角的平面角相等或互补的关系,求出二面角的一种方法.【例5】如图5,过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=ɑ,求平面PAB 和平面PCD所成的二面角的大小.图5解:以A为射点建立直角坐标系(如图5所示),则P(0,0,a),D(0,a,0),C(a,a,0).设平面PCD的法向量为n=(x,y,z),则n•PD=0,n•CD=0.即(x,y,z)•(0,a,-a)=0,(x,y,z)•(-a,0,0)=0.∴y=-z,x=0.即n=(0,1,-1).又AD成为平面PAB的法向量,而cos〈AD,n〉=(0,a,0)•(0,1,-1)a•2=22,∴AD与n所成的角为45°.因此平面PAB和平面PCD所成的角为45°.6.垂线法是指先利用待定系数法确定垂足,再利用公式求出二面角的大小.【例6】如图6,在四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC,已知PD=2,CD=2,AE=12,求(1)异面直线PD与EC的距离;(2)二面角E-PC-D的大小.图6解:(1)略.(2)以D为原点,DA、DC、DP分别为x,y,z轴建立空间直角坐标系.作DG⊥PC,可设G(0,y,z).由DG•PC=0得(0,y,z)•(0,2,-2)=0,即z=2y.故可取DG=(0,1,2).作EF⊥PC于F,设F(0,m,n),则EF=(-32,m-12,n).由EF•PC=0,得(-32,m-12,n)•(0,2,-2)=0,即2m-1-2n=0.又由F在PC上得n=-22m+2,故m=1,n=22,EF=(-32,12,22).因EF⊥PC,DG⊥PC,故二面角E-PC-D的平面角θ的大小为向量EF与DG的夹角.故cosθ=DG•EF|DG|•|EF|=22,∴θ=π4.故二面角E-PC-D的大小为π4.(责任编辑金铃)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二面角求法
求解二面角是立体几何中最基本、最重要的题型,也是这几年高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题.
总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事.
二面角的分值一般在6分,主要解题方法有以下几种: 1 定义法
即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!.
例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。

将题目略作变化,二面角A 1-BD-C 1的余弦值为 .
在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得 cos ∠A 1OC 1=
3
1
例2(2006年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P.
(Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。

分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=5
5
2,在△QMF 中,由余弦定理得cos ∠QMF=8
7 。

2 垂面法
事实上,图1中的平面COC 1、图2(2)中的平面QMF 、图3中的平面PAB 、图4中的平面A 1FE
D
B 1
图1
A
O
A 1
C
B
D 1
C 1
O 1
M A
F
A 1
Q
P
E
C
P
E
F 图2(2)
图2(1)
Q
都是相关二面角棱的垂面,这种通过作二面角棱的垂面得平面角的方法就叫做垂面法.在某些情况下用这种方法可取得良好的效果.
例4空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别
为4、3、3
39
2,求二面角βα--l 的大小.
分析与略解:如图5,分别作PA ⊥α于A ,PB ⊥β于B ,则易知 l ⊥平面PAB ,设l ∩平面PAB=C ,连接PC ,则l ⊥PC.
分别在Rt △PAC 、Rt △PBC 中,PC=
3392,PA=4,PB=3,则AC=332,BC=3
3
5. 因为P 、A 、C 、B 四点共圆,且PC 为直径,设PC=2R ,二面角βα--l 的大小为θ. 分别在△PAB 、△ABC 中,由余弦定理得
AB 2=AC 2+BC 2-2·AC ·BCcos θ=PA 2+PB 2-2·PA ·PBcos(θπ-), 则可解得cos θ=2
1
-,θ=120o ,二面角βα--l 的大小为120o . 3 面积法
如图1,设二面角C-BD-C 1的大小为θ,则在Rt △COC 1中,cos BD
C CB
D S S BD O C BD
CO O C CO
1112
121
∆∆=⋅⋅==θ,
在某些情况下用此法特别方便.
例5 如图6,平面α外的△A 1B 1C 1在α内的射影是边长为1的正三角形ABC ,且AA 1=2,BB 1=3,CC 1=4,求△A 1B 1C 1所在的平面与平面α所成锐二面角的余弦值
分析与略解:问题的情境很容易使人想到用面积法,分别在BB 1、CC 1取BD=CE=AA 1, 则△A 1B 1C 1≌△A 1DE ,可求得A 1B=2,A 1C 1=5,B 1C 1=
2,所以等腰△A 1B 1C 1的面积为
415,又正△ABC 的面积为4
3
. 设所求二面角的大小为θ,则cos θ=5
5
.
4延伸法
例4. 如图10,设正三棱柱ABC-A'B'C'各棱长均为α,D
为CC 1中点,求平面A'BD 与平面ABC 所成二面角的度数。

P
图5
β
α
l
C
B
A
α
D A
M 图6
E C
B C 1
A 1
B 1
H G
分析与解 由图,平面A'BD 与平面ABC 只出现一个交点,故延长A'D 交AC 延长线于F 点,连BF ,则BF 为所求二面角的棱。

因CD=C'D ,则A'C'=CF=BC=AC ,所以∠ABF=90°,取BF 中点E ,连DE ,则CE⊥BF,又DC⊥平面ABF ,即DE⊥BF,从而∠DEC 为所求二面角的平面角。

说明 本题也可用射影法求二面角的度数。

5 变式二面角的求法
以上列举了求解二面角的四种基本方法,但在现实中,问题往往不是那么简单与单纯,而是有诸多的变化,“源于基本方法,适应各种变化”就是我们总的策略. 5.1 “无棱”二面角的求法
严格地说,任何二面角都是有棱的,“无棱”其实是指二面角的棱处于隐含的状态.对于这样的问题,有两种处理办法:
(1)用面积法,见例5;
(2)找出隐含的棱,此法可称为“找棱法”.
在例5中,延长C 1B 1和C 1A 1分别交CB 和CA 的延长线于G 、H ,连GH. 作CM ⊥GH 于M ,连C 1M ,C 1M ⊥GH ,则∠CMC 1是所求二面角的平面角. 由平几知识得CG=4,CH=2,则△CGH 的面积为32,又△CGH 的面积为
2
1
CH ·CM. 又由余弦定理得GH=32,所以CM=2,则在Rt △CMC 1中,cos θ=
5
5. 在原图中,面A 1B 1C 1与α的公共点都不知道,所以必须找出它们的两个公共点,才能找到二面角的棱;而在另一些问题中,知道两个面的一个公共点,那么只须再找出另一个公共点就可以了.
面积法比找棱法似乎要简单些,但看问题不能简单化,例5的第二种解法是非常重要的一种方法,其中蕴涵的知识和技能的“营养”对于滋补人大大脑是十分有价值的,所以决不要忽视找棱法. 5.2 有关二面角的最值问题
求最值是代数、三角、解几的“热点”问题,殊不知立体几何中也有引人入胜的最值问题. 例6 二面角α-l -β的大小是变量)2
0(π
θθ<
<,点B 、C 在l
上,A 、D 分别在面α、β内,且AD ⊥BC ,AD 与面β成6
π
角,若
△ABC 的面积为定值S ,求△BCD 面积Q 的最大值.
α
E
D
C
B
A l
β
分析与略解:如图9,作AE ⊥BC 于E ,连DE ,则由AD ⊥BC 得 BC ⊥平面ADE ,则DE ⊥BC ,∠AED=θ,∠ADE=
6
π. 在△AED 中,由正弦定理得6
sin )
6sin(ππ
θ+
=
AE
DE
,所以)6sin(2,6
sin )
6sin(πθπ
θ+=+
=S Q S Q , 则当3
π
θ=
时,有Q max =2S.
△BCD 和△ABC 有公共的底边BC ,则它们的面积比等于对应高之比,这是简单的平几知识,但用在这里却发挥了以简驭繁的奇妙功能.三角函数与正弦定理给题目注入了新的活力.
例1 正方体ABCD-A 1B 1C 1D 1中,a.求二面角A-BD-C 1的正切值为 .
b 求二面角B 1—A 1C 1—B 的正弦值,c.O 1—AC —B 1的正切值。

D B 1
图1
A
O
A 1
C
B
D 1
C 1
O 1。

相关文档
最新文档