二面角的求法(教师版)

合集下载

立体几何二面角的求法

立体几何二面角的求法

立体几何二面角的求法立体几何是数学的一个重要分支,研究的是空间中的图形和其性质。

其中,二面角是立体几何中的一个重要概念,它是由两个平面所围成的角。

本文将介绍二面角的定义、性质以及求法。

一、二面角的定义二面角是由两个平面所围成的角,其中一个平面称为顶面,另一个平面称为底面,二面角的两个边分别位于顶面和底面上。

二面角常用字母α表示。

二、二面角的性质1. 二面角的大小是以顶点为中心,两个边所围成的平面角的大小,即α=∠POQ。

2. 二面角的大小是由顶面和底面的位置关系决定的,与边的长度无关。

3. 二面角的度量范围是0到180度。

4. 如果两个平面平行,则它们所围成的二面角为0度。

5. 如果两个平面相互垂直,则它们所围成的二面角为90度。

6. 如果两个平面相交于一条直线,则它们所围成的二面角为180度。

三、二面角的求法1. 通过向量法求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值可以通过两个法向量的点乘公式求解:cosα=n1·n2/(|n1||n2|),其中·表示点乘,|n1|和|n2|分别表示n1和n2的模。

2. 通过平面法向量求解二面角:设顶面的法向量为n1,底面的法向量为n2,二面角的余弦值等于两个法向量的模的乘积与它们的点乘的商:cosα=(|n1|·|n2|)/(n1·n2)。

3. 通过平面方程求解二面角:设顶面的平面方程为Ax+By+Cz+D1=0,底面的平面方程为Ax+By+Cz+D2=0,二面角的余弦值等于两个平面方程的D1、D2的差值与它们的模的乘积的商:cosα=(D1-D2)/(√(A^2+B^2+C^2)·√(A^2+B^2+C^2))。

四、二面角的应用1. 二面角常用于计算空间中的体积和表面积。

2. 在物理学中,二面角常用于描述力的方向和大小。

3. 在几何光学中,二面角常用于计算光的反射和折射。

4. 在工程中,二面角常用于计算材料的强度和稳定性。

(完整版)二面角求解方法

(完整版)二面角求解方法

二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。

下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。

斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。

尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。

例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。

[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。

二面角8种求法

二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。

笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。

一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。

以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。

例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。

例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。

二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。

如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。

例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。

例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。

三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。

求二面角的六种方法

求二面角的六种方法

求二面角的六种方法一、引言二面角是几何学中的一个重要概念,它用于描述两个平面的夹角。

求解二面角的方法有多种,本文将介绍六种常用的方法,包括向量法、三角函数法、三边长法、内外法、旋转法和平行四边形法。

对于每种方法,我们将详细介绍其原理和具体步骤,并给出相关的实例来加深理解。

二、向量法向量法是最常用的求解二面角的方法之一,其基本原理是通过两个平面的法向量来计算二面角。

具体步骤如下:2.1 确定两个平面首先,我们需要确定需要求解的两个平面。

平面可以由三个不共线的点或者法向量和过点的方程来确定。

2.2 求解法向量找到两个平面的法向量,分别记作n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 。

2.3 计算二面角的余弦值通过法向量n1⃗⃗⃗⃗ 和n2⃗⃗⃗⃗ 的点积计算二面角的余弦值:cosθ=n1⃗⃗⃗⃗ ⋅n2⃗⃗⃗⃗ ∥n1⃗⃗⃗⃗ ∥∥n2⃗⃗⃗⃗ ∥2.4 计算二面角通过余弦值反函数(如反余弦函数)计算二面角的值:θ=arccos(cosθ)三、三角函数法三角函数法是另一种常用的求解二面角的方法,主要基于三角函数的关系来计算二面角。

具体步骤如下:3.1 确定两个平面同样,我们首先需要确定需要求解的两个平面。

3.2 求解法向量和对应边长求解两个平面的法向量n 1⃗⃗⃗⃗ 和n 2⃗⃗⃗⃗ ,以及两个平面上的边长。

3.3 计算三角函数的值根据边长和法向量的乘积,分别计算sinα=∥n 1⃗⃗⃗⃗⃗ ×n 2⃗⃗⃗⃗⃗ ∥∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥和cosα=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∥n 1⃗⃗⃗⃗⃗ ∥∥n 2⃗⃗⃗⃗⃗ ∥,其中α为两个边向量构成的夹角。

3.4 计算二面角通过三角函数的反函数(如反正弦函数、反余弦函数)计算夹角α的值,即得到二面角的值。

四、三边长法三边长法是一种适用于三角形的方法,其原理是利用给定的三边长计算三角形的角度,进而求得二面角。

具体步骤如下:4.1 确定三个边长根据具体情况,确定三个边长a 、b 和c 。

求二面角大小的直接计算法(讲稿)

求二面角大小的直接计算法(讲稿)

求二面角大小的直接计算法肖德凯利用向量求二面角,如何判断所求二面角是锐角或钝角?现行中学数学教材或教辅资料给出的方法是通过观察图形来确定;常见的大学数学教材亦未涉及此问题.由于一个平面有共线且方向相反的两个法向量,所以两个平面所成二面角的平面角的大小与其法向量所成之角可能相等, 也可能互补;而现行中学数学教材是用点积的办法来求法向量的, 点积法的缺陷是不能控制法向量的方向, 所以也就无法准确判断所求二面角究竟是钝角或锐角.本文介绍一种利用向量外积控制平面法向量方向,借助两平面法向量所成角与两平面所成二面角的关系,直接计算二面角并判断其为锐角或钝角的方法. 为此我们首先介绍向量外积概念及运算法则. 1 二阶行列式的概念及运算法则由于二阶行列式与向量外积的计算密切相关,故我们先简要介绍二阶行列式. 二阶行列式源于解二元一次方程组,它的定义是:11122122x y x y x y x y =-例1.1 计算 3437(2)42182927=⨯--⨯=+=-.2 向量外积2.1设a 、b 为同一平面内起点重合的非共线向量,则a 、b 外积n 表示为n =a ⨯b ,其结果n 仍然是一个向量,方向与a 、b 所在平面垂直.向量外积的确切的方向根据右手法则确定(如图2.1):伸开右手掌,使拇指与其余四指垂直,将手腕与a 和b 的始端重合,拇指之外的四指与a 同向,使得手掌弯曲指向b ,但这时a 到b 的角度必须小于180 ,此时大拇指指向的方向就是a ⨯b 的方向,即a 、b 所在平面的法向量的一个方向[一个平面的法向量的方向共有两个(共线的两个),指向平面的两侧,通常并不确定是其中哪一个方向].2.2 向量外积的计算法则 若()111x ,y ,z a=,()222x ,y ,z b =,则()()()111222111111222222122112211221x ,y ,z x ,y ,z y z x z x y ,,y z x z x y y z y z ,x z x z ,x y x y .a b ⨯=⨯⎛⎫=- ⎪⎝⎭=--+-例2.1 已知11(,,1)22a =-,11(,,1)22b =---;求a b ⨯.11,,12211,,1221111112222,,111111222211,0,.2ab ⎛⎫⨯=- ⎪⎝⎭⎛⎫⨯--- ⎪⎝⎭⎛⎫--⎪ ⎪=- ⎪------ ⎪⎝⎭⎛⎫=- ⎪⎝⎭解3 求二面角大小的直接算法如图1, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m 1;n 、m 1的夹角为1θ,那么θ=π-1θ,1cos cos n m n mθθ⋅=-=-.如图2, 设二面角C-AB-E 的大小为θ,平面ABEF 的法向量为n , 平面ABCD 的法向量为m ; n 、m 的夹角为2θ,则2θθ=,2cos cos n m n mθθ⋅==.那么,如何确定两平面的法向量才能保证其所成之角恰好就是我们所要求的二面角呢?其实,只要利用向量外积概念,我们就可以做到这一点.在图2中,按照如下顺序求出n 、m ,我们就可保证所求二面角与计算结果完全一致,nAB AF =⨯ ,mA B A D =⨯ , cos n mn mθ⋅=.上述方法的要点是: ① 确立公共点A(每个向量都以点A 为起始点); ② 确定公共向量AB(每个法向量的计算都以AB为基础); ③ 遵守严格的运算顺序(nAB AF =⨯ ,m AB AD =⨯)求法向量n 与m.例 3.1 (2010全国高考理科试题(I 卷)第19题) 如图3, 四棱锥S-ABCD中,SD ⊥底面ABCD,AB//DC ,AD ⊥DC, AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC.(1) 证明:SE =2EB ;(2) 求二面角A-DE-C 的大小.解 以D 为坐标原点,DA ﹑DC ﹑DS 边所在直线为x 轴﹑y 轴﹑z 轴建立空间直角坐标系(图4),相应各点坐标为D ()0,0,0,A ()1,0,0, C ()0,2,0, S ()0,0,2.(1) (略)(2) 由(1) 得E 222,,333⎛⎫⎪⎝⎭, 于是222(,,)333D E = ,(1,0,0)D A =,(0,2,0)D C = ,那么,平面DEA 的法向量222(,,)333(1,0,0)222222,,3333330011022(0,,)33nD E D A =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-平面DEC 的法向量222(,,)333(0,2,0)222222,,33333320244(,0,)33mD E D C =⨯=⨯⎛⎫ ⎪=- ⎪ ⎪⎝⎭=-若平面DEA 与平面DEC 所成的角为θ, 则81cos 0233n mn mθ-⋅===-<. 又 []0,θπ∈,所以23θπ=.例3.2(2005高考江苏试题 第21题 第3问) 如图5,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE,SA=AB=AE =2,3==DE BC ,︒=∠=∠=∠120CDE BCD BAE .求二面角B-SC-D 的大小(用反三角函数值表示解 连接BE ,延长BC 、ED 交于点F (图6), 则∠DCF=∠CDF =600,∴△CDF 为正三角形, ∴CF=DF . 又BC=DE, ∴BF=EF , 故△BFE 为正三角形, 因为△ABE 是等腰三角形,且∠BAE =1200, ∴∠ABC =900.以A 为坐标原点, AB 、AS 棱所在的直线分别为x 轴、z 轴, 以平面ABC 内垂直于AB 的直线为y 轴,建立空间直角坐标系(图6), 相应各点坐标为A (0,0,0),B (2,0,0),S (0,0,2),且()2,0C,1,,022D ⎛⎫⎪⎪⎝⎭. 于是()2,2C S =-,()0,0C B =,3,022C D ⎛⎫=- ⎪ ⎪⎝⎭. 平面CSB 的法向量()()2,20,02222,,00000,nC S C B =⨯=-⨯⎛--=-⎝= ;平面CSD 的法向量()2,230222222,,33002223,2mC S CD =⨯=-⎛⎫⨯- ⎪ ⎪⎝⎭⎛-- =- -- ⎝⎛=-- ⎪⎝⎭ .若平面CSB 与平面CSD 所成的角为θ,即二面角B —SC —D 的大小为θ, 则cos 082n m n mθ⋅===-<.又 []0,θπ∈,arccos82θπ=-例3.3 (2005高考重庆理科试题 第20题 第2问)如图7,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB =2,BB 1=2,BC =1,∠BCC 1=3π,求:二面角A—EB 1—A 1的平面角的正切值.解 以B 为坐标原点, BB 1 、BA 棱所在的直线分别为y 轴、z 轴,以平面BCC 1B 1内垂直于BB 1的直线为x 轴,建立空间直角坐标系(图8),相应各点坐标为B (0,0,0),B 1(0,2,0), A (0,0,2), A 1 (0,2,2), 且可根据已知条件设,02E a ⎛⎫⎪ ⎪⎝⎭,则12,022EA EB a a ⎛⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭23204a a =+-=. 解之12a =(或3,2a =若3,2a =则点E 在棱CC 1之外,故舍去),故1,,022E ⎛⎫⎪ ⎪⎝⎭.于是13,022EB ⎛⎫=- ⎪ ⎪⎝⎭,122EA ⎛=-- ⎝⎭, 13,22EA ⎛=- ⎝⎭. 平面EB 1A 的法向量13,0221,22332222112222,22nEB EA ⎛⎫=⨯=- ⎪ ⎪⎝⎭⎛⨯-- ⎝⎭⎛⎫--⎪ ⎪=- ⎪---- ⎪⎝⎭⎛= ⎝⎭; 平面EB 1A 1的法向量113,02232233222233222222m EB EA⎛⎫=⨯=-⎪⎪⎝⎭⎛⨯-⎝⎭⎛⎫--⎪⎪=-⎪--⎪⎝⎭⎛⎫= ⎪⎪⎝⎭.若平面EB1A与平面EB1A1所成的角为θ,即二面角A-EB1-A1的大小为θ,则cos03n mn mθ⋅===>.又[]0,θπ∈,tan2θ=.DEAB 4练习1.(2009全国1文)19. 如图,四棱锥S A B C D -中,底面A B C D 为矩形,SD ⊥底面A B CD ,AD =2D C SD ==,点M 在侧棱S C 上,∠ABM=60.(I )证明:M 是侧棱S C 的中点;()II 求二面角SA MB --的大小。

二面角8种求法

二面角8种求法

平面角定义法例题2:已知正方体 ABCD-ABCD 中,E 、 所成的二面角二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二 面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角 大小方法的典型几何体。

笔者通过探求正方体中有关二面角, 分析求二面角大小的八种方法:(1) 平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间 距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。

此法是根据二面角的平面角定义,直接寻求二面角的大小。

以所求二面角棱上任意一点为端点,在二面角两个平面内 分别作垂直于棱的两条射线所成角就是二面角的平面角, 如图二面角a -l- B 中,在棱I 上取一点O,分别在a 、B 两个平面内作AC L I ,BOLI ,/ AOB 即是所求二面角的平面角例题1:已知正方体ABCD-AB i CD 中,C O 是上下底面正方形的中心,求二面角 O-BC-O 的大小。

C iC利用三垂线定理法此方法是如图二面角a -l- B 中,在平面a 内取一点A, 过A 作AB 丄平面B ,B 是垂足,由B (或A )作B0(或AO 丄l ,连接A0(或B0即得A0是平面B 的斜线,B0是 A0在平面B 中的射影,根据三垂线定理(或逆定理)即得 A0LI , B0LI , 即/ A0B 是 a -I- B 的平面角。

例题3 :已知正方体 ABCD-A i C l D 中,求二面角 B-AC-B 的大小。

线面垂直法例题4:已知正方体ABCD-ABiGD 中,求平面 ACD 与平面BDC 所成的二面角。

此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。

方法是 过所求二面角的棱上一点,作棱的垂面,与两个平面相交所得两条交线的所成角即是二面角的平 面角。

如图在二面角a -I- B 的棱上任取一点0过0作平面丫丄I , a G 丫 =A0 B G Y =B0得/ A0B 是平面角, v I 丄丫,I 丄 A0I 丄 B0•••/ A0B是二面角的平面角。

二面角的求法,面面之间的位置关系教师版

二面角的求法,面面之间的位置关系教师版
学科教师辅导讲义
讲义编号SH15ltjh00004
学员编号:年级:高三课时数:
学员姓名:辅导科目:数学学科教师:
学科组长签名及日期
剩余课时数
课题
平面与平面之间的位置关系
授课时间:
备课时间:
教学目标
掌握求二面角的常用方法,掌握平面与平面之间的位置关系及其相关判定定理
重点、难点
二面角的求法,面面之间的位置关系
考点及考试要求
会用文字语言、图形语言、符号语言、集合语言表示这些位置关系。会用演绎法对空间有关问题进行证明和推算,具有一定的演绎推理能力
教学内容
一、复习巩固
上节课课后习题评讲
二、课程讲授
一、知识要点:
1.二面角定义
平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面.
2.设 是两条不同的直线, 是两个不同的平面,下列命题中正确的是( )
A.若 , , ,则 B.若 , , ,则
C.若 , , ,则 D.若 , , ,则
【答案】D
3.已知 为异面直线, 平面 , 平面 .直线 满足 ,则(D)
A. ,且 B. ,且
C. 与 相交,且交线垂直于 D. 与 相交,且交线平行于
例4如图,AB为圆O的直径,C为圆O上的一点,PA⊥平面ABC,AE⊥PB,AF⊥PC
求证:PB⊥平面AEF
课后思考题
1.关于直线 、 与平面 、 ,有下列四个命题:D
①若 , 且 ,则 ;
②若 , 且 ,则 ;
③若 , 且 ,则 ;
④若 , 且 ,则 。
其中真命题的序号式

正四面体二面角8种求法(教师版)

正四面体二面角8种求法(教师版)

正四⾯体⼆⾯⾓8种求法(教师版)⼆⾯⾓求法例题1:已知正⽅体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底⾯正⽅形的中⼼,求⼆⾯⾓O 1-BC-O 的⼤⼩。

解:取BC 中点E ,连接OE 、O 1E ,易证⊿BOC 、⊿BO 1C 是等腰三⾓形。

∴OE ⊥BC ,O 1E ⊥BC ,∴∠OEO 1是⼆⾯⾓O 1-BC-O 的平⾯⾓,连OO 1,OO 1⊥平⾯ABCD ,∴OO 1⊥OE 在RT ⊿OEO 1中,OO 1=1,DE=21∴tan ∠OEO 1=22111==OE OO∴所求⼆⾯⾓θ=arctan2。

例题2:已知正⽅体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 1D 1的中点,求平⾯EFCA 与底⾯ABCD 所成的⼆⾯⾓。

解:连B 1D 1交EF 于G ,连BD 交AC 于O ,作GH ⊥BD ,H 是垂⾜,连GO ,易证GO ⊥AC ,⼜BD ⊥AC∴∠GOH 是所求⼆⾯⾓的平⾯⾓, GH=1,OH=42∴tan ∠GOH=22421==OH GH ∴所求⼆⾯⾓θ=arctan 22。

利⽤平⾯⾓定义法求⼆⾯⾓⼤⼩,在棱上取⼀点常常是取特殊点。

例1中E 点,例2中O 点都是特殊位置的点,所作两垂线也是题中特殊位置的线段。

例题3:已知正⽅体ABCD-A 1B 1C 1D 1中,求⼆⾯⾓B-AC-B 1的⼤⼩。

解:连接BD 交于AC 为O 点,连OB 1,∵BB 1⊥平⾯ABCD ,BO ⊥AC ∴B 1O ⊥AC ,∠BOB 1是⼆⾯⾓B-AC-B 1的平⾯⾓,tan ∠BOB 1=22211==BO BB ∴所求⼆⾯⾓θ=arctan 2. 例题4:已知正⽅体ABCD-A 1B 1C 1D 1中,求平⾯ACD 1与平⾯BDC 1所成的⼆⾯⾓。

解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求⼆⾯⾓B-EF-C 的棱,连A 1C ,易证A 1C ⊥平⾯BDC 1,垂⾜为H ,取AD 1中点O ,连OC 交EF 于G∵EF ∥AD 1,OC ⊥AD 1 ∴OC ⊥EF 即CG ⊥EF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-FG练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。

(答案:二面角的余弦值为515) 二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

本定理亦提供了另一种添辅助线的一般规律。

如(例2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。

再解直角三角形求二面角的度数。

例2.(2009山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

(1) 证明:直线EE 1//平面FCC 1; (2) 求二面角B-FC 1-C 的余弦值。

证(1)略解(2)因为AB=4, BC=CD=2, 、F 是棱AB 的中点,所以BF=BC=CF,△BCF 为正三角形,取CF 的中点O,则OB ⊥CF,又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD,所以CC 1⊥BO,所以OB ⊥平面CC 1F,过O 在平面CC 1F 内作OP ⊥C 1F,垂足为P,连接BP,则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中,3OB =,在Rt △CC 1F 中, △OPF ∽△CC 1F,∵EAB CFE 1A 1B 1C 1D 1DF 1O PEABCFE 1 A 1B 1C 1D 1D11OP OF CC C F =∴22122222OP =⨯=+, 在Rt △OPF 中,22114322BP OP OB =+=+=,272cos 142OP OPB BP ∠===,所以二面角B-FC 1-C 的余弦值为77. 练习2(2008天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知ο60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。

(答案:二面角A BD P --的大小为439arctan) 三.补棱法 本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。

即当二平面没有明确的交线时,一般用补棱法解决例3(2008湖南)如图所示,四棱锥P -ABCD 的底面ABCD是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A⊥底面ABCD ,P A =2. (Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小.分析:本题的平面P AD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。

(Ⅰ)证略 解: (Ⅱ)延长AD 、BE 相交于点F ,连结PF .过点A 作AH ⊥PB 于H ,由(Ⅰ)知平面PBE ⊥平面P AB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°, 所以,AF =2AB =2=AP .在等腰Rt △P AF 中,取PF 的中点G ,连接AG .ABCEDPFG HAB CED P则AG⊥PF.连结HG,由三垂线定理的逆定理得,PF⊥HG.所以∠AGH是平面P AD和平面PBE所成二面角的平面角(锐角).在等腰Rt△P AF中,AG==在Rt△P AB中,5AP ABAHPB====g所以,在Rt△AHG中,sin5AHAGHAG∠===故平面P AD和平面PBE所成二面角(锐角)的大小是arcsin练习3已知斜三棱柱ABC—A1B1C1的棱长都是a,侧棱与底面成600的角,侧面BCC1B1⊥底面ABC。

(1)求证:AC1⊥BC;(2)求平面AB1C1与平面ABC所成的二面角(锐角)的大小。

提示:本题需要补棱,可过A点作CB的平行线L(答案:所成的二面角为45O)四、射影面积法(cossSq=射影)凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos斜射SS=θ)求出二面角的大小。

例4.(2008北京理)如图,在三棱锥P ABC-中,2AC BC==,90ACB∠=o,AP BP AB==,PC AC⊥.(Ⅰ)求证:PC AB⊥;(Ⅱ)求二面角B AP C--的大小;分析:本题要求二面角B—AP—C的大小,如果利用射影面积法解题,不难想到在平面ABP 与平面ACP中建立一对原图形与射影图形并分别求出S原与S射于是得到下面解法。

解:(Ⅰ)证略(Ⅱ)AC BC=Q,AP BP=,APC BPC∴△≌△.又PC AC⊥,PC BC∴⊥.又90ACB∠=o,即AC BC⊥,且AC PC C=I,A BEPACBPAC BB1C1A1LBC ∴⊥平面PAC .取AP 中点E .连结BE CE ,. AB BP =Q ,BE AP ∴⊥.EC Q 是BE 在平面PAC 内的射影, CE AP ∴⊥.∴△ACE 是△ABE 在平面ACP 内的射影, 于是可求得:2222=+===CB AC AP BP AB ,622=-=AE AB BE ,2==EC AE 则1222121=•=•==∆CE AE S S ACE 射, 3622121=•=•==∆EB AE S S ABE 原 设二面角B AP C --的大小为ϑ,则3331cos ===原射S S ϑ ∴二面角B AP C --的大小为33arccos =ϑ练习4: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.(答案:所求二面角的余弦值为cos θ=32). 五、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。

例4:(2009天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12AD(I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; 求二面角A-CD-E 的余弦值。

现在我们用向量法解答:如图所示,建立空间直角坐标系,以点A 为坐标原点。

设,1=AB 依题意得(),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .21121M ⎪⎭⎫ ⎝⎛,, A 1D 1B 1C 1EDBCA图5(I )(),,,解:101B F -= (),,,110DE -= .2122100DEBF DE cos =•++==,于是BF所以异面直线B F 与DE 所成的角的大小为060.(II )证明:,,,由⎪⎭⎫ ⎝⎛=21121AM (),,,101CE -= ()0AM CE 020AD =•=,可得,,, .AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=•I.CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )⎪⎩⎪⎨⎧=•=•=.0D 0)(CDE E u CE u z y x u ,,则,,的法向量为解:设平面.111(1.00),,,可得令,于是==⎩⎨⎧=+-=+-u x z y z x又由题设,平面ACD 的一个法向量为).100(,,=v练习5、(2008湖北)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.分析:由已知条件可知:平面ABB 1 A 1⊥平面BC C 1 B 1⊥平面ABC 于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。

相关文档
最新文档