2019年6月高考全国1卷文科数学及答案
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国1卷文数高考试题(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学1注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则=()A.2 B.C.D.12.已知集合,则( ) A. B.C.D.3.已知,则( )A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0。
618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm5.函数f(x)=在[—π,π]的图像大致为( )A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。
若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.tan255°=( )A.—2-B.-2+C.2-D.2+8.已知非零向量a,b满足=2,且(a-b)b,则a与b的夹角为() A.B.C.D.9.如图是求的程序框图,图中空白框中应填入( )A.A=B.A= C.A=D.A=10.双曲线C:的一条渐近线的倾斜角为130°,则C的离心率为( )A.2sin40°B.2cos40°C.D.11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-,则=( )A.6 B.5 C.4 D.312.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.曲线在点处的切线方程为___________.14.记S n为等比数列{a n}的前n项和.若,则S4=___________.15.函数的最小值为___________.16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________.三、解答题:共70分。
完整)2019年高考文科数学全国1卷(附答案)

完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。
3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。
设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。
5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。
注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。
已删除明显有问题的段落。
6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。
如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。
要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。
2019年全国1卷文数高考试题(含答案)

绝密★启用前2019 年普通高等学校招生全国统一考试文科数学 1注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则 =()A.2B.C.D. 12.已知集合,则( ) A.B.C.D.3.已知,则()A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是分割比例,且腿长为105 cm,头顶至脖子下端的长度为.若某人满足上述两个黄金26 cm,则其身高可能是()A .165 cm 5.函数 f(x)=B. 175 cm C. 185 cm D. 190 cm 在 [- π,π]的图像大致为 ()A.B.C.D.6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为1,2,⋯, 1 000,从这些新生中用系统抽样方法等距抽取100 名学生进行体质测验 .若46 号学生被抽到,则下面 4名学生中被抽到的是()A .8号学生B. 200 号学生C. 616号学生D. 815号学生7. tan255 =(°)A .-2B2+C.2D.2+ -. --8.已知非零向量a, b 满足= 2,且( a- b)b,则 a 与 b 的夹角为( )A .B.C.D.9.如图是求的程序框图,图中空白框中应填入()A .A=B. A= C .A=D.A=10.双曲线 C:的一条渐近线的倾斜角为130 °,则 C 的离心率为( )A . 2sin40 ° B. 2cos40 ° C.D.11.△ ABC 的内角 A, B, C 的对边分别为 a, b, c,已知 asinA- bsinB=4csinC, cosA=-,则 =()A . 6B .5C. 4 D .312 .已知椭圆C的焦点为,过 F2的直线与 C 交于A,B 两点 .若,,则 C 的方程为 ()A .B .C. D .二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(word完整版)2019年高考文科数学全国1卷(附答案).docx

_ - __ - _ __-__:-号-学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、:本共12 小,每小 5 分,共 60 分。
在每个小出的四个中,只有一是符合目要求的。
1.z3i, z =12iA . 2B .3C.2 D .12.已知集合U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA .1,6B .1,7C.6,7D.1,6,7.已知 a0.20.3,3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最美人体的至肚的度与肚至足底的度之比是5 1(5 1≈0.618,称黄金分割比例),著名22的“断臂斯”便是如此.此外,最美人体的至咽喉的度与咽喉至肚的度之比也是5 1.若某人足2上述两个黄金分割比例,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大致cos x xA. B.C. D.6.某学校了解 1 000 名新生的身体素,将些学生号1, 2,⋯, 1 000,从些新生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°12B-SX-00000228.已知非零向量a ,b 满足 a = 2b ,且( a –b )b ,则 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c ,已知 asinA - bsinB=4 csinC ,cosA=- 1 ,则 b=4 cA . 6B . 5C . 4D . 312.已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B 两点 .若| AF | 2| F B|, | AB| | BF |,则 C 的方程为22 1A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(完整)2019年高考文科数学全国1卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2 BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= a b c <<a c b <<c a b <<b c a <<8.已知非零向量a ,b 满足a=2b,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3D .5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A =12A +B. A =12A +C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .3 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
2019高考全国卷1文科数学详细答案

.
所以 .
(2)因为 为正数且 ,故有
=24.
所以 .
2019年普通高等学校招生全国统一考试
文科数学·参考答案
一、选择题
1.C2.C 3.B4.B5.D6.C
7.D8.B9.A10.D11.A12.B
二、填空题
13.y=3x14. 15.−416.
三、解答题
17.解:
(一)必考题:60分。
17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为 ,因此男顾客对该商场服务满意的概率的估计值为0.8.
女顾客中对该商场服务满意的比率为 ,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2) .
由于 ,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
18.解:
(2)过C作C1E的垂线,垂足为H.
由已知可得 , ,所以DE⊥平面 ,故DE⊥CH.
从而CH⊥平面 ,故CH的长即为C到平面 的距离,
由已知可得CE=1,C1C=4,所以 ,故 .
从而点C到平面 的距离为 .
20.解:
(1)设 ,则 .
当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,故 在 存在唯一零点.
解析:∵asinA-bsinB=4csinC
答案:B
解析:
二、填空题:本题共4小题,每小题5分,共20分。
答案:y=3x
解析:
∴y=3x
答案:
解析:
答案: -4
解析:
答案:
解析:∵点P到∠ACB两边AC,BC的距离均为 ,过P做PE⊥CA,PF⊥CB,PO⊥平面ABC,连接OE,OF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
满意
不满意
男顾客
40
10
女顾客
30
20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有 95%的把握认为男、女顾客对该商场服务的评价有差异?
附: K 2
n(ad bc)2
.
(a b)(c d)(a c)(b d)
P (K2≥k)
k
0.0 50
3.8 41
0.0 10
4
b 则=
c
A.6
B.5
C.4
D.3
12 . 已 知 椭 圆 C 的 焦 点 为 F1(1, 0), F2 (1, 0) , 过 F2 的 直 线 与 C 交 于 A , B 两 点 . 若
| AF2 | 2 | F2B | ,| AB || BF1 | ,则 C 的方程为
A. x2 y2 1 2
笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;
在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮
纸刀。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
1 1
t t
2 2
,
(t
为参数),以坐标原点
O
y
4t 1 t2
为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为
2 cos 3 sin 11 0 .
(1)求 C 和 l 的直角坐标方程; (2)求 C 上的点到 l 距离的最小值.
23.[选修 4−5:不等式选讲](10 分) 已知 a,b,c 为正数,且满足 abc=1.证明:
(1) 1 1 1 a2 b2 c2 ; abc
(2) (a b)3 (b c)3 (c a)3 24 .
文科数学试题 第 4 页(共 8 页)
2019 年普通高等学校招生全国统一考试
女顾客中对该商场服务满意的比率为 30 0.6 ,因此女顾客对该商场服务满意的概率 50
的估计值为0.6.
(2) K 2 100 (40 20 30 10) 2 4.762 . 50 50 70 30
由于 4.762 3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.
上,且 A, B 关于坐标原点 O 对称,所以 M 在直线 y x 上,故可设 M (a, a) .
因为 M 与直线x+2=0相切,所以 M 的半径为 r | a 2 | .
由已知得 |AO|=2 ,又 MO AO ,故可得 2a2 4 (a 2)2 ,解得 a=0 或 a=4 . 故 M 的半径 r=2 或 r=6 . (2)存在定点 P(1, 0) ,使得 | MA | | MP | 为定值.
18.解:
(1)设an 的公差为d.
由 S9 a5 得 a1 4d 0 .
由a3=4得 a1 2d 4 .
于是 a1 8, d 2 .
因此an 的通项公式为 an 10 2n .
(2)由(1)得 a1
4d
,故 an
(n 5)d , Sn
n(n 9)d 2
14.记
Sn
为等比数列{an}的前
n
项和.若
a1
1,S3
3 4
,则
S4=___________.
15.函数 f (x) sin(2x 3π ) 3cos x 的最小值为___________. 2
16.已知∠ACB=90°,P 为平面 ABC 外一点,PC=2,点 P 到∠ACB 两边 AC,BC 的距离
AB=2,∠BAD=60°,E,M,N 分别是 BC,BB1,A1D 的中 点.
(1)证明:MN∥平面 C1DE; (2)求点 C 到平面 C1DE 的距离.
20.(12 分) 已知函数 f(x)=2sinx-xcosx-x,f ′(x)为 f(x)的导数. (1)证明:f ′(x)在区间(0,π)存在唯一零点; (2)若 x∈[0,π]时,f(x)≥ax,求 a 的取值范围.
理由如下:
设 M (x, y) ,由已知得 M 的半径为 r=|x+2|,|AO|=2 .
由于 MO AO ,故可得 x2 y2 4 (x 2)2 ,化简得M的轨迹方程为 y2 4x .
因为曲线 C : y2 4x 是以点 P(1, 0) 为焦点,以直线 x 1 为准线的抛物线,所以
均为 3 ,那么 P 到平面 ABC 的距离为___________.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:60 分。 17.(12 分)
某商场为提高服务质量,随机调查了 50 名男顾客和 50 名女顾客,每位顾客对该商场的 服务给出满意或不满意的评价,得到下面列联表:
文科数学·参考答案
一、选择题 1.C2.C 3.B4.B5.D6.C 7.D8.B9.A10.D11.A12.B 二、填空题
13.y=3x 14. 5 15.−416. 2 8
三、解答题 17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为 40 0.8 ,因此男顾客对该商 50
场服务满意的概率的估计值为0.8.
ME
1 2
B1C
.又因为N为
A1D
的中点,所以
ND
1 2
A1D
.
文科数学试题 第 5 页(共 8 页)
由题设知 A1B1∥= DC ,可得 B1C∥= A1D ,故 ME∥= ND ,因此四边形MNDE为平行四 边形, MN∥ED .又 MN 平面 C1DE ,所以MN∥平面
C1DE .
(2)过C作C1E的垂线,垂足为H.
由已知可得 DE BC , DE C1C ,所以DE⊥平面Βιβλιοθήκη C1CE ,故DE⊥CH.
从而CH⊥平面 C1DE ,故CH的长即为C到平面 C1DE 的
距离,
由 已 知 可 得 CE=1 , C1C=4 , 所 以 C1E 17 , 故
CH 4
17
.
17
从而点C到平面 C1DE
的距离为
4 17 17
D. {1,6, 7}
3.已知 a log2 0.2, b 20.2 , c 0.20.3 ,则
A. a b c
B. a c b
C. c a b
D. b c a
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度
之比是 5 1 ( 5 1 ≈0.618,称为黄金分割比例),著名的“断臂维纳
A
1 C.A= 1 2A D.A=1 1
2A
10.双曲线
C:
x2 a2
y2 b2
1(a
0, b
0) 的一条渐近线的倾斜角为
130°,则
C
的离心率为
A.2sin40°
B.2cos40°
1 C. sin50
1 D. cos50
1 11.△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 asinA-bsinB=4csinC,cosA=- ,
.
20.解:
(1)设 g(x) f (x) ,则 g(x) cos x x sin x 1, g(x) x cos x .
当
x
(0,
π 2
)
时,
g(
x)
0
;当
x
π 2
,
π
时,
g(
x)
0
,所以
g
(
x)
在
(0,
π 2
)
单调递
增,在
π 2
,
π
B. x2 y2 1 32
C. x2 y2 1 43
D. x2 y2 1 54
文科数学试题 第 2 页(共 8 页)
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.曲线 y 3(x2 x)ex 在点 (0, 0) 处的切线方程为___________.
项是符合题目要求的。
1.设
z
3i 1 2i
,则
|
z
|
=
A.2
B. 3
C. 2
D.1
2.已知集合U {1, 2,3, 4,5,6,7} , A {2, 3, 4, 5} , B {2, 3, 6, 7} ,则 B ðU A
A. {1, 6}
B. {1, 7}
C. {6, 7}
D.815 号学生
7.tan255°=
A.-2- 3
B.-2+ 3
C.2- 3
D.2+ 3
8.已知非零向量 a,b 满足 a =2 b ,且(a–b) b,则 a 与 b 的夹角为
π
A.
6
π
B.
3
2π
C.
3
5π
D.
6