实验:探究碰撞中的不变量

合集下载

实验:探究碰撞中的不变量

实验:探究碰撞中的不变量
求进行组装。
确定实验场地,确保实验过程中 不会受到外界干扰。
进行实验并记录数据
01
将小球从斜面释放,让其自由下落,与挡板发生碰 撞。
02
使用计时器和数据采集器记录小球下落的时间和碰 撞后的速度。
03
重复实验多次,以获取更准确的数据。
分析实验结果
对采集到的数据进行 整理和统计,计算平 均值和标准差。
详细描述
能量守恒定律是物理学中的基本定律之一,适用于碰撞过程。在碰撞过程中, 系统的总能量保持不变。如果碰撞过程中没有外力做功,系统的总能量保持不 变,不会因为碰撞而增加或减少。
03
实验步骤
准备实验器材
实验器材:小球、斜面、挡板、 尺子、计时器、数据采集器等。
实验前需对所有器材进行检查, 确保其完好无损,并按照实验要
掌握实验技巧
在实验操作过程中,我们学会了如何精确控制实 验条件,以及如何测量和记录实验数据。
3
培养探究精神
通过自主设计和实施实验,我们培养了发现问题、 分析问题和解决问题的能力,激发了对科学探究 的兴趣。
对实验的反思与改进建议
实验误差分析
实验数据处理
在实验过程中,可能存在一些测量误 差和操作误差,需要对这些误差进行 分析,并找出减小误差的方法。
应用研究
可以探索碰撞中的不变量在现实生活和工程中的应用, 例如在碰撞动力学、碰撞防护等领域的应用。
THANKS FOR WATCHING
感谢您的观看
误差分析
在实验过程中,可能存在一些误差,如测量误差、仪器误差等。为了减小误差对实验结果的影响,我们采用了高 精度的测量仪器和多次测量的方法,并对数据进行处理和分析。
05
实验总结与建议

实验:探究碰撞中的不变量

实验:探究碰撞中的不变量

三、实验方案 方案1、利用气垫导轨结合光电门实现一维碰撞, 实验装置如图所示.
(1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v=Δx/Δt,式中Δx为滑块挡 光片的宽度,Δt为数字计时器显示的滑块挡光片经过 光电门对应的时间.
(3)碰撞情景的实现
如图所示,利用弹簧片、细绳、弹性碰撞架、胶布、撞
v v1 v2 v (3) m1 m2 m1 m2
①碰撞前后物体质量不变,但质量并不描述物体的 运动状态,不是我们追寻的“不变量”. ②必须在各种碰撞的情况下都不改变的量,才是我们 追寻的不变量.
' v
' 2
2、实验条件的保证、实验数据的测量 a 、实验必须保证碰撞是一维的,即两个物体 在碰撞之前沿同一直线运动,碰撞之后还沿同 一直线运动; b 、用天平测量物体的质量; c 、测量两个物体在碰撞前后的速度;
实验:
实验:探究碰撞中的不变量
探究碰撞中的不变量
一、实验目的
1.明确探究碰撞中的不变量的基本思路. 2.探究一维碰撞中的不变量. 二、实验原理 1.探究思路
(1)一维碰撞:两个物体碰撞前沿同一直线运动, 碰撞后仍沿这一直线运动,这种碰撞叫做一维 碰撞.
(2)追寻不变量:在一维碰撞的情况下,设两个物 体的质量分别为m1、m2,碰撞前的速度分别为v1、 v2,碰撞后的速度分别为v′1、v′2,如果速度与我 们规定的正方向一致,取正值.相反取负值,依次 研究以下关系是否成立: (1)m1v1+m2v2=m1v′1+m2v′2; (2)m1v12+m2v22=m1v1′2+m2v2′2;
3、若用打点计时器做实验,下列哪些操作是正确 的( BC ) A.相互作用的两小车上,一个装上撞针,一个装上 橡皮泥,是为了改变两车的质量 B.相互作用的两小车上,一个装上撞针,一个装上 橡皮泥,是为了碰撞后粘在一起 C.先接通打点计时器电源,再释放拖动纸带的小车 D.先释放拖动纸带的小车,再接通打点计时器的电 源

16.1《实验:探究碰撞中的不变量》ppt课件

16.1《实验:探究碰撞中的不变量》ppt课件
1v1ʹ + m2v2ʹ = m1v1ʹ2 + m2v2ʹ2 =
v1' v2' m1 m2
m2 = 4 v2ʹ = 6
2. 实验结论
经过验证后可知,在误差允许的范围内,碰撞前后不变的量是物体的质 量与速度的乘积,即
m1v1+m2v2=m1v1′+m2v2′
方案二:摆球测速原理
如图把两个小球用线悬起来,一个小球静止,拉起另一个小球,放下时 它们相碰。可以测量小球被拉起的角度,从而算出落下时的速度;测量被撞 小球摆起的角度,从而算出被撞后的速度。也可以用贴胶布等方法增大两球 碰撞时的能量损失。
测速原理
保证两绳等 长
θ β
橡皮泥
单摆测速:设摆绳长为L,测出摆角θ和β,机械能守恒可得碰撞前A速 度为
方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥 。
实验步骤
不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: 1. 用天平测相关质量; 2. 安装实验装置; 3. 使物体发生碰撞; 4. 测量或读出相关物理量,计算有关速度; 5. 改变碰撞条件,重复步骤 3、4; 6. 进行数据处理,通过分析比较,找出碰撞中的守恒量; 7. 整理器材,结束实验。
课堂练习
1、如图所示,利用气垫导轨和光电门研究碰撞中的不变量,已知光电门的 宽度为L,两滑块质量分别为mA和mB,开始时滑块A和B相向运动,经过光电门 的时间各自为⊿tA和⊿tB,碰撞后,滑块B和A先后以⊿tB’和⊿tA’ 经过右 侧光电门,如果实验中测出碰撞前后两滑块的质量和速度乘积之和保持不变 ,则可用题中条件写出所满足的关系式是 ________________________________________

16.1 实验:探究碰撞中的不变量(解析版)

16.1 实验:探究碰撞中的不变量(解析版)

16.1 实验:探究碰撞中的不变量学习目标1.了解探究碰撞中的不变量的基本思路和实验方法;2.体验探究自然规律的过程;3.探究一维碰撞中的不变量。

知识点一、实验探究的基本思路1.实验目的:(1)明确探究碰撞中的不变量的基本思路。

(2)探究一维碰撞中的不变量。

2.实验原理(1)一维碰撞:两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动,这种碰撞叫做一维碰撞。

(2)追寻不变量:在一维碰撞的前提下,设两个物体的质量分别为m1、m2,碰撞前它们的速度分别为v1、v2,碰撞后的速度分别为v′1、v′2。

规定某一速度方向为正。

碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:①质量是不变的,但质量并不能描述物体的运动状态,不是我们追寻的“不变量”。

1 12 2 1 1 2 2④物体速度与其质量之比的和是否为不变量。

即是否有v1m1+v2m2=v1'm1m2知识点二、实验方案设计方案一:用气垫导轨结合光电门完成两个滑块的一维碰撞实验装置如下图。

11.器材:气垫导轨、光电计时器、滑块(带挡光板、两个)、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。

2.所需测量量:滑块(挡光板)的宽度Δx ,滑块(挡光板)经过光电门的时间Δt 。

3.速度的测量:v =Δx,式中Δx 为滑块上挡光片的宽度,Δt 为光电计时器显示的挡光片经过光电门的Δt时间。

4.碰撞情景的实现:如图所示,利用滑块上装弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,,达到碰撞后弹开或粘在一起的效果。

利用在滑块上加重物的方法改变碰撞物体的质量。

方案二:利用等长悬绳挂等大的小球实现一维碰撞结合机械能守恒定律实验装置如图。

把两个小球用线悬起来,一个小球静止,拉起另一个小球,放开后它们相碰。

1.器材:带细线的摆球(两套)、铁架台、量角器、坐标纸、胶布。

2.所需测量量:悬点至球心的距离 l ,摆球被拉起或碰后的角度θ。

3.速度的测量 v = 2gl (1-cos θ),式中 l 为单摆摆长,θ为小球被拉起或被撞小球摆起的角度。

实验探究碰撞中的不变量 课件

实验探究碰撞中的不变量   课件
骤如下:
1.用天平测量相关碰撞物体的质量。
2.安装实验装置。
3.使物体发生碰撞。
4.测量或读出碰撞前后的相关数据,计算出物体对应的速度,并把
相关数据填入表中。
碰撞前
质量
速度
mv
mv2
v
m
碰撞后
m1
m2
Байду номын сангаас
m1
m2
v1
v2
v1'
v2'
m1v1+m2v2
m1v1'+m2v2'
m1v1 2 + 2v2 2
验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于
水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落
点痕迹,再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置
G由静止开始滚下,和B球碰撞后,A、B球分别在记录纸上留下各自
的落点痕迹,重复这种操作10次。图中O点是水平槽末端R在记录
1.保证两个物体发生的是一维碰撞,即两个物体碰撞前后在一条
直线上。
2.若用气垫导轨进行实验,调整轨道水平,可用水平尺测量。
3.若利用摆球做实验,两个小球静止时球心应在同一水平线上,且
刚刚接触,摆线竖直。将小球拉起后,两摆线应在同一竖直平面内。
4.碰撞有很多情形,我们寻找的不变量必须在各种碰撞情况下都
D.测量G点相对于水平槽面的高度
点拨:由于斜槽末端离地高度未知,无法求出小球飞行时间和水
平分速度。根据平抛运动规律,可以用水平位移代替平抛运动的初
速度。
解析:(1)本题中,小球碰撞前后做平抛运动的高度相同、飞行时
间相同,所以只要测出小球飞行的水平位移,就可以用水平位移代

实验:探究碰撞中的不变量

实验:探究碰撞中的不变量
由以上测量结果可得:碰前mAvA+mBvB=_______kg·m/s;碰后 mAvA′+mBvB′=______kg·m/s.
答案:(1)BC
DE
(2)0.42
0.417
某同学利用如图所示的装置“探究碰撞中的不变量”。 图 中两摆摆长相同,悬挂于同一高度,A、B 两摆球均很小,质 量之比为 1:2。当两摆球均处于自由静止状态时,其侧面刚好 接触。 向右上方拉动 B 球使其摆线伸直并与竖直方向成 45° 角, 然后将其由静止释放。结果观察到两摆球粘在一起摆动,且最 大摆角为 30° 。若本实验允许的最大误差为± 4%,此实验是否 成功地验证了碰撞中的守恒量,此守恒量是什么?
例题2:
3.动量守恒定律解题的一般步骤: (1)明确题意,明确研究对象; (2)受力分析,判断是否守恒; (3)确定动量守恒系统的作用前总动量和作用后总动量; (4) 选定正方向根据动量守恒定律列出方程; (5)解方程,得出结论。
明确: ① 应用动量守恒定律分析问题时研究的对象不是 一个物体,而是相互作用的两个或多个物体组成的 物体系。应用时注意选系统。 ② 动量守恒定律的表达式实际上是一个矢量式。 处理一维问题时,注意规定正方向。 ③动量守恒定律指的是系统任一瞬时的动量矢量 和恒定。 ④应用动量守恒定律时,各物体的速度必须是相 对同一惯性系的速度。一般以地球为参考系。
猜想:
碰撞前后速度V的变化和物体的质量m 的关系,可以做如下猜测:
m2v2 ? m1v1 m2v2 m1v1
m v m v m v m2v2
2 1 1 2 2 2 2 1 1 2
? ?
m1 m2 m1 m2 v1 v2 v1 v2
……

高中物理 人教版选修3-5 第1课 实验:探究碰撞中的不变量

高中物理 人教版选修3-5  第1课  实验:探究碰撞中的不变量

第1课实验:探究碰撞中的不变量备课堂教学目标:(一)知识与技能1、明确探究碰撞中的不变量的基本思路;2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法;3、掌握实验数据处理的方法。

(二)过程与方法知道实验探究过程。

(三)情感态度与价值观渗透物理学方法的教育,体会科学探究的要素。

重点:探究碰撞中的不变量的基本思路难点:碰撞前后的速度的测量方法教学方法:多媒体展示、实验演示、推理计算教学用具:细线2条、小钢球若干、打点计时器、电源、导线若干、小车2个、橡皮泥、撞针讲法速递(一)引入新课:碰撞是常见的现象,以宏观、微观现象为例,从生产、生活中的现象(包括实验现象)中提出研究的问题----碰撞前后是否有什么物理量保持不变?引导学生从现象出发去发现隐藏在现象背后的自然规律。

板书:第1节实验:探究碰撞中的不变量(二)进行新课: 演示:A 、B 是两个悬挂起来的钢球,质量相等。

使B 球静止,拉起A 球,放开后A 与B 碰撞,观察碰撞前后两球运动的变化。

换为质量相差较多的两个小球,重做以上实验通过演示实验的结果看出,两物体碰后质量虽然没有改变,但运动状态改变的程度与物体质量的大小有关。

让学生通过观察现象猜想碰撞前后可能的“不变量”描述思路:两个物体各自的质量与自己的速度的乘积之和是不是不变量? m 1 v 1 + m 2v 2 = m 1 v 1’ + m 2 v 2’ ?或者,各自的质量与自己的速度的二次方的乘积之和是不变量? m 1 v 12+ m 2v 22= m 1 v 1’2+ m2 v 2’2?也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?22112211m v m v m v m v '+'=+ ?……指明了探究的方向和实验的目的制定计划与设计实验:P4~P5参考案例:给学生一定的设计空间 P3需要考虑的问题: 讨论操作和数据处理中的技术性问题(1)获得一维碰撞的方案①利用气垫导轨实现两滑块发生一维碰撞;②利用等长悬线悬挂等大小球实现两球发生一维碰撞;③利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。

第七章 实验:探究碰撞中的不变量

第七章 实验:探究碰撞中的不变量

实验:探究碰撞中的不变量 目标要求 1.理解动量守恒定律成立的条件,会利用动量守恒定律写出不同方案中动量守恒关系式.2.知道在不同实验方案中要测量的物理量,会进行数据处理及误差分析.实验技能储备一、实验原理在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等.二、实验方案及实验过程方案一:利用气垫导轨完成一维碰撞实验1.实验器材气垫导轨、光电计时器、天平、滑块(两个,包括挡光片)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥.2.实验过程(1)测质量:用天平测出两滑块的质量.(2)安装:正确安装好气垫导轨,如图1所示.图1(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度.(4)改变条件,重复实验:①改变滑块的质量;②改变滑块的初速度大小和方向.(5)验证:一维碰撞中的动量守恒.3.数据处理(1)滑块速度的测量:v =Δx Δt,式中Δx 为滑块上挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为光电计时器显示的挡光片经过光电门的时间.(2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.方案二:利用长木板上两车碰撞完成一维碰撞实验1.实验器材光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥.2.实验过程(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥,如图2所示.图2(3)实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一个整体运动.通过纸带上两计数点间的距离及时间,算出速度.(4)改变条件:改变碰撞条件,重复实验.(5)验证:一维碰撞中的动量守恒.3.数据处理(1)小车速度的测量:v =Δx Δt,式中Δx 是纸带上相邻两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出.(2)验证的表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′.方案三:利用斜槽滚球完成一维碰撞实验1.实验器材斜槽、小球(两个)、天平、复写纸、白纸、圆规、重垂线等.2.实验过程(1)测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)安装:按照如图3甲所示安装实验装置.调整固定斜槽使斜槽底端水平.图3(3)铺纸:白纸在下,复写纸在上且在适当位置铺放好.记下重垂线所指的位置O .(4)放球找点:不放被撞小球,每次让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面.圆心P 就是小球落点的平均位置.(5)碰撞找点:把被撞小球放在斜槽末端,每次让入射小球从斜槽同一高度(同步骤(4)中的高度)自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被撞小球落点的平均位置N,如图乙所示.(6)验证:连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中,最后代入m1·OP =m1·OM+m2·ON,看在误差允许的范围内是否成立.(7)整理:将实验器材放回原处.3.数据处理要验证的表达式:m1·OP=m1·OM+m2·ON.三、注意事项1.前提条件:碰撞的两物体应保证“水平”和“正碰”.2.方案提醒(1)若利用气垫导轨进行验证,调整气垫导轨时,应确保导轨水平.(2)若利用两小车相碰进行验证,要注意平衡摩擦力.(3)若利用平抛运动规律进行验证:①斜槽末端的切线必须水平;②入射小球每次都必须从斜槽同一高度由静止释放;③选质量较大的小球作为入射小球;④实验过程中实验桌、斜槽、记录的白纸的位置要始终保持不变.考点一教材原型实验例1(2020·浙江嘉兴市月考)某同学利用打点计时器和气垫导轨做“探究碰撞中的不变量”的实验,气垫导轨装置如图4甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成.在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差.图4(1)下面是实验的主要步骤:①安装好气垫导轨,调节气垫导轨的调节旋钮,使导轨水平;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 实验:探究碰撞中的不变量
【实验目的】 1.明确探究物体碰撞中的不变量的基本思路. 2.探究一维碰撞中的不变量. 【探究思路】 1.一维碰撞
两个物体碰撞前沿同一直线运动,碰撞后仍沿这一直线运 动,这种碰撞叫做一维碰撞.
2.追寻不变量 在一维碰撞的情况下,设两个物体的质量分别为 m1、m2,碰撞 前的速度分别为 v1、v2,碰撞后的速度分别为 v1′、v2′,如 果速度与我们规定的正方向一致取正值,相反取负值,依次研 究以下关系是否成立: (1)m1v1+m2v2=m1v1′+m2v2′; (2)m1v21+m2v22=m1v1′2+m2v2′2; (3)mv11+mv22=vm1′1 +vm2′2 . 探究以上各关系式是否成立,关键是准确测量和计算碰撞前、 后的速度 v1、v2、v1′、v2′.
【注意事项】
1.保证两物体发生的是一维碰撞,即两个物体碰撞前沿同一 直线运动,碰撞后仍沿这一直线运动.
2.若利用气垫导轨进行实验,调整气垫导轨时注意利用水平 仪确保导轨水平.
3.若利用摆球进行实验,两小球静放时球心应在同一水平线 上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应 在同一竖直面内.
【实验原理】 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运 动. 方案一 利用气垫导轨实现一维碰撞,实验装置如图16 - 1 - 1所示.
图16 - 1 - 1
(1)质量的测量:用天平测量质量. (2)速度的测量:利用公式 v=ΔΔxt ,式中 Δx 为滑块(挡光片)的宽度, Δt 为数字计时器显示的滑块(挡光片)经过光电门对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量.
【误差分析】
1.碰撞是否为一维碰撞,是产生误差的一个重要原因,设计 实验方案时应保证碰撞为一维碰撞.避免碰撞过程中两物 体偏离一条直线.
2.碰撞中是否受其他力(例如:摩擦力)的影响是带来误差的又 一个重要原因,实验中要合理控制实验条件,尽量减小或 避免除碰撞时相互作用力外的其他力影响物体速度.
3.测量及读数的准确性也是造成误差的一个重要原因,实验 中要规范读数和测量,尽量减小误差因素的影响.
1.用天平测量两滑块的质量m1、m2,填入预先设计好的表 中.
2.安装实验装置. 3.使物体发生碰撞.
4.测量或读出碰撞前后相关的物理量,计算对应的速度,填 入预先设计好的表中.
5.改变碰撞条件,重复步骤3、4. 6.进行数据处理,通过分析比较,找出碰撞中的“不变
量”. 7.整理器材,结束实验.
实验中记录数据用的表格:
图16 - 1 - 2
(4)实验方法
①用细线将弹簧片压缩,放置于两个滑块之间,并使它们静 止,然后烧断细线,弹簧片弹开后落下,两个滑块随即向相 反方向运动(图16 – 1 – 2甲).
②在两滑块相碰的端面装上弹性碰撞架(图16 – 1 – 2乙)可以得 到能量损失很小的碰撞.
③在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针 插入橡皮泥中,把两个滑块连成一体运动(图16 – 1 – 2丙),这 样可以得到能量损失很大的碰撞.
(3)通过以上实验及计算结果,你能得出什么结论?
质量m(kg)
碰撞前
m1
(kg·m/s)
m1v1+m2v2
碰撞后
m1
m2
v1′
v2′
m1v1′+m2v2′
续表 mv2(kg·m2/s2)
v m[m/(s·kg)]
其他可能的猜想 实验得出的结论
m1v21+m2v22 v1 + v2 m1 m2
m1v1′2+m2v2′2 v1′+v2′ m1 m2
4.碰撞有很多情形.我们寻找的不变量必须在各种碰撞情况 下都不改变,才符合要求.
纸带研究碰撞问题
【典例1】 某同学设计了一个用打点计时器探究碰撞中的不变 量的实验:在小车A的前端粘有橡皮泥,推动小车A使之做 匀速直线运动,然后与原来静止在前方的小车B相碰并粘 合成一体,继续做匀速直线运动.他设计的具体装置如图 1615甲所示.在小车A后面连着纸带,电磁打点计时器的电 源频率为50 Hz,长木板下垫着小木片用以平衡摩擦力.
图16-1-5
(1)若已得到打点纸带如图1615乙所示,并将测得的各计数点 间距标在图上,A为运动起始的第一点.则应选________段 计算A碰前的速度,应选________段计算A和B碰后的共同速 度.(填“AB”或“BC”“CD”或“DE”)
(2)已测得小车A的质量mA=0.40 kg,小车B的质量mB=0.20 kg , 由 以 上 测 量 结 果 可 得 : 碰 前 mAvA + mBvB = ________kg·m/s,碰后mAvA′+mBvB′=________kg·m/s.
方案二
利用等长悬线悬挂等大的小球实现一维碰撞, 实验装置如图16-1-3所示.
(1)质量的测量:用天平测量质量.
(2) 速 度 的 测 量 : 可 以 测 量 小 球 被 拉 起 的 角 度 , 根据机械能守恒定律算出小球碰撞前对应的速
度;测量碰撞后两小球分别摆起的对应角度, 根据机械能守恒定律算出碰撞后对应的两小球 的速度.
【实验器材】 方案一 气垫导轨、光电计时器、天平、滑块两个(带挡光片)、重物、 弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥. 方案二 带细线的小球(两套)、铁架台、天平、量角器、坐标纸、胶 布等. 方案三 光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、 橡皮泥.
【实验步骤】 不论采用哪种方案,实验过程均可按实验方案合理安排, 参考步骤如下:
图16-1-3
(3)不同碰撞情况的实现:用贴胶布的方法增大两小球碰撞时的 能量损失.
方案三 利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞,两 小车碰撞端分别装上撞针和橡皮泥.实验装置如图16-1-4所 示.
图16-1-4
(1)质量的测量:用天平测量质量. (2)速度的测量:v=ΔΔxt ,式中 Δx 是纸带上两计数点间的距离, 可用刻度尺测量.Δt 为小车经过 Δx 所用的时间,可由打点间 隔算出.这个方案适合探究碰撞后两物体结合为一体的情况.
相关文档
最新文档