2020高考数学必刷题含解析

合集下载

2020年高考必刷卷文科数学(解析版)

2020年高考必刷卷文科数学(解析版)
底面为一边长为 2 的正三角形,且由三视图知此三角形的高为 3 ,故三棱柱的侧面积为
3 2 2 2 18 ,因为不考虑接触点,故只求上底面的面积即可,上底面的面积为:
1 2 2
3
3 ,故组合体的表面积为18 2 3 π .
故选 D .
点睛:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视
相切,则直线 l 的方程是___________________.
5
5
10
10
∴ sin sin[( ( )] sin cos( ) cos sin( )
2 5 3 10 5 ( 10 ) 2 .
5 10 5
10 2
故选:D.
【点睛】
本题考查两角和的正弦公式,考查同角间的三角函数关系.在用三角公式化简求值时一定要观察已
知角和未知角之间的关系,以确定选用的公式,要注意应用公式时“单角”和“复角”的相对性.
D. 0
7.如图所示,△ABC 中, B D 2 D C ,点 E 是线段 AD 的中点,则 AC ( )
A.
3
AD
1
BE
C.
4 5
AD
2 1
BE
4
2
【答案】C
【解析】
B.
3
AD
BE
D.
4 5
AD
BE
4
【分析】
利用平面向量的线性运算表示 AC .
【详解】
AC
AD
DC
AD
13.已知函数 f (x) 满足 f (ex ) 2x 3 ,则 f (x) ________.
【答案】 2 ln x 1 x 0
【解析】 【分析】

2020高考数学(理)必刷试题+参考答案+评分标准(55)

2020高考数学(理)必刷试题+参考答案+评分标准(55)

2020⾼考数学(理)必刷试题+参考答案+评分标准(55)2020⾼考数学模拟试题(理科)⼀、单项选择题:本题共8⼩題,每⼩题5分,共40分。

在每⼩题给出的四个选项中,只有⼀项是符合題⽬要求的。

1.⼰知集合A={X|X2-X-2≤0},B={x|y=,则A∪B=A.{x|-l≤x≤2}B. {x|0≤x≤2}C. {x|x≥-l}D. {x|x≥0}2.“x∈R,x2-x+l>0”的否定是A.x∈R, X2-X+1≤0B. x∈R, x2-x+1<0C. x∈R, x2-x+l<0D. x∈R, x2-x+l≤03.若双曲线(a>0,b>0)的离⼼率为,则其渐近线⽅程为A. 2x±3y=0B. 3x±2y=0C. x±2y=0D. 2x±y=04.设a=log0.53,b=0.53,c=,则a,b,c的⼤⼩关系为A.aB. aC. bD. b5.为弘扬我国古代的“六艺⽂化”,某夏令营主办单位计划利⽤暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周⼀门,连续开设六周.若课程“乐”不排在第⼀周,课程“御”不排在最后⼀周,则所有可能的排法种数为A. 216B. 480C. 504D. 6246.函数y=|x|+sinx的部分图象可能是7.若x=α时,函数f(x)=3sinx+4cosx取得最⼩值,则sinα=A. B. C. D.8.函数,若⽅程f(x)=-2x+m有且只有两个不相等的实数根,则实数m的取值范围是A. (-∞,4)B. (-∞,4]C. (-2,4)D. (-2,4]满意不满意⼆、多项选择题:本題共4⼩题,每⼩题5分,共20分。

在每⼩题给出的选项中,有多项符合題⽬要求,全部选对得5分,部分选对得3分,有选错的得0分.9.某⼤学为了解学⽣对学校⾷堂服务的满意度,随机调査了50名男⽣和50名⼥⽣,每位学⽣对⾷堂的服务给出满意或不满意的评价,得到如图所⽰的列联表.经计算K 2的观测值k ≈4.762,则可以推断出A. 该学校男⽣对⾷堂服务满意的概率的估计值为B. 调研结果显⽰,该学校男⽣⽐⼥⽣对⾷堂服务更满意C. 有95%的把握认为男、⼥⽣对该⾷堂服务的评价有差异D. 有99%的把握认为男、⼥⽣对该⾷堂服务的评价有差异10. 已知函数f(x)=sin(3x+)(-<<)的图象关于直线x=对称,则 A. 函数f(x+)为奇函数B. 函数f(x)在[,]上单调递増C. 若|f(x 1)-f(x 2)|=2,则|x 1-x 2\的最⼩值为D. 函数f(x)的图象向右平移个单位长度得到函数y=-cos3x 的图象11. 如图,在正⽅体ABCD-A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则A. 直线BD 1丄平⾯A 1C 1DB. 三棱锥P-A 1C 1D 的体积为定值C. 异⾯直线AP 与A 1D 所成⾓的取值范⽤是[45°,90°]D. 直线C 1P 与平⾯A 1C 1D 所成⾓的正弦值的最⼤值为12. 已知抛物线C:y 2=4x 的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点P(x 1,y 1),G(x 2,y 2),点P 在l 上的射影为P 1,则 A. 若X 1+X 2=6.则|PQ|=8B. 以PQ 为直径的圆与准线l 相切C. 设M (O,1),则|PM|+|PP 1|≥D. 过点M (0,1)与抛物线C 有且只有⼀个公共点的直线⾄多有2条三、填空題:本題共4⼩題,每⼩题5分,共20分。

2020年高考数学(理)必刷试卷3(解析版)

2020年高考数学(理)必刷试卷3(解析版)

2020年高考必刷卷(新课标卷)03数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U R =,A {x |x 1}=<,B {x |x 2}=≥,则集合()U A B ⋃ð等于( ) A .{}x x 1 B .{x |x 2}≤ C .{x |1x 2}<≤ D .{x |1x 2}≤<【答案】D 【解析】 【分析】求出A 与B 的并集,根据全集U =R ,求出并集的补集即可. 【详解】Q 全集U R =,A {x |x 1}=<,B {x |x 2}=≥,A B {x |x 1∴⋃=<或x 2}≥,则()U A B {x |1x 2}⋃=≤<ð,故选:D . 【点睛】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.若复数11z i =+,21z i =-,则下列结论错误的是( ) A .12z z ⋅是实数 B .12z z 是纯虚数C .24122z z =D .22124z z i +=【答案】D 【解析】分析:根据题中所给的条件,将两个复数进行相应的运算,对选项中的结果一一对照,从而选出满足条件的项.详解:212(1)(1)12z z i i i ⋅=+-=-=,是实数,故A 正确,21211212z i i i i z i +++===-,是纯虚数,故B 正确, 442221(1)[(1)](2)4z i i i =+=+==,22222(1)224z i i =-=-=,故C 正确,222212(1)(1)220z z i i i i +=++-=-=,所以D 项不正确,故选D.点睛:该题考查的是复数的有关概念和运算,在做题的时候,需要对选项中的问题一一检验,从而找到正确的结果.3.已知55log log n m >,则下列结论中不正确的是( )A .m >n >1B .n >1>m >0C .1>n >m >0D .1>m >n >0【答案】C 【解析】 【分析】先化简原不等式为11lg lg n m>,再对,m n 分四种情况讨论即得解. 【详解】 由题得lg5lg5lg lg n m>, 所以11lg lg n m>, 当1,1m n >>时,lg lg ,m n >所以,1m n m n >∴>>,所以选项A 正确; 当01,01m n <<<<时,lg lg ,m n > 所以10m n >>>,所以选项D 正确;当1,01n m ><<时,不等式55log log n m >显然成立,所以选项B 正确; 当01,1n m <<>时,不等式55log log n m >显然不成立.所以选项C 不正确.故选:C 【点睛】本题主要考查对数的运算和对数函数的图像和性质,意在考查学生对这些知识的理解掌握水平. 4.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A 【解析】 【分析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比. 【详解】水费开支占总开支的百分比为25020% 6.25%250450100⨯=++.故选:A 【点睛】本题考查折线图与柱形图,属于基础题.5.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1−x),若f(1)=1,则f(1)+f(2)+f(3)+...+f(2019)=()A.1B.0C.1D.2019【答案】B【解析】【分析】根据题意,由函数满足f(1﹣x)=f(x+1),分析可得f(﹣x)=f(x+2),结合函数为奇函数可得f(x)=f(x+2),则函数f(x)为周期为4的周期函数,又由f(1)、f(-1)与f(2)及f(0)的值分析可得f(1)=f(5)=……=f(2017)=1,f(3)=f(7)=……= f(2019)=-1,f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,将其相加即可得答案.【详解】根据题意,函数f(x)满足f(1﹣x)=f(x+1),则函数f(x)的图象关于直线x=1对称,则有f (﹣x)=f(x+2),又由函数f(x)为奇函数,则f(﹣x)=-f(x),则有f(x)=-f(x+2),则f(x+2)=- f(x+4),可得f(x)= f(x+4)则函数f(x)为周期为4的周期函数,又由f(1)=1,则f(1)=f(5)=……=f(2017)=1,f(-1)=- f(1)=-1,则f(3)=f(7)=……= f(2019)=-1,又f(-2)=f(2)=-f(2),则f(2)=0,且f(0)=0,所以f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,则f(1)+f(2)+f(3)+…+f(2019)=505-505+0=0;故选:B.【点睛】本题考查函数的奇偶性以及函数周期性的应用,注意分析与利用函数的周期,属于基础题.6.若实数x,y满足2x+2y=1,则x+y的最大值是()A.-4B.-2C.2D.4【答案】B【解析】【分析】利用基本不等式求x+y 的最大值得解. 【详解】由题得2x +2y ≥2√2x ⋅2y =2√2x+y ,(当且仅当x=y=-1时取等) 所以1≥2√2x+y ,∴14≥2x+y ,∴2−2≥2x+y , 所以x+y≤-2.所以x+y 的最大值为-2. 故选:B 【点睛】本题主要考查基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力. 7.等差数列{}n a 中2912142078a a a a a a ++-+-=,则9314a a -=( ) A .8 B .6C .4D .3【答案】D 【解析】 【分析】设等差数列的公差为d ,根据题意,求解1104a d +=,进而可求得93113(10)44a a a d -=+,即可得到答案. 【详解】由题意,设等差数列的公差为d ,则291214207112202(10)8a a a a a a a d a d ++-+-=+=+=,即1104a d +=, 又由931111138(2)(10)3444a a a d a d a d -=+-+=+=,故选D. 【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为d ,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则下列判断正确的是( )A .函数的图象关于点,03π⎛⎫-⎪⎝⎭对称 B .函数的图象关于直线6x π=-对称C .函数()2f x 的最小正周期为πD .当766x ππ≤≤时,函数()f x 的图象与直线2y =围成的封闭图形面积为2π 【答案】D 【解析】 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得f (x )的解析式,再根据余弦函数的图象和性质,判断各个选项是否正确,从而得出结论. 【详解】解:函数()()002f x Asin x A πωφωφ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象,可得A =2,14•25126πππω=-,∴ω=2.再根据五点法作图可得2•6π+φ2π=,∴φ6π=,f (x )=2sin (2x 6π+). 令x 3π=-,求得f (x )=﹣2,为函数的最小值,故A 错误; 令x 6π=-,求得f (x )=﹣1,不是函数的最值,故B 错误;函数f (2x )=2sin (4x 6π+)的最小正周期为242ππ=,故C 错误; 当766x ππ≤≤时,2π≤2x 562ππ+≤,函数f (x )的图象与直线y =2围成的封闭图形为x 6π=、x 76π=、y =2、y =﹣2构成的矩形的面积的一半,矩形的面积为π•(2+2)=4π,故函数f (x )的图象与直线y =2围成的封闭图形面积为2π, 故D 正确, 故选:D . 【点睛】本题主要考查由函数y=Asin (ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,余弦函数的图象和性质,属于中档题.9.ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,S 表示三角形ABC ∆的面积,且满足222)S a c b =+-,则B ∠=( ) A .6π B .3π C .3π或23π D .23π【答案】B 【解析】在△ABC 中,∵)222a cb +-=12acsinB ,cosB=2222a c b ac +-.代入原式子得到12cos sin 2ac B ac B =,B ∈(0,π), ∴B=3π. 故答案为B .10.如图中共顶点的椭圆①②与双曲线③④的离心率分别为e 1,e 2,e 3,e 4,其大小关系为( )A .e 1<e 2<e 3<e 4B .e 2<e 1<e 3<e 4C .e 1<e 2<e 4<e 3D .e 2<e 1<e 4<e 3 【答案】C 【解析】试题分析:先根据椭圆越扁离心率越大判断a 1、a 2的大小,再由双曲线开口越大离心率越大判断a 3、a 4的大小,最后根据椭圆离心率大于0小于1并且抛物线离心率大于1可得到最后答案.解:根据椭圆越扁离心率越大可得到0<a 1<a 2<1 根据双曲线开口越大离心率越大得到1<a 3<a 4 ∴可得到a 1<a 2<a 3<a 4故选A . 考点:圆锥曲线的共同特征.11.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P ABC -中,PA ⊥平面ABC ,4PA =,2AB BC ==,鳌臑P ABC -的四个顶点都在同一个球上,则该球的表面积是( ) A .16π B .20π C .24π D .64π【答案】C 【解析】 【分析】四个面都是直角三角形,由AB BC =得AB BC ⊥,然后证明BC PB ⊥,这样PC 中点O ,就是P ABC -外接球球心,易求得其半径,得面积.【详解】四棱锥P ABC -的四个面都是直角三角形,∵2AB BC ==,∴AB BC ⊥,又PA ⊥平面ABC ,∴AB 是PB 在平面ABC 上的射影,PA CA ⊥,∴BC PB ⊥,取PC 中点O ,则O 是P ABC -外接球球心.由2AB BC ==得AC =4PA =,则PC ==,OP =,所以球表面积为224()424S OP πππ==⨯=. 故选:C . 【点睛】本题考查求球的表面积,解题关键是寻找外接球的球心:三棱锥的外接球的球心一定在过各面外心且与此面垂直的直线上.12.已知定义域为R 的奇函数()y f x =的导函数为()'y f x =,当0x >时, ()()'0xf x f x -<,若()()()ln23,,ln23f e f f a b c e-===-,则,,a b c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【答案】D 【解析】 【分析】 构造函数g (x )()f x x=,由g ′(x )()()2'xf x f x x-=,可得函数g (x )单调递减,再根据函数的奇偶性得到g (x )为偶函数,即可判断. 【详解】 构造函数g (x )()f x x=,∴g ′(x )()()2'xf x f x x-=,∵xf ′(x )﹣f (x )<0, ∴g ′(x )<0,∴函数g (x )在(0,+∞)单调递减. ∵函数f (x )为奇函数, ∴g (x )()f x x=是偶函数,∴c ()33f -==-g (﹣3)=g (3), ∵a ()f e e==g (e ),b ()22f ln ln ==g (ln 2), ∴g (3)<g (e )<g (ln 2), ∴c <a <b , 故选D .【点睛】本题考查了构造函数并利用导数研究函数的单调性,进行比较大小,考查了推理能力,属于中档题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020高考数学(理)必刷试题(解析版) (92)

2020高考数学(理)必刷试题(解析版) (92)

2020高考模拟考试数学(理)试题选择题部分一、选择题(本大题共18小题,每小题3分,共54分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知全集{1,2,3,4,5,6}U =,集合{1,2,4,6}A =,{4,5}B =,则()U A B U ð= A .{4} B .{5}C .{3,5}D .{3,4,5}1.【答案】D【解析】由已知得={35}U A ,ð,所以()={345}U A B U ,,ð,故选D . 2.函数ln(1)()x f x x+=的定义域为 A .(–1,+∞) B .(–1,0)C .(0,+∞)D .(–1,0)∪(0,+∞)2.【答案】D【解析】由题可知100x x +>⎧⎨≠⎩,10x x >-⎧∴⎨≠⎩,()()1,00,x ∴∈-+∞U ,故选D.3.已知向量(1,2),(,1)m =-=-a b ,若λ=a b (λ∈R ),则m = A .−2 B .12-C .12D .23.【答案】C【解析】∵向量(1,2),(,1)m =-=-a b ,λ=a b (λ∈R ),∴()12-,=λ()1m -,,∴12m λλ-=⎧⎨=-⎩,∴m =12,故选C .4.在等比数列{}n a 中,1352,12a a a =+=,则7a = A .8 B .10 C .14 D .164.【答案】D【解析】设等比数列的公比为q ,由3512a a +=,可得241112a q a q +=,又12a =,所以4260q q +-=,化简得22(3)(2)0q q +-=,所以22q =,所以671a a q =32216=⨯=.故选D.5.函数22()1xf x x=-的图象大致是 A . B .C .D .5.【答案】A【解析】∵函数f (x )221xx=-,∴当x (01)∈,时,f (x )>0,故D 错误; x >1时,f (x )<0恒成立,故B 和C 错误. 由排除法得正确选项是A .6.已知两条平行直线3460x y +-=和340x y a ++=之间的距离等于2,则实数a 的值为 A .1- B .4C .4或16-D .16-6.【答案】C【解析】两条平行线之间的距离为22662534a a d ----===+,故4a =或16a =-,故选C .7.若实数,x y 满足约束条件220,10,0.x y x y +-≤⎧⎪-≥⎨⎪≥⎩则2z x y =-的最小值为A .0B .2C .4D .67.【答案】A【解析】作出实数x ,y 满足约束条件220100x y x y +-⎧⎪-⎨⎪⎩………表示的平面区域,如图所示.由2z x y =-可得1122y x z =-,则12z -表示直线1122y x z =-在y 轴上的截距,纵截距越大,z 越小.作直线20x y -=,然后把该直线向可行域平移,当直线经过点B 时,12z -最大,z 最小.由2201x y x +-=⎧⎨=⎩可得1(1,)2B ,此时0z =,故选A .8.若7sin cos 5θθ+=,则sin cos θθ= A .2425 B .1225 C .2425± D .2425-8.【答案】B【解析】由7sin cos 5θθ+=两边平方得2249sin 2sin cos cos 25θθθθ++=,即4912sin cos 25θθ+=,解得12sin cos 25θθ=.故选B . 9.已知椭圆22221x y a b+=(0)a b >>分别过点(2,0)A 和(0,1)B -,则该椭圆的焦距为A B .C D .9.【答案】B【解析】由题意可得2a =,1b =,所以a 2=4,b 2=1,所以c ==2c =故选B. 10.已知两条不同的直线a ,b 和一个平面α,则使得“a b ∥”成立的一个必要条件是A .a α∥且b α∥B .a α∥且b α⊂C .a α⊥且b α⊥D .a ,b 与α所成角相同10.【答案】D【解析】若a b ∥,当a α∥时b α∥或b α⊂,故A 错误; 若a b ∥,当a α∥时b α∥或b α⊂,故B 错误; 若a b ∥,a α⊥且b α⊥不一定成立,故C 错误; 若a b ∥,则a ,b 与α所成角相同,故D 正确. 故选D .11.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .若π4A =,a =,b =,则ABC △的面积等于A .12或32B .12C D .3211.【答案】D【解析】利用余弦定理得到:22222cos ,522,3a b c bc A c c c =+-∴=+-∴=或1c =-(舍去),∴13sin 22ABC S bc A ==△.故选D.12.在正三棱锥P ABC -中,4,PA AB ==PA 与底面ABC 所成角的正弦值为A .14BC .18D12.【答案】B【解析】连接P 与底面正△ABC 的中心O ,因为P ABC -是正三棱锥,所以PO ⊥平面ABC ,所以PAO ∠为侧棱PA 与底面ABC 所成角,因为4,PA AB ==2132cos 44AO PAO PA ⨯∠===,所以sin 4PAO ∠=,故选B .13.过双曲线22221(0,0)x y a b a b-=>>的左焦点作倾斜角为30︒的直线l ,若l 与y 轴的交点坐标为(0,)b ,则该双曲线的离心率为ABCD13.【答案】A【解析】由题意设直线l的方程为()3y x c =+,令0x =,得3y =,所以3c b =,所以22222232a c b b b b =-=-=,所以e ==.故选A. 14.设函数21()lg ||1f x x x=-+,则使得5(log )0f m ≥成立的m 的取值范围是 A .1[,5]5B .1(0,][5,)5+∞U C .1(,][5,)5-∞+∞U D .1(,0][,5)5-∞U14.【答案】B【解析】由函数()f x 的解析式可得:函数()f x 的定义域为{|0},x x ≠又()()f x f x =-,则函数()f x 为偶函数,当0x >时,21()lg 1f x x x =-+,易得函数()f x 在(0,)+∞上为增函数,又(1)0f =,所以5(log )0f m ≥等价于5(|log |)(1)f m f ≥,即5log 1m ≥,即1(0,][5,)5m ∈+∞U ,故选B .15.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是A .2π(3)4a - B .2π(6)2a -C .2π(6)4a -D .23π(6)4a -15.【答案】C【解析】这个几何体的直观图如图所示,它是由一个正方体中挖掉18个球而形成的,所以它的表面积为22222π1π334π(6)4()84a S a a a a =+-+⨯=-.故选C.16.等差数列{}n a 中,公差0d ≠,当1()n n *>∈N 时,下列关系式正确的是A .112n n a a a a +>B .112n n a a a a +<C .112n n a a a a +=D .112n n a a a a +≥16.【答案】B【解析】设()11n a a n d +-=,因为()2111111n a a a a nd a na d +=+=+,()()()()222111111n a a a d a n d a na d n d =++-=++-,所以()21121n n a a a a n d +-=--,又因为1,0n d >≠,所以1120n n a a a a +-<,所以112n n a a a a +<.故选B . 17.若函数()|2||21|f x x x ax =-+--没有零点,则实数a 的取值范围是A .332a -≤< B .31a -≤< C .332a a ≥<-或 D .13a a ≥<-或 17.【答案】A【解析】因为函数()|2||21|f x x x ax =-+--没有零点,所以方程|2||21|x x ax -+-=无实根,即函数()|2 |21g x x x =-+-与()h x ax =的图象无交点,如图所示,则()h x 的斜率a 应满足332a -≤<,故选A.18.若正方体1111ABCD A B C D -的棱长为a ,点M ,N 在AC 上运动,MN a =,四面体11M B C N -的体积为V ,则 A .32V a =B .32V a >C .32V a =D .32V a <18.【答案】C【解析】正方体1111ABCD A B C D -的棱长为a ,点M ,N 在AC 上运动,MN a =,如图所示:点1B 到平面1MNC 的距离1112d B D ==22a ,且MN a =,所以1211122MNC S MN CC a =⋅=△,所以三棱锥11B C MN -的体积11B C NM V -=12311122332MNC a S d a ⨯⨯=⨯=△,利用等体积法得11113212M B C N B C NM V V a --==.故选C . 非选择题部分二、填空题(本大题共4小题,每空3分,共15分)19.已知||2=a ,||4=b ,a 与b 的夹角为120︒,则⋅=a b _________,||+=a b ________. 19.【答案】4-;23【解析】由题得24cos1204⋅=⨯⨯=-o a b ;21()416224()32+=+=++⨯⨯⨯-=a b a b 故答案为4-;320.若22log log 1m n +=,那么m n +的最小值是________.20.【答案】【解析】22log log 1m n +=Q ,即2log 1mn =,2mn ∴=,由基本不等式可得m n +≥=m n ==时,等号成立, 故m n +的最小值是21.已知0a >且1a ≠,设函数2,3()2log ,3a x x f x x x -≤⎧=⎨+>⎩的最大值为1,则实数a 的取值范围是________.21.【答案】1[,1)3【解析】由题意知,函数()y f x =在(],3-∞上单调递增,且()31f =, 由于函数()2,32log ,3a x x f x x x -≤⎧=⎨+>⎩的最大值为1,则函数()2log a f x x =+在()3,+∞上单调递减且2log 31a +≤,则有012log 31a a <<⎧⎨+≤⎩,即01log 31a a <<⎧⎨≤-⎩,解得113a ≤<,因此,实数a 的取值范围是1[,1)3,故答案为1[,1)3.22.在数列{}n a 中,已知11a =,2211n n n n n a S n a S ---=-*(2,)n n ≥∈N ,记2nn a b n=,n T 为数列{}n b 的前n 项和,则2021T =________. 22.【答案】20211011【解析】由22*11(2,)n n n n n a S n a S n n ---=-≥∈N 得()2211n n n n n a S S n a ----=, ∴()2211n n n a n a --=,∴111n n a a n n n n -=⨯-+, 令n n a c n =,则11n n n c c n -=⨯+,∴11n n c n c n -=+,由累乘法得121n c c n =+, ∴21n c n =+,∴21n a n n =+,∴21n n a n =+,∴22112(1)1n n a b n n n n n ⎛⎫===⨯- ⎪++⎝⎭,∴202111111120212(1)2(1)2232021202220221011T =-+-++-=-=L . 三、解答题(本大题共3小题,共31分) 23.(本小题满分10分)已知函数2()22cos 1f x x x =+-.(Ⅰ)求5π()12f 的值; (Ⅱ)求()f x 的最小正周期及单调增区间. 23.(本小题满分10分)【解析】(Ⅰ)因为2()22cos 1f x x x =+-,所以25π5π5π())2cos ()1121212f =⨯+- 5π5π)cos(2)1212=⨯+⨯(3分) 5π5πcos 66=+0=.(5分)(Ⅱ)2()22cos 12cos π2sin 62(2)f x x x x x x =+++=-=,(7分)所以()f x 的最小正周期2ππ2T ==.(8分) 令πππ2π22π+()262k x k k -≤+≤∈Z ,解得ππππ+()36k x k k -≤≤∈Z , 所以()f x 的单调增区间为ππ[π,π+]()36k k k -∈Z .(10分) 24.(本小题满分10分)已知抛物线C :22(0)x py p =>的焦点为F ,抛物线C 上存在一点(,2)E t 到焦点F 的距离等于3. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 的直线l 交抛物线C 于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q ,求sin QMN ∠的最小值. 24.(本小题满分10分)【解析】(Ⅰ)由题意得抛物线的准线方程为2py =-, Q 点(,2)E t 到焦点F 的距离等于3,232p∴+=,解得2p =, ∴抛物线C 的方程为24x y =.(3分)(Ⅱ)由题知直线l 的斜率存在,设()11,A x y ,()22,B x y ,直线l 的方程为1y kx =+, 由214y kx x y=+⎧⎨=⎩,消去y 得2440x ky --=,(5分)所以124x x k +=,124x x ⋅=-, 所以()21212242y y k x x k +=++=+,所以AB 的中点Q 的坐标为()22,21k k +,(7分)因为21244AB y y p k =++=+, 所以圆Q 的半径为222r k =+.(8分)在等腰QMN △中,22221111sin 11222222Qy k QMN r k k +∠===-≥-=++,当且仅当0k =时取等号. 所以sin QMN ∠的最小值为12.(10分) 25.(本小题满分11分)已知关于x 的函数2()2f x x kx =--,x ∈R . (Ⅰ)若函数()f x 是R 上的偶函数,求实数k 的值;(Ⅱ)若函数()(21)x g x f =-,当2(]0,x ∈时,()0g x ≤恒成立,求实数k 的取值范围; (Ⅲ)若函数2()()|1|2h x f x x =+-+,且函数()h x 在(0,2)上有两个不同的零点1x ,2x ,求证:12114x x +<. 25.(本小题满分11分)【解析】(Ⅰ)()f x Q 是R 上的偶函数,()()f x f x ∴-=, 即2222x kx x kx +-=--对x ∈R 都成立,0k ∴=.(2分)(Ⅱ)当2(]0,x ∈时,()0g x ≤恒成立,即()()2212120x x k ----≤恒成立. 令21x u =-,则(]0,3u ∈,()()2212120x x k ∴----≤在2(]0,x ∈时恒成立等价于2k u u≥-在(]0,3u ∈时恒成立,(4分) 又227333u u -≤-=,73k ∴≥, k ∴的取值范围是7[,)3+∞.(6分)(Ⅲ)不妨设1202x x <<<, 因为()21,01,21,12,kx x h x x kx x -+<<⎧=⎨--≤<⎩所以()f x 在()0,1上至多有一个零点, 若1212x x ≤<<,则120x x ⋅>,而12102x x ⋅=-<,矛盾.因此12012x x <<≤<;(8分) 由()10h x =,得11k x =,由()20h x =,得222210x kx --=, 22211210x x x ∴-⋅-=,即212122x x x x +=⋅, 2121124x x x ∴+=<.(11分)。

2020高考数学(理)必刷试题(解析版)(11)

2020高考数学(理)必刷试题(解析版)(11)

2020高考数学(理)必刷试题(解析版)(11)2020高考数学模拟考试(理科)一、选择题(本大题共12小题,共60.0分)1.i2020=()A. 1B. -1C. iD. -i2.已知集合A={x|0<log2x<2},B={y|y=3x+2,x∈R},则A∩B=()A. (1,4)B. (2,4)C. (1,2)D. (1,+∞)3.若a=ln2,,的大小关系为()A. b<c<aB. b<a<cC. a<b<cD. c<b<a4.当0<x<1时,则下列大小关系正确的是()A. x3<3x<log3xB. 3x<x3<log3xC. log3x<x3<3xD. log3x<3x<x35.已知cos(-α)=2cos(π+α),且tan(α+β)=,则tanβ的值为()A. -7B. 7C. 1D. -16.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,则函数f(x)的一个单调减区间为()A. B. C. D.7.设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则+的最小值为()A. 4B. 6C. 8D. 98.若数列{a n}满足-=d(n∈N*,d为常数),则称数列{a n}为调和数列.已知数列{}为调和数列,且x1+x2+…+x20=200,则x5+x16=()A. 10B. 20C. 30D. 409.设函数f(x)=x2+2cos x,x∈[-1,1],则不等式f(x-1)>f (2x)的解集为()A. (-1,)B. [0,)C. (]D. [0,]10.设椭圆的左焦点为F,在x轴上F的右侧有一点A,以FA为直径的圆与椭圆在x轴上方部分交于M、N两点,则的值为()A. B. C. D.11.已知向量、、满足,,,E、F分别是线段BC、CD的中点.若,则向量与向量的夹角为()A. B. C. D.12.已知变量x1,x2∈(0,m)(m>0),且x1<x2,若x1<x2恒成立,则m的最大值为()A. eB.C.D. 1二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,前n项和未s n,且s n=2a n(n≥2,n∈N*),则{a n}的通项公式a n=______.14.已知边长为3的正△ABC三个顶点都在球O的表面上,且OA 与平面ABC所成的角为30°,则球O的表面积为______.15.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现0.618就是黄金分割,这是一个伟大的发现,这一数值也表示为a=2sin18°,若a2+b=4,则=______.16.如图,已知双曲线C:-=1(a>0,b>0)的右顶点为A,O 为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且=3,则双曲线的离心率为______.三、解答题(本大题共7小题,共82.0分)17.已知△ABC的内角A,B,C的对边分别为a,b,c满足.(1)求A.(2)若△ABC的面积,求△ABC的周长.18.棋盘上标有第0,1,2,…,100站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏.若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设棋子跳到第n站的概率为P n.(1)当游戏开始时若抛掷均匀硬币3次后求棋手所走站数之和X 的分布列与数学期望;(2)证明:;(3)求P99,P100的值.19.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4(1)求证:B1O⊥平面AEO(2)求二面角B1-AE-O的余弦值.20.椭圆C焦点在y轴上,离心率为,上焦点到上顶点距离为2-.(Ⅰ)求椭圆C的标准方程;(Ⅱ)直线l与椭圆C交与P,Q两点,O为坐标原点,△OPQ的面积S△OPQ=1,则||2+||2是否为定值,若是求出定值;若不是,说明理由.21.已知函数f(x)=e x cos x-x sinx,g(x)=sin x-e x,其中e为自然对数的底数.(1)?x1∈[-,0],?x2∈[0,],使得不等式f(x1)≤m+g(x2)成立,试求实数m的取值范围;(2)若x>-1,求证:f(x)-g(x)>0.22.在平面直角坐标系中,已知直线l的参数方程为(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程ρ=4cosθ.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)直线l与曲线C交于A、B两点,点P(1,2),求|PA|+|PB|的值.23.已知函数f(x)=|2x+1|+|x-4|.(1)解不等式f(x)≤6;(2)若不等式f(x)+|x-4|<a2-8a有解,求实数a的取值范围.答案和解析1.【答案】A【解析】解:i2020=i4×505=(i4)505=1.故选:A.直接利用虚数单位i的运算性质求解.本题考查虚数单位i的运算性质,是基础的计算题.2.【答案】B【解析】解:由A中不等式变形得:log21=0<log2x<2=log24,即1<x<4,∴A=(1,4),由B中y=3x+2>2,得到B=(2,+∞),则A∩B=(2,4),故选:B.求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】A【解析】解:a=ln2>ln=,=<,==∴a>c>b,故选:A.利用指数、对数函数的性质,判断a>,b<,利用定积分的性质求得c=,即可判断a、b和c的大小.本题考查求定积的值及指数函数的性质,属于基础题.4.【答案】C【解析】解:∵0<x<1,∴log3x<0<x3<1<3x,∴log3x<x3<3x,故选:C.利用指数函数与对数函数、幂函数的单调性即可得出.本题考查了指数函数与对数函数、幂函数的单调性,考查了推理能力与计算能力,属于基础题.5.【答案】B【解析】解:∵已知cos(-α)=2cos(π+α),即sin α=-2cosα,即tan α=-2.又∵tan(α+β)===,则tanβ=7,故选:B.由题意利用诱导公式求得tanα的值,再利用两角和的正切公式,求得tanβ的值.本题主要考查诱导公式、两角和的正切公式的应用,属于基础题.6.【答案】A【解析】【分析】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,考察学生的运算能力和转换能力,属于基础题.利用三角函数的平移变换的应用和正弦型函数的整体思想的应用求出结果.【解答】解:函数f(x)=sin(2x+φ)(0<φ<π)的图象向右平移个单位长度后得到函数的图象,即:把函数的图象,向左平移个单位,即得到f(x)的图象,故:=sin(2x+),∴令:(k∈),解得:(k∈),当k=0时,,故选A.7.【答案】C【解析】解:=(a-1,1),=(-b-1,2),∵A,B,C三点共线,∴2(a-1)-(-b-1)=0,化为:2a+b=1.又a>0,b>0,则+=(2a+b)=4++≥4+2=8,当且仅当b=2a=时取等号.利用向量共线定理可得:2a+b=1.再利用“乘1法”与基本不等式的性质即可得出.本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】解:由题意知:∵数列{}为调和数列∴-=x n+1-x n=d∴{x n}是等差数列又∵x1+x2+…+x20=200=∴x1+x20=20又∵x1+x20=x5+x16∴x5+x16=20故选:B.由题意知道,本题是构造新等差数列的问题,经过推导可知{x n}是等差数列,运用等差数列的性质可求解答案.本题主要考查新数列定义,及等差数列的重要性质,属中档题型.9.【答案】B【解析】解:函数f(-x)=(-x)2+2cos(-x)=x2+2cos x=f (x),则函数f(x)是偶函数,函数的导数f′(x)=2x-2sin x=2(x-sin x),[f′(x)]′=2-2cos x≥0,即f′(x)在[-1,1]是为增函数,则当0≤x≤1时,f′(x)≥f′(0)=0,即f(x)在[0,1]上为增函数,则不等式f(x-1)>f(2x)等价为f(|x-1|)>f(|2x|),得得,得得,得0≤x<,又即不等式的解集为[0,),根据条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性进行转化求解即可.本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用进行和单调性进行转化是解决本题的关键.10.【答案】A【解析】解:若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,则==.故选:A.若以FA为直径的圆与椭圆大x轴上方的部分交于短轴端点,则M、N重合(设为M),此时A为椭圆的右焦点,由此可知=,从而能够得到结果.本题考查圆锥曲线的性质和应用,解题时要注意合理地选取特殊点.11.【答案】A【解析】解:如图,=.由,,可得∴cos=,则,从而向量与向量的夹角为.故选:A.由题意画出图形,结合求得,从而向量与向量的夹角为.本题考查平面向量的数量积运算,考查了向量的加法、减法法则,是中档题.12.【答案】A【解析】解:对不等式两边同时取对数得ln x1<ln x2,即x2ln x1<x1ln x2,即<恒成立,设f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,函数的导数f′(x)==,由f′(x)>0得1-ln x>0得ln x<1,得0<x<e,即函数f(x)的最大增区间为(0,e),则m的最大值为e故选:A.在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.本题主要考查函数单调性与导数之间的应用,根据条件利用取对数法以及构造函数,利用导数研究函数的单调性是解决本题的关键.13.【答案】【解析】解:当n≥2时,s n=2a n,……①令n=2,则s2=a1+a2=1+a2=2a2,故a2=1,令n≥3,则s n-1=2a n-1,……②①-②得:a n=2a n-2a n-1,即a n=2a n-1,即从第二项开始,数列{a n}成以1为首项以2为公比的等比数列,故a n=,故答案为:.由已知可得数列{a n}满足a1=1,从第二项开始,数列{a n}成以1为首项以2为公比的等比数列,进而得到答案.本题考查的知识点是数列的递推式,本题要注意数列并非等比,而是从第二项开始才是等比数列.14.【答案】16π【解析】解:边长为3的正△ABC的外接圆的半径为=,∵OA与平面ABC所成的角为30°,∴球O的半径为=2,∴球O的表面积为4πR2=16π.故答案为:16π.求出边长为3的正△AB C的外接圆的半径,利用OA与平面ABC 所成的角为30°,求出球O的半径,即可求出球O的表面积.本题考查球O的表面积,考查学生的计算能力,求出球O的半径是关键.15.【答案】【解析】解:∵a=2sin18°,若a2+b=4,∴b=4-a2=4-4sin218°=4(1-sin218°)=4cos218°,∴===,故答案为:.由已知利用同角三角函数基本关系式可求b=4cos218°,然后利用降幂公式,诱导公式,二倍角的正弦函数公式化简得答案.本题主要考查了同角三角函数基本关系式,降幂公式,诱导公式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.16.【答案】【解析】解:因为∠PAQ=60°且=3,所以△QAP为等边三角形,设AQ=2R,则OP=R,渐近线方程为y=x,A(a,0),取PQ的中点M,则AM=由勾股定理可得(2R)2-R2=()2,所以(ab)2=3R2(a2+b2)①在△OQA中,=,所以7R2=a2②①②结合c2=a2+b2,可得e==.故答案为:确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论本题考查双曲线的性质,考查余弦定理、勾股定理,考查学生的计算能力,属于中档题.17.【答案】解:(1),由正弦定理可得:,∴,∴,且A∈(0,π),∴,(2),∴bc=12,又a2=b2+c2-2b cos A,∴9=(b+c)2-3bc,∴,即△ABC的周长为.【解析】(1)结合已知及正弦定理进行化简可求cos A,进而可求A,(2)结合三角形的面积公式可求bc,然后结合余弦定理可求b+c,进而可求.本题主要考查了正弦定理,余弦定理在求解三角形中的应用,属于基础试题.18.【答案】解:(1)解:由题意得X的可能取值为3,4,5,6,P(X=3)=()3=,P(X=4)==,P(X=5)==,P(X=6)=()3=.X3456P∴.(2)证明:棋子先跳到第n-2站,再掷出反面,其概率为,棋子先跳到第n-1站,再掷出正面,其概率为,∴,即,∴..(3)解:由(2)知数列{P n-P n-1}(n≥1)是首项为{P n-P n-1}(n≥1),,公比为的等比数列.∴,由此得到,由于若跳到第99站时,自动停止游戏,故.【解析】本题考查离散型随机变量的分布列、数学期望的求法,等比数列的性质,考查运算求解能力,考查化归与转化思想,属于较难题.(1)由题意得X的可能取值为3,4,5,6,分别求出相应的概率,由此能求出X的分布列和数学期望.(2)棋子先跳到第n-2站,再掷出反面,其概率为,棋子先跳到第n-1站,再掷出正面,其概率为,从而,由此能证明.(3)数列{P n-P n-1}(n≥1)是首项为{P n-P n-1}(n≥1),,公比为的等比数列,从而,由此能求出P99,P100的值.19.【答案】证明:(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,如图建立空间直角坐标系A-xyz,因为AB=AC=AA1=4,则A(0,0,0),B(4,0,0),E(0,4,2),B1(4,0,4),C(0,4,0),O(2,2,0),(2分)=(-2,2,-4),=(2,-2,-2),=(2,2,0),(3分)=(-2)×2+2×(-2)+(-4)×(-2)=0,∴⊥,∴B1O⊥EO,=(-2)×2+2×2+(-4)×0=0,∴⊥,∴B1O⊥AO,(5分)∵AO∩EO=O,AO,EO?平面AEO,∴B1O⊥平面AEO.(6分)(2)由(1)知,平面AEO的法向量为=(-2,2,-4),(7分)设平面B1AE的法向量为=(x,y,z),,则,令x=2,则=(2,2,-2),(10分)∴cos<>===,∴二面角B1-AE-F的余弦值为.(12分)【解析】(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,建立空间直角坐标系A-xyz,利用向量法能证明B1O⊥平面AEO.(2)求出平面AEO的法向量和平面B1AE的法向量,利用向量法能求出二面角B1-AE-F的余弦值.本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.【答案】解:(Ⅰ)由题意可得,解得,可得b2=a2-c2=1,即有椭圆C的标准方程为:;(Ⅱ)设P(x1,y1),Q(x2,y2)(1)当l斜率不存在时,P,Q两点关于x轴对称,S△OPQ=|x1|?|y1|=1,又,解得,||2+||2=2(x12+y12)=2×(+2)=5;(2)当直线l的斜率存在时,设直线l的方程为y=kx+m,由题意知m≠0,将其代入,得(k2+4)x2+2kmx+m2-4=0,即有,则,O到PQ距离,则,解得k2+4=2m2,满足△>0,则,即有||2+||2=(x12+y12)(x22+y22)===-3+8=5,综上可得||2+||2为定值5.【解析】(Ⅰ)运用椭圆的离心率公式和两点的距离公式,及a,b,c的关系,解得a,b,进而得到椭圆方程;(Ⅱ)设P(x1,y1),Q(x2,y2),讨论直线l的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和判别式大于0,结合三角形的面积公式,点到直线的距离公式和弦长公式,化简整理,即可得到所求和为定值5.本题考查椭圆方程的求法,注意运用离心率公式,考查直线和椭圆联立,运用韦达定理和弦长公式,注意讨论直线的斜率不存在,考查化简整理的运算能力,属于中档题.21.【答案】解:(1)f′(x)=e x cos x-e x sin x-sin x-x cosx;∵;∴cos x≥0,sin x≤0,e x>0;∴e x cos x-e x sin x-sin x-x cosx>0;即f′(x)>0;∴f(x)在上单调递增;∴f(x)的最大值为f(0)=1;,设h(x)=g′(x),则:;∵;∴;∴h′(x)<0;∴h(x)在[0,]上单调递减;∴h(x)的最大值为h(0)=;∴h(x)<0,即g′(x)<0;∴g(x)在[0,]上单调递减;∴g(x)的最大值为g(0)=;根据题意知,f(x)max≤m+g(x)max;∴;∴;∴实数m的取值范围为;(2);设F(x)=e x-(x+1),则F′(x)=e x-1;∴x∈(-1,0)时,F′(x)<0,x∈(0,+∞)时,F′(x)>0;∴F(x)在(-1,+∞)上的最小值为F(0)=0;∴F(x)≥0;∴e x≥x+1在x∈(-1,+∞)上恒成立;;∴①,x=0时取“=”;∴;==;;∴,该不等式和不等式①等号不能同时取到;∴;∴f(x)-g(x)>0.【解析】(1)根据题意便知,f(x)max≤m+g(x)max,这样可根据导数求f(x),g(x)的最大值:求导数f′(x),容易说明f′(x)>0,从而可以得出f(x)在上单调递增,从而可求出最大值为1;同样的办法,求,可设h(x)=g′(x),再求导便可得出h(x)<0在上恒成立,从而得出g(x)单调递减,从而可以得出最大值为g(0)=,从而便可得到1,这样便可得出实数m的取值范围;(2)先求出f(x)-g(x)=,根据导数可以证明e x≥x+1,而显然恒成立,从而有,而根据两角和的余弦公式即可说明(x+1)(cos x+)-sin x(x+1)≥0,并且可以看出这个等号和前面不等式的等号不同时取到,从而便证出f(x)-g(x)>0.考查根据导数符号判断函数单调性的方法,根据函数单调性求函数最大值的方法,在判断导数符号时可以两次求导,以及两角和的余弦公式,不等式的性质.22.【答案】解:(1)∵直线l的参数方程为(t为参数),由得,∴l的普通方程为:,∵C的极坐标方程是ρ=4cosθ,∴ρ2=4ρcosθ,∴x2+y2=4x,∴C的直角坐标方程为:x2+y2-4x=0.(2)将l的参数方程代入C的直角坐标方程,得:,∴,∴,∴t1,t2同号,∴.【解析】(1)由直线l的参数方程,能求出l的普通方程;由曲线C的极坐标方程,能求出曲线C的直角坐标方程.(2)将l的参数方程代入C的直角坐标方程,得,由此能求出|PA|+|PB|的值.本小题考查直线和曲的直角坐标方程、极坐标方程、参数方程等基础知识,考查运算求解能力,考查化归与转化思想等.23.【答案】解:(1)由已知得当时,不等式f(x)≤6化为-3x+3≤6,解得x≥-1,所以取;当时,不等式f(x)≤6化为x+5≤6,解得x≤1,所以取;当x>4时,不等式f(x)≤6化为3x-3≤6,解得x≤3,不合题意,舍去;综上知,不等式f(x)≤6的解集为[-1,1].(2)由题意知,f(x)+|x-4|=|2x+1|+|2x-8|≥|(2x+1)-(2x-8)|=9,当且仅当-≤x≤4时取等号;由不等式f(x)+|x-4|<a2-8a有解,则a2-8a>9,即(a-9)(a+1)>0,解得a<-1或a>9;所以a的取值范围是(-∞,-1)∪(9,+∞).【解析】(1)利用分段讨论法去掉绝对值,求出不等式f(x)≤6的解集;(2)利用绝对值不等式求出f(x)+|x-4|的最小值,问题化为关于a的不等式,求解集即可.本题考查了绝对值不等式的解法与应用问题,也考查了不等式有解的问题,是中档题.。

2020高考数学(理)必刷试题(解析版) (129)

2020高考数学(理)必刷试题(解析版) (129)

2020高考数学模拟试题(理科)一、单选题1.已知集合{}1A x x =<,{}20B x x x =-<,则( ) A .A B ⊆ B .B A ⊆C .{}1A B x x ⋂=<D .{}0A B x x ⋃=>【答案】B【解析】分析:根据一元二次不等式的解法求得集合B ,之后根据子集的定义可以判断出B A ⊆,根据交集中元素的特征求得{}|01A B x x ⋂=<<,根据并集中元素的特征,可以求得{}=|1A B x x ⋃<,从而求得结果. 详解:由20x x -<可以求得01x <<,从而求得{}|01B x x =<<,所以{}|01A B x x ⋂=<<,{}=|1A B x x ⋃<,故选B.点睛:该题以集合为载体,考查了一元二次不等式的解法,并考查了集合间的关系以及集合的交并运算,属于简单题目. 2.已知a R ∈,i 为虚数单位,若ai i+为实数,则a 的值为 () A .1 B .2 C .3D .4【答案】A【解析】利用复数代数形式的乘除运算化简,再由虚部为0求解可得答案. 【详解】 解:()21a aii i a i i i+=+=-Q为实数, 10a ∴-=,即1a =.故选:A . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A .15 B .16C .18D .21【答案】C【解析】分析:首先根据题意,先确定其为一个等差数列的问题,已知公差、项数与和,求某项的问题,在求解的过程中,经分析,先确定首项,之后根据其和建立等量关系式,最后再利用通项公式求得第五项,从而求得结果. 详解:设第一个人分到的橘子个数为1a , 由题意得515453602S a ⨯=+⨯=,解得16a =, 则51(51)361218a a =+-⨯=+=,故选C.点睛:该题所考查的是有关等差数列的有关问题,在求解的过程中,注意分析题的条件,已知的量为公差、项数与和、而对于等差数列中,1,,,,n n a d n a S 这五个量是知三求二的,所以应用相应的公式求得对应的量即可. 4.函数()()2xx f x xee -=-的大致图象为( )A .B .C .D .【答案】A【解析】利用函数的奇偶性排除,B D ,利用函数的单调性排除C ,从而可得结果. 【详解】()()2x x f x x e e Q -=-,()()()()22()x x x x f x x e e x e e f x --∴-=--=--=-,()f x ∴为奇函数,其图象关于原点对称,故排除,B D ,2y x =Q 在()0,+∞上是增函数且0y >, x x y e e -=-在()0,+∞上是增函数且0y >,所以()()2xx f x x ee -=-在()0,+∞是增函数,排除C ,故选A .【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.5.5(2x +的展开式中,4x 的系数是( )A .40B .60C .80D .100【答案】C【解析】先写出二项展开式的通项,然后令x 的指数为4,解出相应参数的值,代入通项即可得出结果. 【详解】5(2x +二项展开式的通项为5552155(2)2k k kkk kk T C x C x---+=⋅⋅=⋅⋅.令542k-=,得2k =. 因此,二项展开式中4x 的系数为235280C ⋅=,故选C .【点睛】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用. 6.按照如图的程序框图执行,若输出结果为15,则M 处条件为A .B .C .D .【答案】A【解析】分析:首先根据题中所给的框图,分析可知其任务是对等比数列求和的问题,发现数列是以1为首项,以2为公比的等比数列,从而很容易发现其前4项和等于15,而对于k 的值为数列的项,结合题中的条件,分析各选项,可以求得正确结果. 详解:根据题中所给的程序框图,可以确定该题要求的是,对应的正好是以1为首项,以2为公比的等比数列,该数列的前4项和正好是15,结合题中所给的条件,一一试过,可知选A.点睛:该题考查的是有关程序框图的问题,该题属于补充条件的问题,在求解的过程中,注意数列的项的大小,以及项之间的关系,从而求得正确结果.7.已知锐角△ABC 的内角A,B,C 的对边分别为a,b,c,23cos 2A+cos 2A=0,a=7,c=6,则b 等于( ) A .10 B .9C .8D .5【答案】D【解析】由题意知,23cos 2A+2cos 2A-1=0, 即cos 2A=125, 又因△ABC 为锐角三角形, 所以cosA=15. △ABC 中由余弦定理知72=b 2+62-2b×6×15,即b 2-125b-13=0, 即b=5或b=-125(舍去),故选D.8.曲线4yx=与直线5y x=-围成的平面图形的面积为()A.152B.154C.154ln24-D.158ln22-【答案】D【解析】先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【详解】作出曲线4yx=与直线5y x=-围成的平面图形如下:由45yxy x⎧=⎪⎨⎪=-⎩解得:1x=或4x=,所以曲线4yx=与直线5y x=-围成的平面图形的面积为()421441115S5542084458ln21222x dx x x lnx lnx⎛⎫⎛⎫⎛⎫=--=--=----=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰. 故选D【点睛】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.9.已知函数()lnf x x x=,若直线l过点()0,e-,且与曲线()y f x=相切,则直线l 的斜率为()A.2-B.2 C.e-D.e【答案】B【解析】求得()f x的导数,设出切点(),m n,可得切线的斜率,结合两点的斜率公式,解方程可得m,从而可得结果.【详解】函数()ln f x x x =的导数为()'ln 1f x x =+, 设切点为(),m n ,则n mlnm =, 可得切线的斜率为1ln k m =+, 所以ln 1ln n e m m em m m+++==, 解得m e =,1ln 2k e =+=,故选B . 【点睛】本题主要考查利用导数求切线斜率,属于中档题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点()()00,A x f x 求斜率k ,即求该点处的导数()0k f x '=;(2) 己知斜率k 求切点()()11,,A x f x 即解方程()1f x k '=;(3) 巳知切线过某点()()11,M x f x (不是切点) 求切点, 设出切点()()00,,A x f x 利用()()()10010f x f x k f x x x -'==-求解.10.巳知将函数()sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向左平移ϕ个単位长度后.得到函数()g x 的图象.若()g x 是偶函数.则3f π⎛⎫⎪⎝⎭=( )A .12B.2CD .1【答案】A【解析】先由题意写出()()sin 23g x x ϕ=+,根据()g x 是偶函数求出ϕ,即可得出结果. 【详解】由题意可得:()()sin 23g x x ϕ=+, 因为()g x 是偶函数,所以()32k k Z πϕπ=+∈,即()63k k Z ππϕ=+∈, 又02πϕ<<,所以0632k πππ<+<,解得112k -<<,所以0k =,故6πϕ=; 所以1sin 23362f πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭. 故选A 【点睛】本题主要考查三角函数的图像变换与三角函数的性质,熟记性质即可,属于常考题型. 11.如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为A.B.C.D.【答案】D【解析】利用分步计数原理求出不同的涂色方案有420种,其中,区域涂色不相同的情况有120种,由此根据古典概型概率公式能求出区域涂色不相同的概率.【详解】提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设5个区域依次为,分4步进行分析:,对于区域,有5种颜色可选;,对于区域与区域相邻,有4种颜色可选;,对于区域,与区域相邻,有3种颜色可选;,对于区域,若与颜色相同,区域有3种颜色可选,若与颜色不相同,区域有2种颜色可选,区域有2种颜色可选,则区域有种选择,则不同的涂色方案有种,其中,区域涂色不相同的情况有:,对于区域,有5种颜色可选;,对于区域与区域相邻,有4种颜色可选;,对于区域与区域相邻,有2种颜色可选;,对于区域,若与颜色相同,区域有2种颜色可选,若与颜色不相同,区域有2种颜色可选,区域有1种颜色可选,则区域有种选择,不同的涂色方案有种,区域涂色不相同的概率为 ,故选D .【点睛】本题考查古典概型概率公式的应用,考查分步计数原理等基础知识,考查运算求解能力,是中档题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.12.如图,将边长为1的正方形ABCD 沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴时,又以B 为中心顺时针旋转,如此下去,设顶点C 滚动时的曲线方程为()y f x =,则下列说法不正确的是 ()A .()0f x ≥恒成立B .()()8f x f x =+C .()243(23)f x x x x =-+-<≤D .()20190f =【答案】C【解析】根据正方形的运动关系,分别求出当0x =,1,2,3,4时对应的函数值()f x ,得到()f x 具备周期性,周期为4,结合图象,当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,即可判断所求结论. 【详解】解:Q 正方形的边长为1,∴正方形的对角线2AC =,则由正方形的滚动轨迹得到0x =时,C 位于()0,1点,即()01f =, 当1x =时,C 位于(2点,即()12f =当2x =时,C 位于()2,1点,即()21f =,当3x =时,C 位于()3,0点,即()30f =, 当4x =时,C 位于()4,1点,即()41f =,则()()4f x f x +=,即()f x 具备周期性,周期为4, 由图可得()0f x ≥恒成立;()()8f x f x +=; 当23x <≤时,C 的轨迹为以()2,0为圆心,1为半径的14圆,方程为22(2)1(23,0)x y x y -+=<≤≥;()()()20195044330f f f =⨯+==,综上可得A ,B ,D 正确;C 错误. 故选:C . 【点睛】本题主要考查函数值的计算和函数的解析式和性质,结合正方形的运动轨迹,计算出对应函数值,得到周期性是解决本题的关键.二、填空题13.已知等差数列{}n a ,且48a =,则数列{}n a 的前7项和7S =______ 【答案】56【解析】由等差数列的性质可得:1742.a a a +=利用求和公式即可得出数列{}n a 的前7项和7S . 【详解】解:由等差数列的性质可得:174216a a a +==.∴数列{}n a 的前7项和()177778562a a S +==⨯=.故答案为:56. 【点睛】本题考查了等差数列的通项公式的性质及其求和公式,考查了推理能力与计算能力,属于中档题.14.若x,y满足约束条件202020 x yyx y-+≥⎧⎪+≥⎨⎪++≤⎩,则22x y+的最小值为______.【答案】2【解析】作出不等式组对应的平面区域,根据点到直线的距离公式进行求解即可.【详解】解:作出不等式组对应的平面区域如图:22x y+的几何意义是平面区域内的点到原点的距离,由图象得O到直线20x y++=的距离最小,此时最小值22d==,则22x y+的最小值是2,故答案为:2.【点睛】本题主要考查线性规划的应用,利用点到直线的距离公式结合数形结合是解决本题的关键.15.已知向量ABu u u r与ACu u u r的夹角为120︒,且32AB AC==u u u r u u u r,,若AP AB ACλ=+u u u r u u u r u u u r,且AP BC⊥u u u r u u u r则实数λ的值为__________.【答案】712【解析】∵⊥,∴·=(λ+)·(-)=-λ2+2+(λ-1)·=0,即-λ×9+4+(λ-1)×3×2×=0,解得λ=.点睛:平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a ·b =|a ||b |cos θ;二是坐标公式a ·b =x 1x 2+y 1y 2;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.16.若过抛物线24y x =上一点()4,4P ,作两条直线PA ,PB 分别与抛物线交于1122(,),(,)A x y B x y 两点,若它们的斜率之和为0,则直线AB 斜率为______.【答案】12-【解析】根据斜率公式可得121244044y y x x --+=--,利用221212,44y y x x ==化简可得128y y +=-,再根据斜率公式可得12AB k =-.【详解】解:依题意有121244044y y x x --+=--, 又221212,44y y x x ==, 所以1222124404444y y y y --+=--, 所以1211044y y +=++, 所以128y y +=-,所以12122212121241244AB y y y y k y y x x y y --====--+-, 【点睛】本题考查直线与抛物线的位置关系的综合应用,斜率公式的应用,考查了计算能力.属于基础题.三、解答题17.已知等差数列{}n a 的前n 项和为n S ,且39S =,又12a =.()1求数列{}n a 的通项公式;()2若数列{}n b 满足n b 2na -=,求证:数列{}nb 的前n 项和12n T <. 【答案】(1)1n a n=+(2)证明见解析【解析】()1直接利用等差数列前n项和公式求出数列的公差,进一步求出数列的通项公式.()2利用等比数列的求和公式和放缩法的应用求出数列的和.【详解】解:()1设{}n a 的公差为d ,因为39S =,又12a =. 所以3132392S a d ⨯=+=,解得1d =. 故()211n a n n =+-=+.()2证明:由于1n a n =+,所以11()2n n b +=,所以22111111111424()()()112222122n n n T +⎛⎫-⎪⎝⎭=++⋯+=<=-.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,等比数列的前n 项和的应用,放缩法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 18.如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆ 分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1 图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【答案】(1)证明见解析;(2)5. 【解析】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED . (2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量212sin()cos 22C C π+=∴=和平面MFD 的一个法向量,利用向量的夹角公式,即可求解. 【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即 由题意知,在图2中,,,平面,平面,且,平面,平面,. 又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为, 在中,, ,从而,,,,,.设平面的一个法向量为,则, 令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为..【点睛】该题考查的是有关立体几何的有关问题,一是线面垂直的判定,一定要把握好线面垂直的判定定理的条件,注意勾股定理也是证明线线垂直的好方法,二是求线面角,利用空间向量来求解,即直线的方向向量和平面的法向量所成角的余弦值的绝对值等于线面角的正弦值,求得结果.19.2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)60,80内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.()1求被调查者满意或非常满意该项目的频率;()2若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;()3已知在评分低于60分的被调查者中,老年人占13,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望Eξ.【答案】(1)0.78;(2)12125;(3)23.【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==,根据独立重复试验n 次发生k 次的概率公式可得结果;(3)随机变量ξ的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在[]60,100的频率为:()0.0280.030.0160.004100.78+++⨯=;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==, 用样本的频率代替概率,从该市的全体市民中随机抽取1人, 该人非常满意该项目的概率为15, 现从中抽取3人恰有2人非常满意该项目的概率为:223141255125P C ⎛⎫=⋅⋅=⎪⎝⎭;(3)∵评分低于60分的被调查者中,老年人占13, 又从被调查者中按年龄分层抽取9人, ∴这9人中,老年人有3人,非老年人6人, 随机变量ξ的所有可能取值为0,1,2,()02362915036C C P C ξ⋅===()1136291811362C C P C ξ⋅==== ()2036293123612C C P C ξ⋅====ξ的分布列为:ξ的数学期望E ξ 15112012362123=⨯+⨯+⨯=. 20.已知椭圆2222:x y C a b+= ()10a b >>的焦点坐标分別为()11,0F -,()21,0F ,P 为椭圆C 上一点,满足1235PF PF =且123cos 5F PF ∠= (1) 求椭圆C 的标准方程:(2) 设直线:l y kx m =+与椭圆C 交于,A B 两点,点1,04Q ⎛⎫⎪⎝⎭,若AQ BQ =,求k 的取值范围.【答案】(1)22143x y +=;(2)11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【解析】分析:第一问首先根据题中条件将涉及到的量设出来,之后结合椭圆的定义以及对应的线段的倍数关系,求得对应的边长,利用余弦定理借用余弦值建立边之间的等量关系式,从而求得,a c 的值,借用椭圆中,,a b c 的关系,求得b 的值,从而求得椭圆的方程,第二问将直线的方程与椭圆的方程联立,求得两根和与两根积,从而求得线段的中点,利用条件可得垂直关系,建立等量关系式,借用判别式大于零找到其所满足的不等关系,求得k 的取值范围.详解:(1)由题意设11PF r =,22PF r =则1235r r =,又122r r a +=,154r a ∴=,234r a =在 12PF F ∆中,由余弦定理得,12cos F PF ∠=2221212122r r F F r r +- =2225324453244a a a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭⨯⨯ 35=,解得2a =,1c =Q ,2223b a c ∴=-=,∴所求椭圆方程为22143x y +=(2)联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2234k x ++ 284120kmx m +-=,则12x x += 2834km k -+,212241234m x x k-=+,且()2248340k m ∆=+->…① 设AB 的中心为()00,M x y ,则1202x x x +== 2434km k -+,002334my kx m k=+=+, AQ BQ =Q ,AB QM ∴⊥,即,QMk k ⋅= 22334141344mk k km k +⋅=---+,解得2344k m k+=-…② 把②代入①得22234344k k k ⎛⎫++>- ⎪⎝⎭,整理得4216830k k +->,即()()2241430kk -+> 解得11,,22k ⎛⎫⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭点睛:该题考查的是有关直线与椭圆的综合题,涉及的知识点有椭圆的定义、余弦定理、椭圆的标准方程,以及直线与椭圆相交的有关问题,要会将题中条件加以转化,再者要会找对应的不等关系.21.已知函数()xf x xe =,()232g x x x =+-. ()1求证:()()215022f xg x x x-+->对()0,x ∞∈+恒成立;()2若()()()(0)32f x F x x gx x =>-+,若120x x <<,122x x +≤,求证:()()12.F x F x >【答案】(1)证明见解析(2)证明见解析【解析】(1)先对不等式左边进行化简整理,然后将整理后的表达式设为函数()h x ,对函数()h x 进行一阶导数和二阶导数的分析,得到()h x 在()0,∞+上单调递增,则当0x >时,()()0010.h x h e >=-=命题得证.(2)先对整理后的()F x 进行一阶导数的分析,画出函数()F x 大致图象,可知()10F x >,()20.F x >然后采用先取对数然后作差的方法比较大小,关键是构造对数平均数,利用对数平均不等式即可证明.【详解】证明:()1由题意,可知()()22221531511222222x x f x g x x e x x x e x x x-+-=--++-=---. 令()2112xh x e x x =---,0.x >则 ()'1x h x e x =--,()0.1x x h x e >"=-,Q 当0x >时,()10x h x e "=->,()'h x ∴在()0,∞+上单调递增.∴当0x >时,()()''00h x h >=,()h x ∴在()0,∞+上单调递增.∴当0x >时,()()0010h x h e >=-=.故命题得证.()2由题意,()xe F x x =,0x >.()()21'x x e F x x-=,0x >.①令()'0F x =,解得1x =;②令()'0F x <,解得01x <<; ③令()'0F x >,解得1x >.()F x ∴在()0,1上单调递减,在()1,+∞上单调递增,在1x =处取得极小值()1F e =.()F x 大致图象如下:根据图,可知()10F x >,()20F x >.()()()()12121122121212.x x e e lnF x lnF x ln ln x lnx x lnx x x lnx lnx x x ∴-=-=---=---120x x <<Q ,122x x +≤, ∴根据对数平均不等式,有12121212x x x xlnx lnx -+<≤-,()()121212121110lnF x lnF x lnx lnx x x x x --∴=-<-=--.120x x -<Q ,()()120lnF x lnF x ∴->. ()()12.F x F x ∴>故得证. 【点睛】本题主要考查函数的一阶导数和二阶导数对函数单调性分析的能力,数形结合法的应用,构造函数,构造对数平均数,利用对数平均不等式的技巧,本题属偏难题.22.在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为()sin 3cos 33ρθθ+=.(1)求C 的极坐标方程; (2)若射线11π:02OM θθθ⎛⎫=<<⎪⎝⎭与圆C 的交点为,O P ,与直线l 的交点为Q ,求OP OQ ⋅的取值范围.【答案】(1)2cos ρθ=;(2)06OP OQ <<.【解析】试题分析:(1)圆C 的参数方程消去参数φ,能求出圆C 的普通方程,再由x=ρcosθ,y=ρsinθ,能求出圆C 的极坐标方程. (2)设P (ρ1,θ1),则有ρ1=cosθ1,Q (ρ2,θ1),则2ρ=,OP OQ =ρ1ρ2,结合tanθ1>0,能求出OP OQ 的范围. 试题解析:(1)圆C 的普通方程是()2211x y -+=,又cos ,sin x y ρθρθ==, 所以圆C 的极坐标方程是2cos ρθ=. (2)设()11,P ρθ,则有 11cos ρθ=,设()21,Q ρθ,且直线l的方程是()sin ρθθ=2ρ=所以12102OP OQ πρρθ⎫=⋅==<<⎪⎭因为1tan 0θ>,所以06OP OQ <<.。

2020年高考数学(理)必刷试卷8(解析版)

2020年高考数学(理)必刷试卷8(解析版)

2020年高考必刷卷08数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|22}A x x =∈-<<N ,{1,1,2,3}B =-,则A B =I ( ) A .{}1 B .{}0,1C .{}0,1,2D .{}0,1,2,3【答案】A 【解析】 【分析】求出集合A ,然后利用交集的定义可求出集合A B I . 【详解】{}{|22}0,1A x x =∈-<<=Q N ,因此,{}1A B ⋂=.故选:A. 【点睛】本题考查交集的计算,考查计算能力,属于基础题. 2.若61014log 3,log 5,log 7a b c ===,则( )A .a b c >>B .b c a >>C .a c b >>D .c b a >>【答案】D 【解析】分析:三个对数的底数和真数的比值都是2,因此三者可化为()1f x xx=+的形式,该函数为()0,∞+上的单调增函数,从而得到三个对数的大小关系.详解:22log 31log 3a =+,22log 51log 5b =+,22log 71log 7c =+,令()11,011x f x x x x ==->++,则()f x 在()0,∞+上是单调增函数. 又2220log 3log 5log 7<<<,所以()()()222log 3log 5log 7f f f <<即a b c <<.故选D.点睛:对数的大小比较,要观察不同对数的底数和真数的关系,还要关注对数本身的底数与真数的关系,从而找到合适的函数并利用函数的单调性比较对数值的大小. 3.设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈; 2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z R ∈,则z ∈R .其中的真命题为 A .13,p p B .14,p p C .23,p p D .24,p p【答案】B 【解析】令i(,)z a b a b =+∈R ,则由2211i i a b R z a b a b-==∈++得0b =,所以z R ∈,故1p 正确; 当i z =时,因为22i 1z R ==-∈,而i z R =∉知,故2p 不正确;当12i z z ==时,满足121z z R ⋅=-∈,但12z z ≠,故3p 不正确; 对于4p ,因为实数的共轭复数是它本身,也属于实数,故4p 正确,故选B.点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子原高一丈(一丈10=尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高是( )A .2.55尺B .4.55尺C .5.55尺D .6.55尺【答案】B 【解析】 【分析】将问题三角形问题,设出另一直角边,则可求出斜边的长,最后利用勾股定理可求出另一直角边. 【详解】已知一直角边为3尺,另两边和为10尺,设另一直角边为x 尺,则斜边为10x -尺,由勾股定理可得:()222310x x +=-,可得 4.55x =尺. 故选:B【点睛】本题考查了数学阅读能力,考查了勾股定理的应用,考查了数学运算能力.5.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是( ) A .B .C .D .【答案】B 【解析】 【分析】通过求特殊点的坐标,结合函数值的正负判断,即可得出结论. 【详解】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C . 故选:B 【点睛】本题考查函数图像的识别,属于基础题.6.在普通高中新课程改革中,某地实施“3+1+2”选课方案.该方案中“2”指的是从政治、地理、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地里至少有一门被选中的概率是( ) A .16B .12C .23D .56【答案】D 【解析】 【分析】本题可从反面思考,两门至少有一门被选中的反面是两门都没有被选中,两门都没被选中包含1个基本事件,代入概率的公式,即可得到答案. 【详解】设{A =两门至少有一门被选中},则{A =两门都没有选中},A 包含1个基本事件,则2411()6P A C ==,所以15()166P A =-=,故选D. 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中合理应用对立事件和古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.若向量,a b r r 满足||1,||2a b ==r r ,且||3a b -=r r,则向量,a b r r 的夹角为( )A .30°B .60°C .120°D .150°【答案】B 【解析】 【分析】由||3a b -=r r ,平方求出a b ⋅r r,代入向量夹角公式,求出,a b r r 的夹角余弦值,即可得结果.【详解】设,a b r r的夹角为θ||3,a b -=r r 2222||()2523,a b a b a a b b a b -=-=-⋅+=-⋅=r r r r r r r r r r11,cos ,0,23a b a b ab πθθπθ⋅⋅=∴==≤≤∴=r rr r r r故选:B 【点睛】本题考查向量的模长和向量的夹角计算,着重考查计算能力,属于基础题.8.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?, 100n >?D .n 是奇数?,100n >?【答案】D 【解析】根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“奇数”,执行程序框图,1,0;2,2;3,4;n s n s n s ====== 22991100...;99,100,;22n s n s -====101100n =>结束,所以第二个框应该填100n >,故选D.9.以n S ?,?T n 分别表示等差数列{}{}n ,?b n a 的前n 项和,若S 73n n n T n =+,则55a b 的值为 A .7 B .214C .378D .23【答案】B 【解析】 【分析】根据等差数列前n 项和的性质,当n 为奇数时,12n n s na +=,即可把55a b 转化为99S T 求解.【详解】因为数列是等差数列,所以211(21)n n S n a ++=+,故55955997921==9934a a Sb b T ⨯==+,选B. 【点睛】本题主要考查了等差数列前n 项和的性质,属于中档题.10.已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于,A B 两点.若223AF BF =,125BF BF =,则C 的方程为( ).A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】A 【解析】 【分析】根据椭圆的定义以及余弦定理列方程可解得2a =,1b =,可得椭圆的方程.【详解】解:22||3||AF BF =Q ,2||4||AB BF ∴=, 又125BF BF =,又12||||2BF BF a +=,23||aBF ∴=, 2||AF a ∴=,1||53BF a =,12||||2AF AF a +=Q ,1||AF a ∴=, 12||||AF AF ∴=,A ∴在y 轴上.在Rt △2AF O 中,21cos AF O a∠=, 在△12BF F 中,由余弦定理可得222154()()33cos 223a a BF F a +-∠=⨯⨯,根据221cos cos 0AF O BF F ∠+∠=,可得21320a a a-+=,解得22a =, 222211b a c =-=-=.所以椭圆C 的方程为:2212x y +=.故选:A .【点睛】本题考查了椭圆的定义及余弦定理,属中档题.11.设函数431,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩若关于x 的方程()()22()30f x a f x -++=恰好有六个不同的实数解,则实数a 的取值范围为 A .(23-2,32⎤⎥⎦B .(-23-2,23-2)C .(32,+∞) D .(23-2,+∞)【答案】A 【解析】 【分析】画出()f x 的图像,利用()f x 图像,利用换元法,将方程()()22()30fx a f x -++=恰好有六个不同的实数解的问题,转化为一元二次方程在给定区间内有两个不同的实数根,由此列不等式组,解不等式组求得a 的取值范围. 【详解】画出()f x 的图像如下图所示,令()f x t =,则方程()()22()30fx a f x -++=转化为()2230t a t -++=,由图可知,要使关于x 的将方程()()22()30f x a f x -++=恰好有六个不同的实数解,则方程()2230t a t -++=在(]1,2内有两个不同的实数根,所以()()()222212021221213022230a a a a ⎧∆=+->⎪+⎪<<⎪⎨⎪-+⨯+>⎪-+⨯+≥⎪⎩,解得32322a -<≤. 故选:A【点睛】本小题主要考查分段函数的图像与性质,考查二次函数根于判别式,考查数形结合的数学思想方法,属于中档题.12.过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且AB 、AC 、AD 两两夹角都为60︒,若2BD =,则该球的体积为( )A .32πB .233π C .34π D .22π 【答案】A 【解析】 【分析】根据题意可分析四面体A BCD -是正四面体,各条棱长均为2,依据正四面体外接球半径的求法即可得解. 【详解】由题:在四面体A BCD -中,,60AB AC AD BAC BAD CAD ==∠=∠=∠=o,所以,,BAC BAD CAD ∆∆∆均为等边三角形,且边长均为2, 所以四面体A BCD -是正四面体,棱长为2,如图:根据正四面体特征,点A 在底面正投影1O 是底面正三角形的中心,外接球球心O 在线段1AO 上,设外接球半径为R ,取CD 中点E 过点,,B C D 的截面圆的半径1223623323r O B BE ===⨯⨯=, 在△1O AB 中,2211223233O A BA BO =-=-=, 则球心到截面BCD 的距离1233d OO R ==- 在△1O OB 中,22211O B OO OB +=,22262333R R ⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-, 解得32R =, 所以球的体积3433322V ππ⎛⎫== ⎪ ⎪⎝⎭. 故选:A 【点睛】此题考查求正四面体外接球的体积,通过几何体的特征,确定一个截面,寻找球心,根据三角形关系求出半径即可求解,平常的学习中有必要积累常见几何体外接球半径的求法.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。

2020年高考数学必刷题《26 数列的综合应用》(解析版)

2020年高考数学必刷题《26 数列的综合应用》(解析版)

专题六 数列26 数列的综合应用1.已知公差0d ≠的等差数列{}n a 满足11a =,且2a ,42a -,6a 成等比数列,若正整数m ,n 满足10m n -=,则m n a a -=A .10B .20C .30D .5或40【答案】C【解析】由题知()24262a a a -=,因为{}n a 为等差数列,所以()()()231115d d d -=++,又0d ≠,则3d =, 从而()30m n a a m n d -=-=. 故选C .2.若等差数列{}n a 和等比数列{}n b 满足11443,24a b a b ==-==,则22a b = A .1- B .1 C .4-D .4【答案】B【解析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,因为11443,24a b a b ==-==,所以413413278d a a b q b =-=⎧⎪⎨==-⎪⎩, 解得92d q =⎧⎨=-⎩,因此212166a a d b b q =+=⎧⎨==⎩,所以221a b =. 故选B.3.已知首项为1的等差数列{a n }的公差为d ,前n 项和为S n ,且S 2,S 4,S 8成等比数列,则 d = A .0 B .1或2 C .0或2D .2【答案】C【解析】由a 1=1及S 2,S 4,S 8成等比数列,可得 =S 2·S 8,又S n =a 1n +d ,可得d 2=2d ,解得d =0或d =2.故选C.4.已知等比数列{}n a 中,若12a =,且1324,,2a a a 成等差数列,则5a = A .2 B .2或32 C .2或-32D .1-【答案】B【解析】设等比数列{}n a 的公比为q (0q ≠),1324,,2a a a 成等差数列,321224a a a ∴=+, 10a ≠,220q q ∴--=,解得2q =或1q =-, 451=a a q ∴,则5=232a 或.故选B .5.设 是首项为 ,公差为 的等差数列, 为其前 项和,若 成等比数列,则 A .8 B . C .1D .【答案】D【解析】由题意可得 ,因为 成等比数列,所以 ,求解可得 故选D.6.已知数列{a n }是公比为2的等比数列,满足a 6=a 2·a 10,设等差数列{b n }的前n 项和为S n ,若b 9=2a 7,则S 17=A .34B .39C .51D .68【答案】D【解析】数列{a n }是公比q =2的等比数列,由a 6=a 2·a 10得a 1q 5=a 1q ·a 1q 9,∴a 1q 5=1,∴a 6=1, ∴b 9=2a 7=2a 6·q =2×1×2=4, 设等差数列{b n }的公差为d ,则S 17=17b 1+d =17(b 1+8d )=17b 9=68.故选D .7.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若261033a a a ⋅⋅=,16117πb b b ++=,则21039tan1b b a a +-⋅的值是A .1B .22C .22-D .3-【答案】D 【解析】{}n a 是等比数列,32610633a a a a ∴⋅⋅==,63a ∴=,{}n b 是等差数列,1611637πb b b b ∴++==,67π3b ∴=, 2106239614π27ππ3tan tan tan tan tan 3111333b b b a a a +∴===-=-=--⋅--. 故选D.8.已知数列 是等差数列, 是正项等比数列,且 , , , ,则 A . B . C .D .【答案】D【解析】因为 , , 是正项等比数列,所以 , , ,则 , ,因为数列是等差数列,,,所以,,,,因为,所以,又,则,,所以.故选D.9.已知等差数列{a n}的首项为1,a1+a3+a5=15,{a n}的前n项和为S n,若S10,a10+1,k(其中k∈R)成等比数列,则实数k的值是A.7 B.6C.5 D.4【答案】D【解析】根据题意可得,a1=1,3a3=15,即a3=5,设等差数列{a n}的公差为d,解得d=2,所以等差数列{a n}的通项公式是a n=2n-1,S10=10×1+×2=100,又S10,a10+1,k(其中k∈R)成等比数列,所以(a10+1)2=k·S10,k== 4.故选D.10.在等差数列中,,且成等比数列,则公差__________.【答案】3【解析】因为成等比数列,所以,即,解得d=3或d=-1.当d=-1时,,舍去.故11.等差数列中,公差,且,数列是等比数列,且,则_______.【答案】16【解析】因为等差数列中,,所以,所以.则,又数列是等比数列,所以.12.已知单调递增的等比数列满足,且是,的等差中项,则数列的通项公式为 __________.【答案】【解析】因为 是 , 的等差中项,所以 , 所以或 ,因为数列 单调递增,所以 ,所以数列 的通项公式为 .13.等差数列{}n a 中,410a =且3a ,6a ,10a 成等比数列,则数列{}n a 的前20项的和20S =__________.【答案】200或330【解析】设数列{}n a 的公差为d ,则3410a a d d =-=-,641042102,6106a a d d a a d d =+=+=+=+,由3610,,a a a 成等比数列,得23106a a a =,即()()()210106102d d d -+=+,整理得210100d d -=,解得0d =或1d =, 当0d =时,20420200S a ==;当1d =时,14310317a a d =-=-⨯=, 于是2012019202071903302S a d ⨯=+=⨯+=, 故答案为200或330.14.在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则()220172019log b b ⋅的值为 A .1 B .2 C .4D .8【答案】C【解析】因为等差数列{}n a 中2017201920182a a a +=,所以2220172018201920182018224=0a a a a a -+=-,因为各项不为零,所以2018=4a ,因为数列{}n b 是等比数列,所以2201720192018==16b b a ⋅所以()2201720192log =log 16=4b b ⋅. 故选C .15.等差数列{}n a ,等比数列{}n b ,满足111a b ==,53a b =,则9a 能取到的最小整数是A .1-B .0C .2D .3【答案】B【解析】等差数列{}n a 的公差设为d ,等比数列{}n b 的公比设为q ,0q ≠,由111a b ==,53a b =,可得214d q +=, 则2291812(1)211a d q q =+=+-=->-,可得9a 能取到的最小整数是0. 故选B .16.等比数列{}n a 中, n S 是数列{}n a 的前n 项和, 314S =,且1238,3,6a a a ++依次成等差数列,则13a a ⋅等于 A .4 B .9 C .16 D .25【答案】C【解析】设等比数列{}n a 的首项为1a ,公比为q ,则()231114S a q q =++=①,又1238,3,6a a a ++依次成等差数列,则21112386a q a a q ⨯=+++,即2111614a q a a q --=②,①②两式相加得:14a q =,代入①得()21110a q +=,①②两式相比得22520q q -+=,解得2q =或12q =,则122a q ==⎧⎨⎩ 或1812a q ⎧==⎪⎨⎪⎩,当122a q ==⎧⎨⎩时,22221312216a a a q ==⨯=;当1812a q ⎧==⎪⎨⎪⎩时,221318162a a ⎛⎫= ⎪⎝⎭⨯=.故选C .17.已知数列{}n a 是公差不为0的等差数列,23a =,且358,,a a a 成等比数列,设11n n n b a a +=,则数列{}n b 的前n 项和n T 为A .1n n + B .1n n - C .221nn +D .24nn +【答案】D【解析】设首项为1a ,公差为d ,因为23a =,且358,,a a a 成等比数列,所以()()()121113427a d a d a d a d +=⎧⎪⎨+=++⎪⎩, 解得12,1a d ==, 所以()()1111,1212n n a n b n n n n =+==-++++, 则12n n T b b b =+++=1111111123341222n n n -+-++-=-+++=24nn +. 故选D .18.若等差数列{a n }与等比数列{b n }的首项是相等的正数,且它们的第2n+1项也相等,则A .a n+1<b n+1B .a n+1≤b n+1C .a n+1≥b n+1D .a n+1>b n+1【答案】C【解析】∵等比数列{b n }中,b 1>0,∴b 2n+1>0, 又a 1=b 1,a 2n+1=b 2n+1,当b n+1<0时,显然有a n+1>b n+1;当b n+1>0时,a n+1-b n+1=21211211211211212()222n n n n n a a a a a a a a b b ++++++-⋅-+-⋅==≥ , 即a n+1≥b n+1.综上可知a n+1≥b n+1.19.已知数列{}n a 是以1为首项,2为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,设n n b c a =,*12...,()n n T c c c n =+++∈N ,则当2019n T >时,n 的最小值是A .9B .10C .11D .12【答案】B 【解析】{}n a 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b 是以1为首项,2为公比的等比数列,12n n b -∴=,112121242n n n n b b b T c c c a a a a a a a -∴=++⋯+=++⋯+=+++⋯+()()()()1211221241221n -=⨯-+⨯-+⨯-+⋯+⨯- ()11122124222212nn n n n n -+-=+++⋯+-=⨯-=---,2019n T >,1222019n n +∴-->,解得10n ≥.则当2019n T >时,n 的最小值是10. 故选B .20.若互不相等的实数 成等差数列, 成等比数列,且 则 __________.【答案】【解析】由题意,互不相等的实数 构成等差数列, 设 ,又 成等比数列,所以 ,即 ,解得 , 所以三个数 分别为 ,又因为 ,所以 ,所以实数 .21.已知数列 的各项均为整数, ,前12项依次成等差数列,从第11项起依次成等比数列,则 __________. 【答案】16【解析】设公差为 ,则因为第11项,第12项,第13项成等比数列,所以 ,即 ,即,因为 为整数,所以 , 则,故 . 故答案为16.22.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为__________.【答案】12n n b -=【解析】设成等差数列的三个正数为a d -,a ,a d +,即有36a =,解得2a =,由题意可得5d -,8,15d +成等比数列,即有()()51564d d -+=,解得1d =(11d =-舍去),可得公比为2,则数列{}n b 的通项公式为33132422n n n n b b ---=⋅=⋅=. 故答案为12n n b -=.23.已知数列{}n a 满足11a =,且点()()1,2n n a a n +∈N å在直线1102x y -+=上.若对任意的*n ∈N ,1231111nn a n a n a n a λ+++⋯+≥++++恒成立,则实数λ的取值范围为__________. 【答案】(﹣∞,12] 【解析】数列{}n a 满足a 1=1,且点()()*12n n a a n +∈,N 在直线x 12-y +1=0上, 可得a n ﹣a n +1+1=0,即a n +1﹣a n =1,可得a n =n , 对任意的*n ∈N ,1231111nn a n a n a n a λ++++≥++++恒成立, 即为λ111122n n n≤+++++的最小值, 由f (n )111122n n n=+++++, f (n )﹣f (n +1)11112122n n n =--+++()()111022212122n n n n =-=-<++++, 即f (n )<f (n +1),可得f (n )递增,即有f (1)为最小值,且为12, 可得λ12≤, 则实数λ的取值范围为(﹣∞,12]. 故答案为(﹣∞,12].24.(2017新课标全国Ⅲ理科)等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24- B .3- C .3 D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=, 又公差不为0,则2d =-, 故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选A .【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.25.(2017北京理科)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________. 【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么22131 2a b-+==.【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破练(1) 函数的综合问题一、选择题1.函数f (x )=Error!的零点个数为( ) A .3 B .2 C .7 D .0 答 B解 解法一:由f (x )=0得Error!或Error!解得x =-2或x =e . 因此函数f (x )共有2个零点. 解法二:函数f (x )的图象如图所示, 由图象知函数f (x )共有2个零点.故选B .2.已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则的最大值为( ) y2xA .B .1C .D . 185472答 C解 由题意,得线段AB :y -1=(x -4)⇒y =-2x +9(2≤x ≤4),所以=5-12-4y2x=-1+≤,当x =2时等号成立,即的最大值为.故选C . -2x +92x 92x 54y 2x 543.若变量x ,y 满足|x |-ln =0,则y 关于x 的函数图象大致是( )1y答 B解 由|x |-ln =0得y ==Error!画出图象可知选B .1y 1e|x |4.(2018·贵阳模拟)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(2+x )-1,则f (-6)=( )A .2B .4C .-2D .-4 答 C解 因为f (x )是R 上的奇函数,所以f (-x )=-f (x ).而在x ≥0时,f (x )=log 2(2+x )-1,所以f (-6)=-f (6)=-[log 2(2+6)-1]=-(log 28-1)=-2.故选C .5.(2018·唐山模拟)已知偶函数f (x )在[0,+∞)上单调递减,若f (-2)=0,则满足xf (x )>0的x 的取值范围是( )A .(-∞,-2)∪(0,2)B .(-2,0)∪(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2) 答 A解 因为f (x )是偶函数且在[0,+∞)上单调递减,所以f (x )在(-∞,0]上单调递增,又f (-2)=0,所以f (2)=0,即在区间(-∞,-2)和(2,+∞)上,f (x )<0;在区间(-2,2)上,f (x )>0,所以xf (x )>0等价于Error!和Error!即得x <-2或0<x <2.故选A .6.(2018·广东潮州模拟)设函数f (x )=,则使得f (x 2-2x )>f (3x -6)成立的x1+|x |x 的取值范围是( )A .(-∞,2)∪(3,+∞)B .(2,3)C .(-∞,2)D .(3,+∞) 答 A解 易得函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )==1-为单x1+x11+x调增函数,故函数f (x )在R 上为增函数,依题意得x 2-2x >3x -6,解得x <2或x >3.故选A .7.(2018·佛山质检一)已知函数f (x )=Error! 则下列函数为奇函数的是( ) A .f (sin x ) B .f (cos x ) C .xf (sin x ) D .x 2f (cos x ) 答 C解 易知f (x )为偶函数,即满足∀x ∈R ,f (-x )=f (x )恒成立.研究g (x )=xf (sin x ),g (-x )=-xf [sin(-x )]=-xf (-sin x )=-xf (sin x )=-g (x ),故g (x )=xf (sin x )为奇函数.故选C .8.(2019·青岛质检)已知a >b >1,则下列结论正确的是( ) A .a a <b b B .a ln b >b ln a C .a ln a >b ln b D .a b <b a 答 C解 取a =e ,b =,则B 项明显错误;对于D 项,若a b <b a 成立,则ln a b <ln b a ,e 则b ln a <a ln b ,由B 项错误得D 项错误;因为a >b >1,所以ln a >ln b >0,由同向不等式相乘得a ln a >b ln b ,进一步得ln a a >ln b b ,所以a a >b b ,所以A 项错误,C 项正确.故选C .9.若x ,y ∈R ,且满足Error!则x +y =( ) A .-4 B .-3 C .3 D .4 答 B解 函数f (t )=t 3+2018t (t ∈R )是奇函数,且在R 上是增函数,故若f (u )+f (v )=130,则必有u +v =0,本题中,u =x +4,v =y -1,∴x +4+y -1=0⇒x +y =-3.故选B .10.(2018·长沙统考)函数f (x )=2x +的图象大致为( )x x +1答 A 解 f (x )=2x +=2x -+1,其定义域为(-∞,-1)∪(-1,+∞).令u (x )x x +11x +1=2x ,v (x )=-.由于u (x )和v (x )都在(-∞,-1)和(-1,+∞)上单调递增,所以1x +1f (x )在(-∞,-1)上和(-1,+∞)上单调递增,排除C ,D ;又当x 趋向负无穷时,2x 趋近于0,-趋近于0,所以f (x )接近于1,所以选A . 1x +111.(2018·大庆质检一)已知f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f ′(x )<0.若a =f ln ,b =f ln -,c =f (e 0.1),则a ,b ,c 的大小关系为( )121e 1e2A .b <a <c B .b <c <a C .c <a <b D .a <c <b 答 C解 依题意,有f (x )在[0,+∞)上单调递减,而且f (x )是定义在R 上的奇函数,则由其图象知f (x )在(-∞,0]上单调递减,从而奇函数f (x )在R 上单调递减.则由ln -1e =ln 1-<ln =-1,0>ln >ln =-1,e0.1>0,知ln -<ln <e 0.1,从而结合1e 21e 1e 1e 121e 1e 1e 212f (x )的单调性,有f ln ->f ln >f (e 0.1),即c <a <b .故选C .1e 1e 21212.(2018·长沙统考)设平行于x 轴的直线l 分别与函数y =2x 和y =2x +1的图象相交于点A ,B ,若函数y =2x 的图象上存在点C ,使得△ABC 为等边三角形,则这样的直线l ( )A .不存在B .有且只有一条C .至少有两条D .有无数条 答 B解 如图,设直线l 的方程为y =a (a >0),则点A (log 2a ,a ),B (log 2a -1,a ). 因为直线AB 平行于x 轴,所以|AB |=1.取AB 中点D ,连接CD ,因为△ABC 是等边三角形,所以CD ⊥AB ,且|AD |=,|CD |=,所以点C log 2a -,a -.因为点C 在y =2x12321232的图象上,所以a -=2log2a -=,解得a =,所以直线l 只有一条.故选B .3212a232-2二、填空题13.若关于x 的不等式x 2-4x -2-a >0在区间[1,4]内有解,则实数a 的取值范围是________.答 (-∞,-2)解 不等式x 2-4x -2-a >0在区间[1,4]内有解等价于a <(x 2-4x -2)max ,令g (x )=x 2-4x -2,x ∈[1,4],∴g (x )≤g (4)=-2,∴a <-2.14.若存在b ∈[1,2],使得2b (b +a )≥4,则实数a 的取值范围是________. 答 [-1,+∞)解 由题可得2b (a +b )≥4⇒a +b ≥4b ⇒a ≥4b -b ,即存在b ∈[1,2]使得a ≥4b (12)(12)(12)-b ,因为y =4x-x 在R 是单调递减的,所以4b-b 在区间[1,2]上的范围为[-1,(12)(12)1],则a ≥-1,故填[-1,+∞).15.已知函数g (x )的图象与函数f (x )=log 3x (x >0)的图象关于直线y =x 对称,若g (a )·g (b )=3(其中a >0且b >0),则+的最小值为________. 1a 4b答 9解 依题意可知g (x )=3x ,∴g (a )·g (b )=3a ·3b =3a +b =3即a +b =1,∴+=1a 4b·(a +b )=5++≥9当且仅当a =,b =取“=”. (1a +4b )b a 4a b 132316.如图,在第一象限内,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log x ,y22=x ,y =x 的图象上,且矩形的边分别平行于两坐标轴,若点A 的纵坐标是2,则点D1232的坐标是________.答 ,12916解 由2=log x 可得点A ,2,由2=x 可得点B (4,2),因为4=,所以点C22121232916的坐标为4,,所以点D 的坐标为,.91612916三、解答题17.(2018·湖北荆州摸底)已知定义在(0,+∞)上的函数f (x ),满足f (mn )=f (m )+f (n )(m ,n >0),且当x >1时,有f (x )>0.(1)求证:f =f (m )-f (n );(mn)(2)求证:f (x )在(0,+∞)上是增函数; (3)比较f与的大小.(m +n2)f (m )+f (n )2解 (1)证明:∵f (m )=f =f +f (n ),(m n ·n )(mn)∴f=f (m )-f (n ). (mn)(2)证明:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)-f (x 1)=f .(x 2x1)∵0<x 1<x 2,∴>1,∴f >0,x 2x1(x 2x 1)∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(3)f-(m +n 2)f (m )+f (n )2=f +f - 12(m +n 2)12(m +n 2)f (m )+f (n )2=+ 12[f (m +n 2)-f (m )]12[f (m +n2)-f (n )]=f +f12(m +n 2m )12(m +n 2n )=f12[(m +n )24mn ]∵≥1,∴f≥0,(m +n )24mn [(m +n)24mn ]故f≥. (m +n 2)f (m )+f (n )218.(2018·浙江宁波统考)已知函数f (x )=log 2(x +1),g (x )=x |x -a |. (1)若g (x )为奇函数,求a 的值并判断g (x )的单调性(单调性不需证明);(2)对任意x 1∈[1,+∞),总存在唯一的x 2∈[2,+∞),使得f (x 1)=g (x 2)成立,求正实数a 的取值范围.解 (1)∵g (x )为奇函数,∴g (x )+g (-x )=x (|x -a |-|x +a |)=0恒成立. ∴a =0.此时g (x )=x |x |,在R 上单调递增. (2)x 1∈[1,+∞),f (x )=log 2(x +1), ∴f (x 1)∈[1,+∞),g (x )=Error!①当a ≤2时,g (x 2)在[2,+∞)上单调递增, ∴g (2)=4-2a ≤1,a ≥,∴≤a ≤2.3232②当2<a <4时,g (x 2)在[2,a ]上单调递减,在[a ,+∞)上单调递增. ∴g (2)=-4+2a <1,a <,∴2<a <.5252③当a ≥4时,g (x 2)在2,上单调递增,在,a 上单调递减,在[a ,+∞)上单调递a 2a2增.∴g =-2+<1,-2<a <2,不成立.a2a 2a 22综上可知≤a <.325219.(2018·福建四校联考)某工厂生产一种仪器的元件,由于受生产能力和技术水平的限制,会产生一些次品,根据经验知道,其次品率P 与日产量x (万件)之间满足关系:P =Error!(其中c 为小于6的正常数).(注:次品率=次品数/生产量,如P =0.1表示每生产10件产品,有1件为次品,其余为合格品.)已知每生产1万件合格的仪器可以盈利2万元,但每生产1万件次品将亏损1万元,故厂方希望定出合适的日产量.(1)试将生产这种仪器的元件每天的盈利额T (万元)表示为日产量x (万件)的函数; (2)当日产量为多少时,可获得最大利润? 解 (1)当x >c 时,P =,23∴T =x ·2-x ·1=0;1323当1≤x ≤c 时,P =,16-x∴T =·x ·2-·x ·1=.(1-16-x )(16-x )9x -2x 26-x综上,日盈利额T (万元)与日产量x (万件)的函数关系为T =Error! (2)由(1),当x >c 时,每天的盈利额为0,∴1≤x ≤c ,①当3≤c <6时,T ==15-2(6-x )+≤15-12=3(当且仅当x =3时取等9x -2x 26-x 96-x 号),T max =3,此时x =3;②当1≤c <3时,由T ′==知函数T =在[1,3]上2x 2-24x +54(6-x )22(x -3)(x -9)(6-x )29x -2x 26-x递增,∴当x =c 时,∴T max =.9c -2c 26-c综上,若3≤c <6,则当日产量为3万件时,可获得最大利润; 若1≤c <3,则当日产量为c 万件时,可获得最大利润.20.(2018·天津模拟)统计表明某型号汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数为y =x 3-x +8(0<x <120).1128000380(1)当x =64千米/小时时,行驶100千米耗油量多少升? (2)若油箱有22.5升油,则该型号汽车最多行驶多少千米? 解 (1)当x =64千米/小时时,要行驶100千米需要=小时, 100642516要耗油×643-×64+8×=11.95(升). 11280003802516(2)设22.5升油能使该型号汽车行驶a 千米,由题意得, x 3-x +8×=22.5, 1128000380ax 所以a =,22.51128000x 2+8x -380设h (x )=x 2+-, 11280008x 380则当h (x )最小时,a 取最大值, h ′(x )=x -=,1640008x 2x 3-80364000x 2令h ′(x )=0⇒x =80,当x ∈(0,80)时,h ′(x )<0,当x ∈(80,120)时,h ′(x )>0,故当x ∈(0,80)时,函数h (x )为减函数,当x ∈(80,120)时,函数h (x )为增函数, 所以当x =80时,h (x )取得最小值,此时a 取最大值为=200.22.51128000×802+880-380所以若油箱有22.5升油,则该型号汽车最多行驶200千米.专题突破练(1) 函数的综合问题一、选择题1.函数f (x )=Error!的零点个数为( ) A .3 B .2 C .7 D .0 答 B解 解法一:由f (x )=0得Error! 或Error!解得x =-2或x =e . 因此函数f (x )共有2个零点.解法二:函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.故选B .2.已知A (2,5),B (4,1),若点P (x ,y )在线段AB 上,则的最大值为( )y2xA .B .1C .D . 185472答 C解 由题意,得线段AB :y -1=(x -4)⇒y =-2x +9(2≤x ≤4),所以=5-12-4y2x=-1+≤,当x =2时等号成立,即的最大值为.故选C . -2x +92x 92x 54y 2x 543.若变量x ,y 满足|x |-ln =0,则y 关于x 的函数图象大致是( )1y答 B解 由|x |-ln =0得y ==Error!画出图象可知选B .1y1e |x |4.(2018·贵阳模拟)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(2+x )-1,则f (-6)=( )A .2B .4C .-2D .-4 答 C解 因为f (x )是R 上的奇函数,所以f (-x )=-f (x ).而在x ≥0时,f (x )=log 2(2+x )-1,所以f (-6)=-f (6)=-[log 2(2+6)-1]=-(log 28-1)=-2.故选C .5.(2018·唐山模拟)已知偶函数f (x )在[0,+∞)上单调递减,若f (-2)=0,则满足xf (x )>0的x 的取值范围是( )A .(-∞,-2)∪(0,2)B .(-2,0)∪(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2) 答 A解 因为f (x )是偶函数且在[0,+∞)上单调递减,所以f (x )在(-∞,0]上单调递增,又f (-2)=0,所以f (2)=0,即在区间(-∞,-2)和(2,+∞)上,f (x )<0;在区间(-2,2)上,f (x )>0,所以xf (x )>0等价于Error!和Error!即得x <-2或0<x <2.故选A .6.(2018·广东潮州模拟)设函数f (x )=,则使得f (x 2-2x )>f (3x -6)成立的x1+|x |x 的取值范围是( )。

相关文档
最新文档