高考数学选择填空题强化训练及参考答案
全国统一高考数学练习卷及含答案 (5)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120B.168C.204D.2162.不等式|x+log2x|<|x|+|log2x|的解集为()A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知α、β以及α+β均为锐角,x=sin(α+β),y=sinα+sinβ,z=cosα+cos β,那么x、y、z 的大小关系是()A.x<y<z B.y<x<z C.x<z<y D.y<z<x4.过曲线xy=a2(a≠0)上任意一点处的切线与两坐标轴构成的三角形的面积是()A.a2B.C.2a2D.不确定5.若展开式的第3项为144,则的值是()A.2B.1C.D.06.正四面体的内切球和外接球的半径分别为r 和R,则r:R 为()A.1:2B.1:3C.1:4D.1:97.已知椭圆的中心在原点,离心率且它的一个焦点与抛物线y2=4x 的焦点重合,则此椭圆的方程为()A.B.C.D.22a 9)21(0x -)1211(lim 20---→x x x x 2113422=+y x 16822=+y x 1222=+y x 1422=+y x8.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表1市场供给量单价(元/kg)22.4 2.83.2 3.64供给量(1000kg)506070758090表2市场需求量单价(元/kg)43.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间()A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内9.椭圆122=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为()A.41B.21C.2D.410.若曲线x x x f -=4)(在点P 处的切线平行于直线3x-y=0,则点P 的坐标为()A.(1,3)B.(-1,3)C.(1,0)D.(-1,0)11.已知函数)(x f y =是R 上的偶函数,且在(-∞,]0上是减函数,若)2()(f a f ≥,则实数a 的取值范围是()A.a≤2B.a≤-2或a≥2C.a≥-2D.-2≤a≤212.如图,E、F 分别是三棱锥P-ABC 的棱AP、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为()A.60°B.45°C.0°D.120°二、填空题(共4小题,每小题5分;共计20分)1.“面积相等的三角形全等”的否命题是______命题(填“真”或者“假”)2.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为_____3.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为_____万.(结果精确到0.01)4.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有____个,若把这些数按从小到大的顺序排列,则第100个数为______.三、大题:(满分70分)1.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t ty t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.2.已知a,b,c 为正数,且满足abc=1.证明:(1)222111a b c a b c ++≤++;(2)333()()()24a b b c c a +++≥++.3.如图,长方体ABCD–A1B1C1D1的底面ABCD 是正方形,点E 在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.4.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.5.已知直线l 的极坐标方程为,圆C 的参数方程为为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.6.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值为,求PF的长度.参考答案:一、选择题:1-5题答案:BAACC6-10题答案:BACAC11-12题答案:BA二、填空题:1、真2、33、0.994、126,24789三、大题:1.解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 113α⎛⎫-+ ⎪=当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.2.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++.所以222111a b c a b c ++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.3.解:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知11Rt Rt ABE A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D-xyz,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,1,1)CE =- ,1(0,0,2)CC = .设平面EBC 的法向量为n=(x,y,x),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n=(0,1,1)--.设平面1ECC 的法向量为m=(x,y,z),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩ m m 即20,0.z x y z =⎧⎨-+=⎩所以可取m=(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2.4.解:(1)X=2就是10:10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–04)=05.(2)X=4且甲获胜,就是10:10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1. 5.参考答案:(1)由,得,∴y ,即.圆的方程为x2+y2=100.(2)圆心(0,0)到直线的距离d ,y=10,∴弦长l .6.参考答案:(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四边形ABCD 为矩形,∴以A 为原点,AB 为x 轴,AD 为y 轴,AF 为z 轴,建立空间直角坐标系,∵AD=2,AB=AF=2EF=2,P 是DF 的中点,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),设异面直线BE 与CP 所成角的平面角为θ,则cosθ,∴异面直线BE与CP所成角的余弦值为.(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),设P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),设平面APC的法向量(x,y,z),则,取x=1,得(1,﹣1,),平面ADF的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值为,∴|cos|,解得,∴P(0,,),∴PF的长度|PF|.。
高三二轮复习选填满分“8+4+4”小题强化训练第5练(原卷及答案)(新高考专用)

高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.RM N ⋂=B.M N⊆C.N M⊆D.RM N ⋃=2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.37.三棱锥P ABC-的所有顶点都在球O 的球面上.棱锥P ABC-的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====,则球O 的表面积为()A.28πB.29πC.30πD.31π8.已知0.40.7e ,eln1.4,0.98ab c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c>>C.b c a>>D.c a b>>二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为12B.未出现“日落云里走”时,后半夜下雨的概率约为59C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n 层有n a 个球,从上往下n 层球的总数为n S ,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-=⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤ ⎥⎝⎦12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.高三二轮复习选填满分“8+4+4”小题强化训练(5)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设R U =,已知两个非空集合M ,N 满足∅=⋂N C M U ,则()A.R M N ⋂=B.M N⊆C.N M ⊆D.RM N ⋃=【答案】B【解析】根据题意,作出如下图韦恩图:满足∅=⋂N C M U ,即M N ⊆.故选:B.2.已知,,R a b c ∈,那么下列命题中正确的是()A.若a b >,则22ac bc >B.若a bc c>,则a b >C.若a b >且0ab <,则11a b>D.若22a b >,则11a b<【答案】C【解析】A .若a b >,当0c =时,22ac bc =,所以选项A 不成立;B .若a bc c>,当0c <时,则a b <,所以选项B 不成立;C .因为0ab <,将a b >两边同除以ab ,则11a b>,所以选项C 成立;D .如果2,1,a b ==-满足22a b >,但是11a b>,所以选项D 不成立.故选:C.3.函数2()()log xxf x e e x -=+的图象大致是()A. B.C. D.【答案】C【解析】22()()log ()log ()xx x x f x ee x e e xf x ---=+-=+=,()f x 为偶函数,排除AD ,又01x <<时,()0f x <,排除B .故选:C .4.欧拉公式i e cos isin (i x x x =+为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知i a e 为纯虚数,则复数sin211ia ++在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为i e cos isin x x x =+,所以i e cos isin a a a =+,因为i a e 为纯虚数,所以cos 0a =,sin 0a ≠,故sin 22sin cos 0a a a ==,所以()()sin2111i 1i 11i 1i 1i 1i 1i 222a +--====-+++-,则复数sin211i a ++在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,则其在第四象限,故选:D.5.良渚遗址位于浙江省杭州市余杭区瓶窑镇、良渚街道境内.1936年浙江省立西湖博物馆的施昕更先生首先在浙江省杭州市良渚镇一带发现.这里的巨型城址,面积近630万平方米,包括古城、水坝和多处高等级建筑.国际学术界曾长期认为中华文明只始于距今3500年前后的殷商时期,2019年7月6日,中国良渚古城遗址被列入世界遗产名录,这意味着中国文明起源形成于距今五千年前,终于得到了国际承认!2010年,考古学家对良渚古城水利系统中一条水坝的建筑材料(草裏泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%.已知经过x 年后,碳14的残余量(1)(,0,01;0)x y k p k k p x =-∈><<R ,碳14的半衰期为5730年,则以此推断此水坝大概的建成年代是().(参考数据:2log 0.5520.8573≈-)A.公元前2893年B.公元前2903年C.公元前2913年D.公元前2923年【答案】B【解析】 碳14的半衰期为5730年,∴1573057305730111(1)(1)222x k k p p y k ⎛⎫⎛⎫=-⇒-=⇒= ⎪⎪⎝⎭⎝⎭,当55.2%y k =时,5730155.2%2x k k ⎛⎫= ⎪⎝⎭,1222log 0.552log 0.552,5730log 0.55249125730xx ∴==-=-≈, 2010年之前的4912年是公元前2902年,∴以此推断此水坝大概的建成年代是公元前2903年.故选:B.6.已知12,F F 为椭圆1C :2222111x y a b +=(110>>a b )与双曲线2C :2222221x y a b -=(220,0a b >>)的公共焦点,点M 是它们的一个公共点,且123F MF π∠=,12,e e 分别为1C ,2C 的离心率,则12e e 的最小值为()A.2C.2D.3【答案】A【解析】设椭圆1C 、双曲线2C 的共同半焦距为c ,由椭圆、双曲线对称性不妨令点M 在第一象限,由椭圆、双曲线定义知:1212||||MF MF a +=,且212||||2MF MF a -=,则有112||MF a a =+,212||MF a a =-,在12F MF △中,由余弦定理得:22212121212||||||2||||cos F F MF MF MF MF F MF =+-∠,即222121212124()()2()()cos3c a a a a a a a a π=++--+-,整理得:2221243c a a =+,于是得2212222212123134a a c c e e e e =+=+≥=,当且仅当221213e e =,即21e =时取“=”,从而有12≥e e ,所以12e e.故选:A7.三棱锥P ABC -的所有顶点都在球O 的球面上.棱锥P ABC -的各棱长为:2PA =,3,4,5,PB PC AB BC AC =====O 的表面积为()A.28πB.29πC.30πD.31π【答案】B【解析】由题意知:222PB PC BC +=,222PA PC AC +=,222PA PB AB +=,∴,,PA PB PC 两两垂直,即P ABC -为直三棱锥,∴若Rt PBC △的外接圆半径为r ,则522BC r ==,又PA ⊥面PBC ,∴外接球心O 到PA 的距离为52r =,故外接球半径2R ==,∴外接球表面积2429S R ππ==.故选:B.8.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A.a c b >>B.b a c >>C.b c a>>D.c a b>>【答案】A【解析】构造()1=ln e f x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x '>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当2x =时,等号成立,当0.7x =时,220.98ln1.4(0.7)eln1.40.98e e<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,随机观察了他所在地区的100天中的“日落云里走”的情况和后半夜天气情况,得到如下数据,后半夜天气情况“日落云里走”的情况下雨未下雨总计出现25530未出现254570总计5050100并计算得到219.05χ≈,则小波对该地区天气的判断正确的是()A.后半夜下雨的概率约为1 2B.未出现“日落云里走”时,后半夜下雨的概率约为5 9C.有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关D.若出现“日落云里走”,则后半夜有99%的可能会下雨【答案】AC【解析】对A,把频率看作概率,可得后半夜下雨的概率约为5011002=,故A判断正确:对B,未出现“日落云里走”时,后半夜下雨的概率约为255254514=+,故B判断错误;对C,由219.05 6.635χ≈>,知有99%的把握认为“‘日落云里走’是否出现”与“后半夜是否下雨”有关,故C判断正确;易知D判断错误.故选:AC10.如图的形状出现在南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,….设第n层有n a个球,从上往下n层球的总数为n S,则()A.535S =B.1n n na a +-=C.1(1)2n n n n S S -+-=,2n ≥ D.1231001111200101a a a a ++++= 【答案】ACD【解析】因为11a =,212a a -=,323a a -=,……,1n n a a n --=,以上n 个式子累加可得:(1)1232n n n a n +=++++=,所以512345136101535S a a a a a =++++=++++=,故选项A 正确;由递推关系可知:11n n a a n +-=+,故选项B 不正确;当2n ≥,1(1)2n n n n n S S a -+-==,故选项C 正确;因为12112(1)1n a n n n n ⎛⎫==- ⎪++⎝⎭,所以12100111111112122223100101a a a ⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭120021101101⎛⎫=-= ⎪⎝⎭,故选项D 正确;故选:ACD.11.已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有()A.203f π⎛⎫=⎪⎝⎭B.若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;C.关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解D.若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦【答案】ABD【解析】A,∵7375,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭,∴()f x 在73,124ππ⎛⎫⎪⎝⎭上单调,又73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,73212423πππ+=,∴203f π⎛⎫=⎪⎝⎭,故A 正确;B,区间75,126ππ⎛⎫⎪⎝⎭右端点56x π=关于23x π=的对称点为2x π=,∵203f π⎛⎫= ⎪⎝⎭,f (x )在75,126ππ⎛⎫ ⎪⎝⎭上单调,∴根据正弦函数图像特征可知()f x 在5,26ππ⎛⎫⎪⎝⎭上单调,∴512(62322T T ππππω-==⋅ 为()f x 的最小正周期),即ω 3,又0ω>,∴03ω< .若()56f x f x π⎛⎫-= ⎪⎝⎭,则()f x 的图象关于直线512x π=对称,结合203f π⎛⎫=⎪⎝⎭,得()252121312442k k T k ππππω++-===⋅∈Z ,即()42k k ω=+∈Z ,故k =0,2,T ωπ==,故B 正确.C,由03ω< ,得23T π,∴()f x 在区间[)0,2π上最多有3个完整的周期,而()1f x =在1个完整周期内只有1个解,故关于x 的方程()1f x =在区间[)0,2π上最多有3个不相等的实数解,故C 错误.D,由203f π⎛⎫=⎪⎝⎭知,23π是函数()f x 在区间23π⎡⎢⎣,136π⎫⎪⎭上的第1个零点,而()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则13252632T T ππ<- ,结合2T πω=,得81033ω< ,又03ω< ,∴ω的取值范围为8,33⎛⎤⎥⎝⎦,故D 正确.故选:ABD.12.已知正方体1111ABCD A B C D -的棱长为2,动点F 在正方形11CDD C 内,则()A.若1C F ⊥平面1A CF ,则点F 的位置唯一B.若1//B F 平面1A BD ,则1B F 不可能垂直1CD C.若()112BF BC BD =+,则三棱锥11-F B CC 的外接球表面积为4πD.若点E 为BC 中点,则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半【答案】AD【解析】如图,以D 为原点分别以DA 、DC 、1DD 为x 轴、y 轴、z 轴建立空间直角坐标系:则()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()12,0,2A ,()12,2,2B ,()10,2,2C ,()10,0,2D ,由于动点F 在正方形11CDD C 内,可设()0,,F m n ,其中02m <<,02n <<,选项A:若1C F ⊥平面1A CF ,则11C F A C ⊥ ,1C F CF ⊥.由于()10,2,2C F m n =-- ,()12,2,2A C =-- ,()0,2,CF m n =-,则()()()()222220220m n m n n ⎧⨯---=⎪⎨-+-=⎪⎩,解得:11m n =⎧⎨=⎩或22m n =⎧⎨=⎩(舍去),此时()0,1,1F ,即点F 的位置唯一,故选项A 正确;选项B:()10,2,2A B =- ,()2,2,0BD =--,设平面1A BD 的一个法向量为(),,n x y z =r.则220220y z x y -=⎧⎨--=⎩,令1y =,得1x =-,1z =,故()1,1,1n =-,而()12,2,2B F m n =--- ,若1B F ∥平面1A BD ,则10B F n ⋅=,则2220m n +-+-=,即2m n +=,所以()0,,2F m m -,此时()12,2,B F m m =---,而()10,2,2CD =- ,所以()112022244B F CD m m m ⋅=-⨯-⨯--⨯=-+,当1m =时,440m -+=,此时110B F CD ⋅= ,则11B F CD ⊥.故选项B 不正确;选项C:由于()112BF BC BD =+,则F 为1CD 的中点,此时()0,1,1F ,设三棱锥的11-F B CC 的外接球的球心为(),,O x y z ,则11OC OB OC OF OC OC⎧=⎪=⎨⎪=⎩,即()()()()()()()()()()2222222222222222222222211222x y z x y z x y z x y z x y z x y z ⎧+-+=-+-+-⎪⎪+-+=+-+-⎨⎪+-+=+-+-⎪⎩,解得:121x y z =⎧⎪=⎨⎪=⎩,所以()1,2,1O ,则三棱锥的11-F B CC的外接球的半径为R OC ==,所以三棱锥的11-F B CC 的外接球表面积为22448R πππ=⨯=,故选项C 不正确;选项D:点E 为BC 中点,由正方体可知BC ⊥平面11A ABB ,则11111111111222132323A AB E E AA B V V AA A B BE --==⨯⋅⋅=⨯⨯⨯=111111111422232323A FAB F AA B V V AA A B BC --⋅==⨯⨯⋅=⨯⨯⨯⨯=则三棱锥11A AB E -的体积是三棱锥1-A FA B 体积的一半.故选项D 正确.故选:AD三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.若随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,且()*N E X ∈,写出一个符合条件的n =___________.【答案】3(答案不唯一)【解析】因为随机变量1~,3X B n ⎛⎫ ⎪⎝⎭,所以()*1N 3E X n =∈,所以一个符合条件的3n =,故答案为:3(答案不唯一)14.九龙壁是中国古代建筑的特色,是帝王贵族出入的宫殿或者王府的正门对面,是权力的象征,做工十分精美,艺术和历史价值很高.九龙壁中九条蟠龙各居神态,正中间即第五条为正居之龙,两侧分别是降沉之龙和升腾之龙间隔排开,其中升腾之龙位居阳位,即第1,3,7,9位,沉降之龙位居2,4,6,8位.某工匠自己雕刻一九龙壁模型,为了增加模型的种类但又不改变升腾之龙居阳位和沉降之龙的位置,只能调换四条升腾之龙的相对位置和四条沉降之龙的相对位置,则不同的雕刻模型有______种(用数字作答).【答案】576【解析】分步完成:第一步调换四条升腾之龙的相对位置,第二步调换四条沉降之龙的相对位置,方法数为4444576A A =.故答案为:576.15.定义在()0,∞+上的函数()f x 满足:对()12,0,x x ∀∈+∞,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,且()24f =,则不等式()2f x x>的解集为__________.【答案】()2,+∞【解析】令()()f xg x x=,因为对()120,x x ∀∈+∞、,且12x x ≠,都有()()2112120x f x x f x x x ->-成立,不妨设120x x <<,则120x x -<,故()()21120x f x x f x -<,则()()1212f x f x x x <,即()()12g x g x <,所以()g x 在()0,∞+上单调递增,又因为()24f =,所以()()2222f g ==,故()2f x x>可化为()()2g x g >,所以由()g x 的单调性可得2x >,即不等式()2f x x>的解集为()2,+∞.故答案为:()2,+∞16.已知椭圆2222:1(0)x y C a b a b+=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,ADE V 的周长是13,则DE =_____.【答案】6【解析】如图,连接122,,AF DF EF ,因为C 的离心率为12,所以12c a =,即2a c =,所以22223b a c c =-=,因为12122AF AF a c F F ====,所以12AF F △为等边三角形,又2DE AF ⊥,所以直线DE 为线段2AF 的垂直平分线,所以2AD DF =,2AE EF =,则ADE V 的周长为22||||||||AD AE DE DF EF DE ++=++2211DF EF DF EF =+++134134a a ==⇒=,138c ∴=,而1230EF F ︒∠=,所以直线DE 的方程为3)3y x c =+,代入椭圆C 的方程2222143x y c c +=,得22138320x cx c +-=,设()11,D x y ,()22,E x y ,则21212832,1313c c x x x x +=-=-,所以48613cDE==,故答案为:6.。
高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考数学客观题训练【6套】选择、填空题

数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
高考数学习题及答案 (4)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、右图给出的是计算201614121++++ 的值的一个流程图,其中判断框内应填入的条件是()(A)10>i (B)10<i (C)20>i (D)20<i 2、数列}{n a 的通项公式为)(3)1(2N n n a n ∈+-=,则数列()A、是公差为2的等差数列B、是公差为3的等差数列C、是公差为1的等差数列D、不是等差数列3、ABC ∆的两内角A、B 满足B A B A sin sin cos cos >,那么这个三角形()A、是锐角三角形B、是钝角三角形C、是直角三角形D、形状不能确定4、函数13)(-=x x f 的反函数的定义域是()A、),1(+∞-B、),1(+∞C、),2(+∞-D、)2,(--∞5、有一个几何体的三视图如下图所示,这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对6、若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =()A.32-B.32C.23-D.237、下面表述正确的是()A.空间任意三点确定一个平面B.直线上的两点和直线外的一点确定一个平面C.分别在不同的三条直线上的三点确定一个平面D.不共线的四点确定一个平面8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A,B 两点.设A,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110、如图,在平面四边形ABCD 中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则的最小值为()A.B.C.D.311.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.38C 种B.38A 种C.39C 种D.311C 种12.某师范大学的2名男生和4名女生被分配到两所中学作实习教师,每所中学分配1名男生和2名女生,则不同的分配方法有()A.6种B.8种C.12种D.16种二、填空题(共4小题,每小题5分;共计20分)1.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.2.已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____.3.已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍1±时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是___________,最大值是___________.4.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = _____.三、大题:(满分70分)1.如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.2.如果两个平面分别平行于第三个平面,那么这两个平面互相平行.已知:γα//,γβ//,求证:βα//.3.如图,已知a 、b 是异面直线,求证:过a 和b 分别存在平面α和β,使βα//.4.在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P.(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.5.知直线l 经过两条直线021=+y x l :与010432=--y x l :的交点,且与直线03253=+-y x l :的夹角为4π,求直线l 的方程.6.直线02=-+y x l :,一束光线过点)13,0(+P ,以︒120的倾斜角投射到l 上,经l 反射,求反射线所在直线的方程.参考答案:一、选择题:1-5题答案:AABAA 6-10题答案:ABACA 11-12题答案:AC 8、将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.9、已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.10、如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.二、填空题:2、4 33、0,4、{1,6}三、大题:1.如果βα//,AB 和AC 是夹在平面α与β之间的两条线段,AC AB ⊥,且2=AB ,直线AB 与平面α所成的角为︒30,求线段AC 长的取值范围.解法1:如图所示:作β⊥AD 于D ,连结BD 、CD 、BC ∵BD AB >,DC AC >,222BC AC AB =+,∴在BDC ∆中,由余弦定理,得:022cos 222222=⋅-+<⋅-+=∠CDBD BC AC AB CD BD BC CD BD BDC .∵β⊥AD ,∴ABD ∠是AB 与β所在的角.又∵βα//,∴ABD ∠也就等于AB 与α所成的角,即︒=∠30ABD .∵2=AB ,∴1=AD ,3=BD ,12-=AC DC ,24AC BC +=,∴01324131222<-⋅---+≤-AC AC AC ,即:31102≤-<AC .∴332≥AC ,即AC 长的取值范围为⎪⎪⎭⎫⎢⎣⎡∞+,332.解法2:如图:∵ACAB ⊥∴AC 必在过点A 且与直线AB 垂直的平面γ内设l =βγ ,则在γ内,当l AC ⊥时,AC 的长最短,且此时ABCAB AC ∠⋅=tan 33230tan =︒⋅AB 而在γ内,C 点在l 上移动,远离垂足时,AC 的长将变大,从而332≥AC ,即AC 长的取值范围是⎪⎪⎭⎫⎢⎣⎡∞+,332.说明:(1)本题考查直线和直线、直线和平面、平面和平面的位置关系,对于运算能力和空间想象能力有较高的要求,供学有余力的同学学习.(2)解法1利用余弦定理,采用放缩的方法构造出关于AC 长的不等式,再通过解不等式得到AC 长的范围,此方法以运算为主.(3)解法2从几何性质角度加以解释说明,避免了繁杂的运算推导,但对空间想象能力要求很高,根据此解法可知线段AC 是连结异面直线AB 和l 上两点间的线段,所以AC 是AB 与l 的公垂线段时,其长最短.2.如果两个平面分别平行于第三个平面,那么这两个平面互相平行.已知:γα//,γβ//,求证:βα//.分析:本题考查面面平行的判定和性质定理以及逻辑推理能力.由于两个平面没有公共点称两平面平行,带有否定性结论的命题常用反证法来证明,因此本题可用反证法证明.另外也可以利用平行平面的性质定理分别在三个平面内构造平行且相交的两条直线,利用线线平行来推理证明面面平行,或者也可以证明这两个平面同时垂直于某一直线.证明一:如图,假设α、β不平行,则α和β相交.∴α和β至少有一个公共点A ,即α∈A ,β∈A .∵γα//,γβ//,∴γ∉A .于是,过平面γ外一点A 有两个平面α、β都和平面γ平行,这和“经过平面外一点有且只有一个平面与已知平面平行”相矛盾,假设不成立。
高考数学练习卷及含答案 (3)

普通高等学校招生全国统一考试数学试卷(满分150分,考试时间120分钟)一、选择题:(本题共12小题,每小题5分,共60分)1、在长方体ABCD—A′B′C′D′的12条棱中,与棱AA′成异面直线的棱有()A.3条B.4条C.6条D.8条2、如图1在正方体ABCD—A′B′C′D′中,直线AC与直线BC′所成的角为() A.30°B.60°C.90°D.45°3、若a∥α,⊂bα,则a和b的关系是()A.平行B.相交C.平行或异面D.以上都不对4、已知PD⊥矩形ABCD所在的平面(图2),图中相互垂直的平面有()A.1对B.2对C.3对D.5对5、棱长为2的正方体内切球的表面积为()A.π4B.π16C.π8D.π26.函数sin24y xπ⎛⎫=+⎪⎝⎭在一个周期内的图像可能是()PA BCD图27.在ABC △中,若2AB BC CA === ,则AB BC ⋅ 等于()A.23- B.23 C.-2 D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m 10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A. B. C.2 D.111.等边△ABC 的边长为a,过△ABC 的中心O 作OP⊥平面ABC,且OP=63a,则点P 到△ABC 的边的距离为()A.a B.32a C.33a D.63a 12.已知函数f (x)是定义域为R 的奇函数,给出下列6个函数:①g (x)=sin x (1-sin x)1-sin x ;②g (x)=sin(52π+x);③g (x)=1+sin x-cos x 1+sin x+cos x;④g (x)=lg sin x ;⑤g (x)=lg(x2+1+x);⑥g (x)=2ex+1-1。
高考数学选择、填空题专项训练(共40套)[附答案]
![高考数学选择、填空题专项训练(共40套)[附答案]](https://img.taocdn.com/s3/m/6e710a0f31126edb6f1a10b3.png)
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( )A.6556B.-6556C.-6516D. 65163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2B.22C.4D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒) 12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________. 答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(21,1) 14.6 15. 21三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点 A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不 同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( ) A.(3,0) B.(2,0) C.(1,0) D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( ) A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC BA10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________.14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
新高考数学二轮专题复习高频考点强化训练1(附解析)

强化训练1 集合、常用逻辑用语、不等式一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.[2022·全国甲卷]设全集U ={-2,-1,0,1,2,3},集合A ={-1,2},B ={x |x 2-4x +3=0},则∁U (A ∪B )=( )A .{1,3}B .{0,3}C .{-2,1}D .{-2,0}2.[2022·全国乙卷]设全集U ={1,2,3,4,5},集合M 满足∁U M ={1,3},则( )A .2∈MB .3∈MC .4∉MD .5∉M3.[2022·湖南常德一模]已知集合A ={x ∈Z |x 2≤1},B ={x |x 2-mx +2=0},若A ∩B ={1},则A ∪B =( )A .{-1,0,1}B .{x |-1≤x ≤1}C .{-1,0,1,2}D .{x |-1≤x ≤2}4.[2022·山东潍坊二模]十七世纪,数学家费马提出猜想:“对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为( )A .对任意正整数n ,关于x ,y ,z 的方程x n +y n =z n 都没有正整数解B .对任意正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解C.存在正整数n ≤2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解D .存在正整数n >2,关于x ,y ,z 的方程x n +y n =z n 至少存在一组正整数解5.[2022·江苏南京模拟]设a 、b 均为非零实数,且a <b ,则下列结论中正确的是( ) A .1a >1bB .a 2<b 2C .1a 2 <1b 2D .a 3<b 3 6.[2022·山东潍坊一模]已知a >0,则“a a >a 3”是“a >3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.[2022·广东汕头三模]下列说法错误的是( )A .命题“∀x ∈R ,cos x ≤1”的否定是“∃x 0∈R ,cos x 0>1”B .在△ABC 中,sin A ≥sin B 是A ≥B 的充要条件C .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充要条件是“a >0,且b 2-4ac ≤0”D .“若sin α≠12 ,则α≠π6”是真命题 8.[2022·河北保定二模]已知a ,b ∈(0,+∞),且a 2+3ab +4b 2=7,则a +2b 的最大值为( ) A.2 B .3C .22D .32二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个符合题目要求,全部选对得5分,部分选对得2分,选错或多选得0分)9.[2022·湖北武汉二模]已知集合A ={1,4,a },B ={1,2,3},若A ∪B ={1,2,3,4},则a 的取值可以是( )A .2B .3C .4D .510.[2022·广东汕头二模]已知a ,b ,c 满足c <a <b ,且ac<0,那么下列各式中一定成立的是( )A .ac (a -c )>0B .c (b -a )<0C .cb 2<ab 2D .ab >ac11.[2022·江苏南京三模]设P =a +2a,a ∈R ,则下列说法正确的是( ) A .P ≥22B .“a >1”是“P ≥22 ”的充分不必要条件C.“P >3”是“a >2”的必要不充分条件D .∃a ∈(3,+∞),使得P <312.[2022·辽宁葫芦岛二模]已知a >b >0,a +b +1a +1b=5,则下列不等式成立的是( )A.1<a +b <4B .(1a +b )(1b+a )≥4 C .(1a +b )2>(1b+a )2 D .(1a +a )2>(1b+b )2 三、填空题(本题共4小题,每小题5分,共20分)13.[2022·南京师大附中模拟]命题“∀x >1,x 2≥1”的否定是____________.14.[2022·福建三明模拟]已知命题p :∃x ∈R ,x 2-ax +a <0,若命题p 为假命题,则实数a 的取值范围是________.15.[2022·湖南怀化一模]已知a ∈R ,且“x >a ”是“x 2>2x ”的充分不必要条件,则a 的取强化训练1 集合、常用逻辑用语、不等式1.解析:由题意,B ={x|x2-4x +3=0}={1,3},所以A ∪B ={-1,1,2,3},所以∁U (A ∪B )={-2,0}.答案:D2.解析:由题知M ={2,4,5},对比选项知,A 正确,BCD 错误. 答案:A3.解析:解不等式x2≤1得:-1≤x≤1,于是得A ={x ∈Z|-1≤x≤1}={-1,0,1},因A∩B ={1},即1∈B ,解得m =3,则B ={1,2},所以A ∪B ={-1,0,1,2}.答案:C4.解析:命题的否定形式为全称量词命题的否定是存在量词命题.故只有D 满足题意.答案:D5.解析:对于A ,取a =-1,b =1,则1a <1b ,A 错误;对于B ,取a =-1,b =1,则a2=b2,B 错误;对于C ,取a =-1,b =1,则1a2 =1b2 ,C 错误;对于D ,因a<b ,则b3-a3=(b -a )(b2+ab +a2)=(b -a )·⎣⎢⎡⎦⎥⎤(b +12a )2+34a2 >0,即a3<b3,D 正确. 答案:D6.解析:若0<a<1,由aa>a3可得a<3,此时0<a<1; 若a =1,则aa =a3,不合乎题意;若a>1,由aa>a3可得a>3,此时a>3.因此,满足aa>a3的a 的取值范围是{a|0<a<1或a>3},因为{a|0<a<1或a>3}{a|a>3},因此,“aa>a3”是“a>3”的必要不充分条件.答案:B7.解析:A.命题“∀x ∈R ,cos x≤1”的否定是“∃x0∈R ,cos x0>1”,正确;B .在△ABC 中,sin A≥sin B ,由正弦定理可得a 2R ≥b 2R (R 为外接圆半径),a≥b ,由大边对大角可得A≥B ;反之,A≥B 可得a≥b ,由正弦定理可得sin A≥sin B ,即为充要条件,故正确;C.当a =b =0,c≥0时满足ax2+bx +c≥0,但是得不到“a>0,且b2-4ac≤0”,则不是充要条件,故错误;D .若sin α≠12 ,则α≠π6 与α=π6 则sin α=12 的真假相同,故正确.答案:C8.解析:7=(a +2b )2-ab =(a +2b )2-12 a·2b≥(a +2b )2-12 (a +2b 2 )2=7(a +2b )28, 则(a +2b )2≤8,当且仅当a =2b = 2 时,“=”成立,又a ,b ∈(0,+∞),所以0<a +2b≤2 2 ,当且仅当a =2b = 2 时,“=”成立,所以a +2b 的最大值为2 2 . 答案:C9.解析:因为A ∪B ={1,2,3,4},所以{1,4,a}{1,2,3,4},所以a =2或a =3.答案:AB10.解析:因为a ,b ,c 满足c<a<b ,且ac<0,所以c<0,a>0,b>0,a -c>0,b -a>0,所以ac (a -c )<0,c (b -a )<0,cb2<ab2,ab>ac.答案:BCD11.解析:A 错误,当a<0时,显然有P 小于0;B 正确,a>1时,P =a +2a ≥2a·2a =2 2 ,当且仅当a =2a 时,即a = 2 时等号成立.故充分性成立,而P≥2 2 只需a>0即可;C 正确,P =a +2a >3可得0<a<1或a>2,当a>2时P>3成立,故C 正确;D 错误,因为a>3有a +2a >3+23 >3,故D 错误. 答案:BC12.解析:a +b +1a +1b =5,即a +b +a +b ab =5,所以ab =a +b 5-(a +b ),因为a>b>0,所以由基本不等式得:ab<(a +b )24 ,所以a +b 5-(a +b ) <(a +b )24, 解得:1<a +b<4,A 正确;(1a +b )(1b +a )=1ab +ab +2≥21ab ·ab +2≥4,当且仅当1ab =ab 时等号成立,故B 正确;(1a +b )2-(1b +a )2=(1a +b +1b +a )(1a +b -1b -a )=(1a +b +1b +a )(1ab +1)(b -a ),因为a>b>0,所以(1a +b +1b +a )(1ab +1)(b -a )<0,所以(1a +b )2<(1b +a )2,C 错误;(1a +a )2-(1b +b )2=(1a +a +1b +b )(1a +a -1b -b )=(1a +a +1b +b )(1ab -1)(b -a ),因为a>b>0,而1ab 可能比1大,可能比1小,所以(1a +a +1b +b )(1ab -1)(b -a )符号不确定,所以D 错误.答案:AB13.解析:因为命题“∀x>1,x2≥1”是全称量词命题,所以其否定是存在量词命题,即 “∃x>1,x2<1”.答案:“∃x>1,x2<1”14.解析:根据题意,∀x ∈R ,x2-ax +a≥0恒成立,所以Δ=a2-4a≤0⇒a ∈[0,4].答案:[0,4]15.解析:x2>2x 等价于x<0或x>2,而且“x>a”是“x2>2x”的充分不必要条件,则a≥2.答案:[2,+∞)16.解析:因为第一象限的点M (a ,b )在直线x +y -1=0上,所以a +b =1,a>0,b>0,所以1a +2b =(a +b )(1a +2b )=3+b a +2a b ≥3+2 2 ,当且仅当a = 2 -1,b =2- 2 时等号成立.答案:3+2 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客观题强化训练(45分钟内完成)(6)
班级 姓名 座号
13 ;14 ; 15 ;16 .
一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符号题目要求的。
1.曲线c bx ax y ++=2
的图象经过四个象限的充要条件是 (A )0<a 且0)2(<-
a
b
f (B )0>a 且042>-ac b (C )0≠a 且0=b (D )0<ac
2.若)(x f 是奇函数,)(x g 是偶函数,则下列函数中是奇函数的为 (A ))]([x g f (B ))]([x f g (C ))]([x f f (D ))]([x g g
3.直线L 与平面α成 45角,若直线L 在α内的射影与α内的直线m 成 45角,则L 与m 所成的角是
(A ) 30 (B ) 45 (C ) 60 (D ) 90
4.以椭圆
114416922=+y x 的右焦点为圆心,且与双曲线116
92
2=-y x 的渐近线相切的圆的方程是
(A )091022=+-+x y x (B )09102
2=--+x y x (C )091022=-++x y x (D )09102
2=+++x y x 5.已知0>a ,且1≠a ,则方程|log ||
|x a
a x =的实根的个数为
(A )1或2 (B )1或2或3 (C )2或4 (D )2或3或4 6.已知)12(+=x f y 是偶函数,则函数)2(x f y =的图象的对称轴是 (A )1=x (B )2=x (C )21-
=x (D )2
1
=x 7.若数列{}n a 的前8项的值互异,且n n a a =+8对任意的N n ∈都成立,则下列数列中可
取遍{}n a 的前8项值的数列为
(A ){}12+k a (B ){}13+k a (C ){}14+k a (D ){}16+k a
8
.如图,在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是
)(A )
(B )
(C )
(D
9.若地球半径为6370km ,地球表面北纬 30圈上有A 、B 两个卫星地面站,它们在北纬
30圈上的距离为
km 3
36370π
,则这两地间的经度差是 (A )
6π (B )3
π
(C )65π (D )32π
10.已知4)1()1(π=-++x arctg x arctg ,则2
arccos x
的值是
(A )3π-或3π (B )4π-或4π (C )4π或43π (D )3
π或32π
11.过椭圆)0(122
22>>=+b a b
y a x 的中心的弦为PQ ,焦点为1F ,2F ,则1PQF ∆的最大
面积是 (A )ab (B )bc (C )ca (D )abc
12.设)(x f )(R x ∈为偶函数,且)2
1()23(+=-x f x f 恒成立,]3,2[∈x 时,x x f =)(,则]0,2[-∈x 时,=)(x f (A )|4|+x (B )|2|x -(C )|1|3+-x (D )|1|2++x 二.填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
13.某选择题因印刷原因,有一个条件无法认清,请根据题意推测,并在空格上填上所缺的条件,原题为:
已知α、β为锐角,且2
1
sin sin -
=-βα, ,则37)(-=-βαtg 。
14.若1])1(1[lim =++∞
→n
n r ,则实数r 的取值范围是
15.四面体SABC 的三组对棱分别相等,且依次为52,13,5,则此四面体的体积是
16.已知9
2log 42⎪⎪⎭
⎫
⎝⎛⋅-x x a 的展开式中3x 的系数为169,则实数a 的值为
答案
1、D .
2、C .
3、C .
4、A .
5、A .
6、D .
7、B .
8、D .
9、D . 10、C . 11、B . 12、C . 13、2
2
2
cos
=
+β
α . 14、(-2, 0) . 15、8 . 16、1/16 .。