行程问题答案及详解

合集下载

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)

行程问题(火车过桥问题)三道典型例题(附解题思路及答案)我们在研究一般行程问题时,都不考虑运动物体的长度,但是当研究火车过桥过隧道问题时,有一火车的长度太长,所以不能忽略不计。

火车过桥问题主要有以下几个类型:1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例(1):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例(2):两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路;此类问题相当于追及问题。

追及路程是两车的车长和,然后利用追及问题公式追及时间=追及路程÷速度差求出时间。

答案: (250+200)十(25-20)=90(秒)答:需要90秒。

小学六年级数学行程问题讲解提高练习(附答案及解析)

小学六年级数学行程问题讲解提高练习(附答案及解析)

行程问题(一)一、知识要点行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

二、精讲精练【例题1】两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。

甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。

甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早刀8分钟,当甲车到达时,乙车还距工地24千米”。

这句话的实质就是:“乙48分钟行了24千米”。

可以先求乙的速度,然后根据路程求时间。

也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。

解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—4860=4.7(小时)解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。

练习1:1、甲、乙两地之间的距离是420千米。

两辆汽车同时从甲地开往乙地。

第一辆每小时行42千米,第二辆汽车每小时行28千米。

第一辆汽车到乙地立即返回。

两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。

两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。

数学行程问题公式大全及经 典习题答案

数学行程问题公式大全及经    典习题答案

过桥问题:关键是确定物体所运动的路程,参照以上公式。 仅供参考: 【和差问题公式】 (和+差)÷2=较大数; (和-差)÷2=较小数。 【和倍问题公式】 和÷(倍数+1)=一倍数; 一倍数×倍数=另一数, 或 和-一倍数=另一数。 【差倍问题公式】 差÷(倍数-1)=较小数; 较小数×倍数=较大数, 或 较小数+差=较大数。 【平均数问题公式】 总数量÷总份数=平均数。 【一般行程问题公式】 平均速度×时间=路程; 路程÷时间=平均速度; 路程÷平均速度=时间。 【反向行程问题公式】 反向行程问题可以分为“相遇问题”(二人从两地出发,相向而 行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的 公式解答: (速度和)×相遇(离)时间=相遇(离)路程; 相遇(离)路程÷(速度和)=相遇(离)时间; 相遇(离)路程÷相遇(离)时间=速度和。 【同向行程问题公式】 追及(拉开)路程÷(速度差)=追及(拉开)时间; 追及(拉开)路程÷追及(拉开)时间=速度差; (速度差)×追及(拉开)时间=追及(拉开)路程。 【列车过桥问题公式】 (桥长+列车长)÷速度=过桥时间; (桥长+列车长)÷过桥时间=速度; 速度×过桥时间=桥、车长度之和。)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!

小学数学30道“行程问题”专题归纳,公式+例题+解析!“行程问题”作为小学数学常用知识点之一,想必大家并不陌生。

然而面对各种古怪的命题陷阱,不少考生还是心内发苦,看不出解题思路,频频出错。

解答“行程问题”时,究竟该怎么做呢?“行程问题”离不开三个基本要素:路程、速度和时间。

这也是解题的关键所在!今天为大家分享一份行程问题资料,包含公式、例题和解析,有需要的为孩子收藏一下,希望对学习行程问题有帮助~题型公式行程问题核心公式:S=V×T,因此总结如下:当路程一定时,速度和时间成反比当速度一定时,路程和时间成正比当时间一定时,路程和速度成正比从上述总结衍伸出来的很多总结如下:追击问题:路程差÷速度差=时间相遇问题:路程和÷速度和=时间流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度水流速度=(顺水速度-逆水速度)÷2船速=(顺水速度-逆水速度)×2两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)电梯问题:S=(人与电梯的合速度)×时间平均速度:V平=2(V1×V2)÷(V1+V2)5.列车过桥问题①火车过桥(隧道)火车过桥(隧道)时间=(桥长+车长)÷火车速度②火车过树(电线杆、路标)火车过树(电线杆、路标)时间=车长÷火车速度③火车经过迎面行走的人迎面错过的时间=车长÷(火车速度+人的速度)④火车经过同向行走的人追及的时间=车长÷(火车速度-人的速度)⑤火车过火车(错车问题)错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)⑥火车过火车(超车问题)错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?【解析】核心公式:时间=路程÷速度去时:T=12/4+8/5=4.6小时返回:T’=8/4+12/5=4.4小时T总=4.6+4.4+1=10小时7:00+10:00=17:00整体思考:全程共计:12+8=20千米去时的上坡变成返回时的下坡,去时的下坡变成返回时的上坡因此来回走的时间为:20/4+20/5=9小时所以总的时间为:9+1=10小时7:00+10:00=17:002、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。

行程问题九大题型

行程问题九大题型

行程问题九大题型一、相遇问题1. 基本概念两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇。

2. 公式相遇路程= 速度和×相遇时间,相遇时间= 相遇路程÷速度和,速度和= 相遇路程÷相遇时间。

3. 例题甲、乙两人分别从A、B两地同时出发,相向而行。

甲的速度是每小时5千米,乙的速度是每小时3千米,经过4小时两人相遇。

求A、B两地的距离。

解:根据公式相遇路程= 速度和×相遇时间,速度和为\(5 + 3=8\)(千米/小时),相遇时间是4小时,所以相遇路程(即A、B两地距离)为\(8×4 = 32\)千米。

二、追及问题1. 基本概念两个物体同向运动,慢者在前,快者在后,经过一定时间快者追上慢者。

2. 公式追及路程= 速度差×追及时间,追及时间= 追及路程÷速度差,速度差= 追及路程÷追及时间。

3. 例题甲以每小时6千米的速度先走1小时后,乙以每小时8千米的速度从同一地点出发去追甲。

问乙多长时间能追上甲?解:甲先走1小时的路程就是追及路程,为\(6×1 = 6\)千米,速度差为\(8 - 6 = 2\)千米/小时。

根据追及时间= 追及路程÷速度差,可得追及时间为\(6÷2 = 3\)小时。

三、环形跑道问题1. 同地出发同向而行基本概念:在环形跑道上,两人同地出发同向而行,快者每追上慢者一次,就比慢者多跑一圈。

公式:追及路程= 环形跑道一圈的长度,追及时间= 环形跑道一圈的长度÷速度差。

例题:在周长为400米的环形跑道上,甲的速度是每秒6米,乙的速度是每秒4米。

如果两人同时同地同向出发,经过多长时间甲第一次追上乙?解:追及路程为400米,速度差为\(6 - 4 = 2\)米/秒,根据追及时间= 追及路程÷速度差,可得追及时间为\(400÷2 = 200\)秒。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

初中行程问题试题及答案

初中行程问题试题及答案1. 甲乙两地相距300公里,一辆汽车从甲地出发前往乙地,速度为60公里/小时。

汽车行驶了2小时后,距离乙地还有多少公里?答案:汽车行驶了2小时后,已经行驶了60公里/小时× 2小时 = 120公里。

因此,距离乙地还有300公里 - 120公里 = 180公里。

2. 一辆自行车以15公里/小时的速度从A点出发,同时一辆摩托车以45公里/小时的速度从B点出发,两车相向而行。

如果A点和B点之间的距离为150公里,那么两车相遇需要多少时间?答案:设两车相遇所需时间为t小时。

根据题意,自行车行驶的距离加上摩托车行驶的距离等于A点和B点之间的距离,即15公里/小时× t小时 + 45公里/小时× t小时 = 150公里。

解得t = 150公里/ (15公里/小时 + 45公里/小时) = 2.5小时。

3. 一艘船从河的上游出发,顺流而下,速度为30公里/小时。

同时,另一艘船从下游出发,逆流而上,速度为20公里/小时。

如果两艘船相遇时,它们已经行驶了3小时,那么这条河的总长度是多少?答案:设这条河的总长度为L公里。

顺流而下的船3小时内行驶了30公里/小时× 3小时 = 90公里,逆流而上的船3小时内行驶了20公里/小时× 3小时 = 60公里。

因此,这条河的总长度为90公里 + 60公里 = 150公里。

4. 一辆汽车以80公里/小时的速度从城市A出发前往城市B,同时一辆货车以60公里/小时的速度从城市B出发前往城市A。

如果两车在距离城市A 240公里处相遇,那么城市A和城市B之间的距离是多少?答案:设城市A和城市B之间的距离为D公里。

汽车行驶了240公里,用时240公里 / 80公里/小时 = 3小时。

在这3小时内,货车行驶了60公里/小时× 3小时 = 180公里。

因此,城市A和城市B之间的距离为240公里 + 180公里 = 420公里。

六年级【小升初】小学数学专题课程《行程问题》(含答案)

17.行程问题知识要点梳理一、基本公式:1.路程=速度×时间2.速度=路程÷时间3.时间=路程÷速度二、问题类型1.相遇问题:①相遇时间=总路程÷速度和②速度和=总路程÷相遇时间③总路程=速度和×相遇时间2.追及问题:①追及时间=路程差÷速度差②速度差=路程差÷追及时间③路程差=速度差×追及时间3.流水行船问题:①顺水速度=船速+水速②逆水速度=船速-水速③船速=(顺水速度+逆水速度)÷2④水速=(顺水速度-逆水速度)÷24.列车过桥问题:(1) 火车过桥(隧道):火车过桥(隧道)时间=(桥长+车长)÷火车速度(2) 火车过树(电线杆、路标):火车过树(电线杆、路标)时间=车长÷火车速度(3) 火车过人:①火车经过迎面行走的人:迎面错过的时间=车长÷(火车速度+人的速度)②火车经过同向行走的人:追及的时间=车长÷(火车速度-人的速度)(4) 火车过火车:①错车问题:错车时间=(快车车长+慢车车长)÷(快车速度+慢车速度)②超出问题:错车时间=(快车车长+慢车车长)÷(快车速度-慢车速度)考点精讲分析典例精讲考点1 一般行程问题【例1】小王骑公共自行车从家去上班,每分钟行350米,用了20分钟,下午下班沿原路回家,每分钟比去时多骑50米,多少分钟到家?【精析】先根据路程=速度×时间,求出家到单位的距离,再求出下班的速度,最后根据时间=路程÷速度即可解答。

【答案】350×20=7000(米)350+50=400 (米/分)7000÷400=17.5(分钟)答:17.5分钟到家。

【归纳总结】本题考查知识点:依据速度,时间以及路程之间的数量关系解决冋题。

考点2 相遇问题【例2】甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A 城到B城需6小时,乙车从B城到A城需12小时。

小升初复习行程问题练习(含答案)

行程问题练习知识点梳理一、基础公式①路程=速度×时间②时间=路程÷速度③速度=路程÷时间二、常见题型①一般相遇:路程和=时间×速度和②中点相遇:四步曲(1)找出快走者多走的路程:中点路程×2 (2)算出速度差:快者速度-慢者速度 (3)时间:(1)的路程÷(2)的速度=时间(4)套用公式:路程和=时间×速度和③往返相遇:两者相对行驶,第三人在中间往返。

同时出发、同时停止就是相遇时间。

④环形相遇:背向行驶,相遇几次就共走了几个全长。

三、解题思路①画行程图理解题意。

②分析题型。

③套用公式。

例题1红红和聪聪分别从相距 1026 米的两地同时出发,相向而行。

红红家的小狗也跟来了,而且跑在了红红的前面。

当小狗和聪聪相遇后,立即返回跑向红红,遇到红红后,又立即返回跑向聪聪,这样跑来跑去,一直到两人相遇。

这只小狗一共跑了__________米。

(已知红红每分钟走54 米,聪聪每分钟走60 米,小狗每分钟跑70米)例题2一辆客车从 A 地出发开往 B 地,同时一辆货车从 B 地出发开往 A 地。

3 小时后两车在离 A 地 180 千米的 C 地相遇。

相遇后两车继续向前行驶,2 小时后,客车到达 B 地。

此刻,货车还要行驶多少小时才能到达A地?例题3星期天,小英从家里出发去少年宫学画画。

她刚走不久,妈妈发现小英忘了带画笔,于是就去追小英。

如图象表示两人行走的时间和路程。

①妈妈每分钟走__________米;②照这样的速度,妈妈出发后__________分钟可以追上小英。

例题4某日上午,甲、乙两车先后从 A 地出发沿一条公路匀速前往 B 地。

甲车 7 点出发,如图是甲行驶路程 s(千米)随行驶时间 t(小时)变化的图像。

乙车 8 点出发,若要在 9 点至 10 点之间(含 9 点和 10 点)追上甲车,则乙车的速度 v (单位:千米/时)的范围是__________。

行程问题(题答案)

一、 相遇与追及1、路程和路程差公式【例 1】 如下图,某城市东西路与南北路交会于路口A .甲在路口A 南边560米的B 点,乙在路口A .甲向北,乙向东同时匀速行走.4分钟后二人距A 的距离相等.再继续行走24分钟后,二人距A 的距离恰又相等.问:甲、乙二人的速度各是多少?【考点】行程问题 【难度】3星 【题型】解答【关键词】2003年,明心奥数挑战赛【解析】 本题总共有两次距离A 相等,第一次:甲到A 的距离正好就是乙从A 出发走的路程.那么甲、乙两人共走了560米,走了4分钟,两人的速度和为:5604140÷=(米/分)。

第二次:两人距A 的距离又相等,只能是甲、乙走过了A 点,且在A 点以北走的路程=乙走的总路程.那么,从第二次甲比乙共多走了560米,共走了42428+=(分钟),两人的速度差:5602820÷=(米/分),甲速+乙速140=,显然甲速要比乙速要快;甲速-乙速20=,解这个和差问题,甲速14020280=+÷=()(米/分),乙速1408060=-=(米/分).【答案】甲速80米/分,乙速60米/分2、多人相遇【例 2】 有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】2星 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米3、多次相遇【例 3】 甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求A 、B 两地间的距离是多少千米?【考点】行程问题 【难度】2星 【题型】解答【解析】 画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A 、B 两地间距离,第二次相遇意味着两车共行了三个A 、B 两地间的距离.当甲、乙两车共行了一个A 、B 两地间的距离时,甲车行了95千米,当它们共行三个A 、B 两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A 、B 两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【答案】260千米二、典型行程专题1、火车过桥【例4】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【考点】行程问题之火车问题【难度】3星【题型】解答a)根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)某列车的车长为:20×25-250=500-250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于行程问题一、为什么小学生行程问题普遍学不好?1、行程问题的题型多,综合变化多。

行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及多个物体的运动。

涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。

行程问题每一类型题的考察重点都不一样,往往将多种题型综合起来考察。

比如遇到相遇问题关键要抓住速度和,追击问题则要抓住速度差,流水行船中的相遇追及问题要注意跟水速无关等等。

2、行程问题要求学生对动态过程进行演绎和推理。

奥数中静态的知识学生很容易学会。

打个比方,比如数线段问题,学生掌握了方法,依葫芦画瓢就行。

一般情况,静态的奥数知识,学生只要理解了,就能容易做出来。

行程问题难就难在过程分析是动态的,甲乙两个人从开始就在运动,整个过程来回跑。

学生对文字题描述的过程很难还原成对应的数学模型,不画图,习惯性的在脑海里分析运动过程。

还有的学生会用手指,用橡皮模拟,转来转去往往把自己都兜晕了还是没有搞明白这个过程,更别说找出解题所需要的数量关系了。

二、行程问题“九大题型”与“五大方法”很多学生对行程问题的题型不太清楚,对行程问题的常用解法也不了解,那么我给大家归纳一下。

1、九大题型:⑴简单相遇追及问题;⑵多人相遇追及问题;⑶多次相遇追及问题;⑷变速变道问题;⑸火车过桥问题;⑹流水行船问题;⑺发车问题;⑻接送问题;⑼时钟问题。

2、五大方法:⑴公式法:包括行程基本公式、相遇公式、追及公式、流水行程公式、火车过桥公式,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式,而且有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件。

⑵图示法:在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具。

示意图包括线段图、折线图,还包括列表。

图图示法即画出行程的大概过程,重点在折返、相遇、追及的地点。

另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法。

ps:画图的习惯一定要培养起来,图形是最有利于我们分析运动过程的,可以说图画对了,意味着题也差不过做对了30%!⑶比例法:行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值。

更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题。

ps:运用比例知识解决复杂的行程问题经常考,而且要考都不简单。

⑷分段法:在非匀速即分段变速的行程问题中,公式不能直接适用。

这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来。

⑸方程法:在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解。

ps:方程法尤其适用于在重要的考试中,可以节省很多时间。

⑹假设法:在速度发生变化、或提前(晚)出发等数值发生变化的的行程问题中,假设速度没变或时间统一,往往非常起到意想不到的效果,极其有利于解决行程问题。

三、怎样才能学好行程问题?因为行程的复杂,所以很多学生已开始就会有畏难心理。

所以学习行程一定要循序渐进,不要贪多,力争学一个知识点就要能吃透它。

学习奥数有四种境界:第一种:课堂理解。

就是说能够听懂老师讲解的题目。

第二种:能够解题。

就是说学生听懂了还能做出作业。

第三种:能够讲题。

就是不仅自己会做,还要能够讲给家长听。

第四种:能够编题。

就是自己领悟这个知识了,自己能够根据例题出题目,并且解出来。

其实大部分学生学习奥数都只停留在第一种境界(有的甚至还达不到),能够达到第三种境界的学生考取重点中学实验班基本上没有什么问题了。

而要想在行程上一点问题没有,则要求学生达到第四种境界。

即系统学习,还要能深刻理解,刻苦钻研。

而这四种境界则是学习行程的四个阶段,或者说是好的方法。

建议一:不论是什么问题,在学习之前有必要对于要学的东西有个纵向的了解,要系统地梳理一遍,这样有系统,有方向,学习的时候也不会迷茫。

一般这个步骤需要家长和老师一起帮助孩子完成。

这样把大的目标分为不同的小的目标,各个击破,孩子也会有信心。

同时发现问题时,也可以有针对性的进行解决。

建议二:需要强调一点,就是在学习过程中不能捡芝麻丢西瓜,简言之就是要在每学一个知识的时候,都要对学过的知识进行练习。

一定要要重视总结,把行程问题进行分类比较,这样孩子对于行程问题的理解会上升一个新的高度。

建议三:在学习过程中,可以积累孩子的错题,以便日后观察孩子在此部分知识点学习过程中的薄弱环节,这样我们以后的计划会更有针对性。

在制定计划时慢慢的达到量身定做的效果。

行程问题的典型例题行程问题中最基本的公式就是路程=速度×时间,任何行程问题,不管是多么“波澜起伏或者是一波三折”,他的本质都是研究路程、速度、时间三者的关系,在此基础上衍生出其他问题,在每一个方面或几个方面发生了细微的改变。

类型一:相遇问题相遇问题强调的是一个“和”的思想,两人在时间统一的前提下,路程和=速度和×时间。

当然他的使用,不仅仅局限于相遇这个现象,只要这个题目知道了“和”,我就可以利用这个公式进行求解。

【例1】AB两地900米,甲乙两人在A处同时向B点出发,甲的速度60米/分,乙的速度40米/分,甲到达B地后立即返回,返回途中与乙相遇,甲乙两人多长时间相遇?解:路程和=900×2=1800(米)速度和=60+40=100(米/分)相遇时间=1800÷100=18(分钟)上面讲的是比较基本的相遇,到了高年级,可能等多的会涉及到多次或者是多人相遇。

下面来说说多次相遇。

方法一:运用倍比关系解多次相遇问题1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

即甲第1次如果走了N米,以后每次都走2N米。

2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程【例2】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【解析】画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【例3】小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(只算迎面相遇),则甲、乙两地的距离为千米.【解析】第一次相遇走了1个3千米,第二次相遇走了3个3千米即3×3=9(千米)9+6=15(千米)——两个全程15÷2=7.5(千米)继续上面多次相遇问题,解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。

折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。

【例4】甲、乙两人在一条90米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。

如果他们同时分别从直路的两端A、B两点出发,当他们跑12分钟,共相遇了多少次?(从出发后两人同时到达某一点算作一次相遇)。

【分析】多次相遇,如图所示,甲用实线表示,乙用虚线表示。

在180秒内,甲、乙共相遇5次,最后又回到出发的状态。

【例5】甲、乙两人在一条长为30米的直路上来回跑步,甲的速度是每秒1米,乙的速度是每秒0.6米.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇几次?【解析】采用运行图来解决本题相当精彩!首先,甲跑一个全程需要30÷1=30(秒),乙跑一个全程需要30÷0.6=50(秒).与上题类似,画运行图如下(实线表甲,虚线表示乙,那么实虚两线交点就是甲乙相遇的地点):从图中可以看出,当甲跑5个全程时,乙刚好跑3个全程,各自到了不同两端又重新开始,这正好是一周期150秒.在这一周期内两人相遇了5次,所以两人跑10分钟,正好是四个周期,也就相遇5×4=20(次)备注:一个周期内共有5次相遇,其中第1,2,4,5次是迎面相遇,而第3次是追及相遇.有些多次相遇的题目可以根据速度比m:n,设路程为m+n份。

举个例子。

【例6】甲、乙两车分别从A、B两地同时出发,并在A、B两地间不断往返行驶。

已知甲车速度是15千米/时,乙车速度是25千米/时,甲乙两车第一次相遇地点与第二次相遇地点之间相差100千米。

A、B两地相距多少千米?(从出发后两人同时到达某一点算作一次相遇)。

【分析】甲车速度是15千米/时,乙车速度是25千米/时,甲、乙两车的速度之比为15:25=3:5 将A、B两地平均分成8小格,甲每走3小格,乙就走5小格;如图所示,C1、C2分别表示第1、2次相遇的地点;其中第一次相遇地点与第二次相遇地点之间相差4小格;每小格的长度为100÷4=25千米;所以A、B两地相距25×8=200千米。

说了多次相遇,再来说说多人的相遇问题即多人行程。

这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

【例7】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米。

甲从A地,乙和丙从B出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地的距离。

【解析】3人相遇问题。

先画图分析整个题目说了两个相遇过程。

第一次相遇:甲和乙相遇。

两人一共走了一个全程。

因此全程=(甲的速度+乙的速度)×时间发现相遇的时间不知道。

第二次相遇:甲和丙的相遇。

前提是“甲乙相遇后,再过15分钟”。

发现走的路程是CD。

因此CD的距离=(甲的速度+丙的速度)×时间=(60+40)×15=1500(米)但是我们的目标是要求出甲乙相遇的时间,发现CD是在这段时间里乙、丙的路程差。

相关文档
最新文档