河北省唐山市滦南县倴城研训区2017届九年级上学期期中联考数学试题(附答案)$744331
河北省唐山市 九年级(上)期中数学试卷(含答案)

九年级(上)期中数学试卷一、选择题(本大题共12小题,共24.0分)1.若(k-1)x2-2kx-1=0是关于x的一元二次方程,则k的取值范围是()A. B. C. D.2.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.3.在平面直角坐标系中,把点P(-2,1)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A. B. C. D.4.把方程x2-8x+3=0配方成如下的形式,则正确是()A. B. C. D.5.下列变换不属于全等变换的是()A. 平移B. 旋转C. 轴对称D. 相似6.如图,⊙O△ABC的三条边所得的弦长相等,则下列说法正确的是()A. 点O是△的内心B. 点O是△的外心C. △是正三角形D. △是等腰三角形7.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,则d的长度为()A. 4cmB. 5cmC. 6cmD. 9cm8.下列表格是二次函数y=ax2+bx+c(d≠0)的自变量x与函数y的一些对应值,由此可以判断方程ax2之间之间C. 之间D. 之间9.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C,D,E,F,=,DE=6,则EF的值为()A. 4B. 6C. 9D. 1210.已知抛物线y=ax2-2x+1与x轴有两个交点,那么a的取值范围是()A. 且B. 且C. 且D. 且11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠DAC等于()A.B.C.D.12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)若点(x1,y1),(x2,y2)在图象上,当x2>x1>0时,y2>y1;(2)当x<-1时,y>0;(3)4a+2b+c>0;(4)x=3是关于x方程ax2+bx+c=0的一个根,其中正确的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.把方程x(x+1)=2化成一般形式是______ .14.抛物线y=(-x)2开口向______ .(填:“上”或“下”)15.如图,用一个半径为30cm扇形铁皮,制作一个无底的圆锥(不计损耗),经测量圆锥的底面半径r为10cm,则扇形铁皮的面积为______ cm2.(结果保留π)16.已知x=1是一元二次方程ax2+bx-10=0的一个根,则分式的值为______ .17.如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为______ .18.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为4m,AB=12m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为5m,则DE的长为______ m.三、计算题(本大题共1小题,共8.0分)19.2()根据上表填空;①方程ax2+bx+c=0的两个根分别是______ 和______ .②抛物线经过点(-3,______ );③在对称轴左侧,y随x增大而______ ;(2)求抛物线y=ax2+bx+c的解析式.四、解答题(本大题共6小题,共50.0分)20.解下列方程:(1)x2+x=0;(2)x2-4x-1=0.21.如图为一段圆弧形弯道,弯道长12π米,圆弧所对的圆心角是81°.(1)用直尺和圆规作出圆弧所在的圆心O;(不写作法,保留作图痕迹)(2)求这段圆弧的半径R.22.如图,在平面直角坐标系xOy中,点O是边长为2的正方形ABCD的中心.(1)若函数y=x2+m的图象过点C,求这个函数的解析式;并判断其函数图象是否过A点.(2)若将(1)中的函数图象先向右平移1个单位,再向上平移2个单位,直接写出平移后函数的解析式和顶点坐标.23.如图,在长60m,宽40m的长方形花园中,欲修宽度相等的观赏路(图中阴影部分),要使观赏路面积占总面积的,求观赏路面宽是多少m.24.如图,△OAB中,OA=OB=10,∠AOB=70°,以点O为圆心,6为半径的优弧分别交OA、OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转70°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧上,当△AOQ的面积最大时,直接写出∠BOQ的度数.25.【探究】中秋节前某商场计划购进一批进价为每盒40元的食品进行销售,根据销售经验,应季销售时,若每盒食品的售价为60元,则可售出400盒,当每盒食品的售价每提高1元,销售量就相应减少10盒.(1)假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是______ 元,销售量是______ 盒.(用含x为代数式表示)(2)设应季销售利润为y元,求y与x的函数关系式,并求出应季销售利润为8000元时每盒食品的售价.【拓展】根据销售经验,过季处理时,若每盒食品的售价定为30元亏本销售,可售出50盒,若每盒食品的售价每降低1元,销售量就相应增加5盒.当单价降低z 元时,解答:(1)现剩余100盒食品需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金,若使亏损金额最小,此时每盒食品的售价应为______ 元;(2)若过季需要处理的食品共m盒,过季处理时亏损金额为y1元,求y1与z的函数关系式;当100≤m≤300时,求过季销售亏损金额最小时多少元?答案和解析1.【答案】B【解析】解:由题意得:k-1≠0,解得:k≠1,故选:B.根据一元二次方程定义可得k-1≠0,再解即可.此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.3.【答案】A【解析】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(-2,1),∴点P′的坐标(2,-1),故选:A.将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.本题考查了坐标与图形的变换-旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.4.【答案】C【解析】解:方程移项得:x2-8x=-3,配方得:x2-8x+16=13,即(x-4)2=13.故选C.方程常数项移到右边,两边加上16变形即可得到结果.此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.【答案】D【解析】解:因为平移、旋转、翻折、轴对称都属于全等变换,而相似则不是,故选D 全等变换的定义:按一定方法把一个图形变成另一个图形叫图形变换.此题考查全等变换问题,要知道变换前后的图形全等,像这样只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换.6.【答案】A【解析】解:过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF,由垂径定理得:DM=DE,KQ=KH,FN=FG,∵DE=FG=HK,∴DM=KQ=FN,∵OD=OK=OF,∴由勾股定理得:OM=ON=OQ,即O到三角形ABC三边的距离相等,∴O是△ABC的内心,故选A.过O作OM⊥AB于M,ON⊥BC于N,OQ⊥AC于Q,连接OK、OD、OF,根据垂径定理和已知求出DM=KQ=FN,根据勾股定理求出OM=ON=OQ,根据三角形内心的定义求出即可.本题考查了垂径定理,勾股定理,三角形的内心的应用,注意:三角形的内心到三角形三边的距离相等.7.【答案】A【解析】解:因为a,b,c,d是成比例线段,可得:d=cm,故选A由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义计算即可.此题考查了成比例线段的定义.此题比较简单,解题的关键是注意掌握比例线段的定义.8.【答案】D【解析】解:由表格中的数据看出-0.01和0.02更接近于0,故x应取对应的范围是6.18<x<6.19.故选D.利用二次函数和一元二次方程的性质进行解答即可.本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.9.【答案】C【解析】解:∵AD∥BE∥CF,∴=,即=,∴EF=9.故选C.根据平行线分线段成比例定理得到∴=,即=,然后利用比例性质求EF即可.本题考查了平行线分线段成比例:三条平行线截两条直线,所得对应线段成比例.10.【答案】A【解析】解:∵抛物线y=ax2-2x+1与x轴有两个交点,∴a≠0,△>0,∴4-4a×1>0,∴a<1,故答案为:a<1且a≠0.故选A.根据题意,令y=0,得方程ax2-2x+1=0,有两个不同的根得△>0,从而解出a 的范围.此题主要考查一元二次方程与函数的关系,关键是理解函数与x轴的交点的横坐标就是方程的根,若方程有根说明函数与x轴有交点,两者互相转化,要充分运用这一点来解题.11.【答案】D【解析】解:连接CD,OC,DA,∵CD=OB,∴△OCD为等边三角形,∴∠COD=60°,∴∠DAC=∠COD=×60°=30°,故选D.根据题意得△OCD为等边三角形,则∠COD=60°,根据圆周角定理得出∠DAC 的度数.本题考查了圆周角定理,还考查了等边三角形的判定,掌握圆周角定理的内容是解题的关键.12.【答案】A【解析】解:由图象可知该二次函数图象的对称轴为x=1,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,(1)由图象知,点(x1,y1),(x2,y2)在图象上,当x2>x1>0时,函数图象的增减性不定,所以可能y2>y1也可能y2<y1,所以(1)错误;(2)由图象知,当x<-1时,y>0正确;(3)令x=2,由图象知,4a+2b+c<0,所以此选项错误;(4)由图象知,x=3不是二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点,所以x=3不是关于x方程ax2+bx+c=0的一个根,所以此选项错误;所以正确的个数有1个,故选A.根据该二次函数的增减性可判断(1)(2);令x=2可判断(3);根据二次函数图象与坐标轴的交点可判断(4).本题主要考查了二次函数的性质,结合图象分析二次函数的增减性,对称轴等是解答此题的关键.13.【答案】x2+x-2=0【解析】解:x(x+1)=2,去括号得:x2+x=2,移项得:x2+x-2=0,故答案为:x2+x-2=0.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),首先把方程左边的两式相乘,再移项使方程右边变为0,然后合并同类项即可.此题主要考查了一元二次方程的一般形式,关键是去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.14.【答案】上【解析】解:∵y=(-x)2=x2,∴a=1>0,∴抛物线开口向上,故答案为:上.根据抛物线的解析式可确定其开口方向.本题主要考查二次函数的性质,掌握二次函数的开口方向由二次项系数的正负决定是解题的关键.15.【答案】300π【解析】解:∵圆锥的底面半径为10cm,∴圆锥的底面周长为20π,∵扇形的半径为30cm,∴圆锥的面积为lr=×20π×30=300πcm2,故答案为:300π.根据圆锥的底面半径求得周长,从而求得扇形的弧长,然后利用扇形面积公式求得扇形铁皮的面积即可.本题考查了圆锥的计算计算扇形的面积计算的知识,解题的关键是牢记扇形的弧长等于圆锥的底面周长,难度不大.16.【答案】5【解析】解:把x=1代入方程ax2+bx-10=得a+b-10=0,解a+b=10.===5故答案为5.根据一元二次方程解的定义把x=1代入ax2+bx-10=0即可得到a+b的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.【答案】12°【解析】解:如图设圆心为O,连接OA、OB,点E落在圆上的点E′处.∵AB=OA=OB,∴∠OAB=60°,同理∠OAE′=60°,∵∠EAB=108°,∴∠EAO=∠EAB-∠OAB=48°,∴∠EAE′=∠OAE′-∠EAO=60°-48°=12°,∵点E旋转的角度和点C旋转的角度相等,∴点C旋转的角度为12°,故答案为12°.因为点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.本题考查正多边形与圆,旋转的性质,理解点E旋转的角度和点C旋转的角度相等是解决问题的关键,所以中考常考题型.18.【答案】18【解析】解:如图所示,建立平面直角坐标系,x轴在直线DE上,y轴经过最高点C.设AB与y轴交于点H,∵AB=12,∴AH=BH=6,由题可知:OH=5,CH=4,∴OC=5+4=9,∴B(6,5),C(0,9)设该抛物线的解析式为:y=ax2+k,∵顶点C(0,9),∴抛物线y=ax2+9,代入B(6,5)∴5=36a+9,解得a=-,∴抛物线:y=-x2+9,当y=0时,0=-x2+9,解得x=±9,∴E(9,0),D(-9,0),∴OE=OD=9,∴DE=OD+OE=9+9=18,故答案为:18.首先建立平面直角坐标系,x轴在直线DE上,y轴经过最高点C,设AB与y 轴交于H,求出OC的长,然后设该抛物线的解析式为:y=ax2+k,根据题干条件求出a和k的值,再令y=0,求出x的值,即可求出D和E点的坐标,DE的长度即可求出.本题主要考查二次函数综合应用的知识点,解答本题的关键是正确地建立平面直角坐标系,此题难度一般,是一道非常典型的试题.19.【答案】x1=-2;x2=1;8;减小【解析】解:(1)①观察表格得:方程ax2+bx+c=0的两个根分别是x1=-2和x2=1;②抛物线经过点(-3,8);③在对称轴左侧,y随x的增大而减小;故答案为:①x1=-2,x2=1;②8;③减小;(2)设抛物线解析式为y=ax2+bx+c,把(-2,0),(1,0)、(0,-4)代入得:,解得:,则抛物线解析式为y=2x2+2x-4.(1)①观察表格中y=0时x的值,即可确定出所求方程的解;②利用对称性确定出x=-3时y的值,确定出所求点坐标即可;③利用二次函数增减性确定出结果即可;(2)利用待定系数法确定出抛物线解析式即可.此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的图象与性质是解本题的关键.20.【答案】解:(1)分解因式得:x(x+1)=0,x=0,x+1=0,解得:x1=0,x2=-1.解:(1)x2-4x-1=0x2-4x=1x2-4x+22=1+22(x-2)2=5∴x-2=±,∴x1=2+,x2=2-,【解析】(1)分解因式得出x(x+1)=0,推出x=0,x+1=0,求出方程的解即可.(2)根据配方法进行解答即可.本题考查解一元二次方程-配方法和因式分解法,解题的关键是明确怎么应用配方法和因式分解法解答方程.21.【答案】解:(1)如图,点O即为所求点;(2)根据题意得:=12π,解得:R=,答:这段圆弧的半径为米.【解析】(1)弧上任取三点A、B、C,连结AB、BC,分别作AB和BC的垂直平分线,两垂直平分线的交点为点O;(2)根据弧长公式列出关于R的方程,解之可得.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了弧长公式.22.【答案】解:(1),由题意得A(1,1),C(-1,-1),∵函数y=x2+m的图象过点C,∴-1=1+m,解得m=-2,∴此函数的解析式为y=x2-2,把A(1,1)代入y=x2-2的左右两边,左边=1,右边=-1,左≠右,∴其函数图象不过A点.(2)∵将抛物线y=x2-2向上平移2个单位再向右平移1个单位,∴平移后的抛物线的解析式为:y=(x-1)2-2+2.即y=(x-1)2,则平移后的抛物线的顶点坐标为:(1,0).【解析】(1)根据题意A(1,1),C(-1,-1),代入y=x2+m根据待定系数法即可求得解析式,把A的坐标代入即可判断;(2)直接利用抛物线平移规律:上加下减,左加右减进而得出平移后的解析式,即可得出顶点坐标.此题主要考查了待定系数法求二次函数的解析式、二次函数图象上点的坐标特征、二次函数图象与几何变换,正确掌握平移规律是解题关键.23.【答案】解:设路宽为x,(40-2x)(60-3x)=(1-)×60×40,解得:x=5或x=35不合题意,答:观赏道路路面宽是5m.【解析】设路宽为x,所剩下的观赏面积的宽为(40-2x),长为(60-3x)根据要使观赏路面积占总面积,可列方程求解.本题考查理解题意的能力,关键是表示出剩下的长和宽,根据面积列方程.24.【答案】(1)证明:如图1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′,∵在△AOP和△BOP′中′,′∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)解:如图1,连接OT,过点T作TH⊥OA于点H,∵AT是⊙O的切线,∴∠ATO=90°,∴AT===8,∵×OA×TH=×AT×OT,即×10×TH=×8×6,解得:TH=,即点T到OA的距离为;(3)解:如图2,当OQ⊥OA时,△AOQ的面积最大;理由:∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ+∠AOB=90°+70°=160°,当Q点在优弧右侧上,∵OQ⊥OA,∴QO是△AOQ中最长的高,则△AOQ的面积最大,∴∠BOQ=∠AOQ-∠AOB=90°-70°=20°,综上所述:当∠BOQ的度数为20°或160°时,△AOQ的面积最大.【解析】(1)首先根据已知得出∠AOP=∠BOP′,进而得出△AOP≌△BOP′,即可得出答案;(2)利用切线的性质得出∠ATO=90°,再利用勾股定理求出AT的长,进而得出TH的长即可得出答案;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.本题考查了圆的综合题、切线的判定与性质、全等三角形的判定与性质,第二个问题的关键是利用面积法求出线段TH,第三个问题的关键是学会用分类讨论的思想思考问题,注意一题多解,属于中考压轴题.25.【答案】20+x;400-10x;20【解析】解:【探究】(1)假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是(20+x)元,销售量是(400-10x)盒,故答案为:20+x,400-10x;(2)根据题意得:y=(20+x)(400-10x)=-10x2+200x+8000,把y=8000代入,得:-10x2+200x+8000=8000,解得:x=0或x=20,当x=0时,60+x=60,当x=20时,60+x=80,答:应季销售利润为8000元时每盒食品的售价为60元或80元;【拓展】(1)设过季处理时亏损金额为y元,单价降低z元.由题意得:y=40×100-(30-z)(50+5z)=5(z-10)2+2000;z=10时亏损金额最小为2000元,此时售价为30-10=20(元/件),故答案为:20;(2)y1=40m-(30-z)(50+5z)=5(z-10)2+40m-2000,即当z=10时,y1有最小值40m-2000,∵100≤m≤300,∴当m=100时,y1有最小值40m-2000=2000,答:过季销售亏损金额最小时2000元.探究:(1)每条围巾获得的利润=实际售价-进价,销售量=售价为60元时销售量-因价格上涨减少的销售量;(2)根据:销售利润=单件利润×销售量可列函数解析式,并求y=8000时x的值;拓展:(1)根据:亏损金额=总成本-每件围巾的售价×销售量,列出函数关系式,配方后可得最值情况;(2)根据与(1)相同的相等关系列函数关系式配方可得最小值.本题主要考查二次函数的应用,解决本题的关键是在不同情形下理清数量关系、紧扣相等关系列出函数解析式,根据解析式结合自变量取值范围求函数最值是根本技能.。
2017-2018年河北省唐山市滦南县九年级上学期期中数学试卷及参考答案

2017-2018学年河北省唐山市滦南县九年级(上)期中数学试卷一、选择题(1~10每小题3分,11~16每小题3分,共42分)1.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=192.(3分)在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分数的差3.(3分)在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm4.(3分)如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,若AC=4,AE=10,BF=,则DF的长为()A.B.10 C.3 D.5.(3分)如图,△ABC∽△ACD,相似比为2,则面积之比S△BDC:S△DAC为()A.4:1 B.3:1 C.2:1 D.1:16.(3分)若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠07.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.8.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.9.(3分)如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx ﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.10.(3分)反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在双曲线上,则y1,y2,y3的大小关系为()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y111.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45 12.(2分)如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③13.(2分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米14.(2分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 15.(2分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣616.(2分)已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二、填空题(17、18每小题3分,19题4分,每空2分,共10分)17.(3分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.18.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是.19.(3分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1).△A1B1C1是以B为位似中心的△ABC的位似图形,且△A1B1C1与△ABC位似比为2,则点C1的坐标是,△A1B1C1的面积是.三、解答题(共68分)20.(10分)(1)2x2﹣5x+2=0(配方法)(2)2sin60°﹣cos45°﹣3tan30°+tan45°.21.(8分)甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.(1)请你根据图中的数据填写表格:(2)从平均数和方差相结合看,分析谁的成绩好些?从发展趋势来看,谁的成绩好些?22.(9分)如图,防洪大堤的横断面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高为1.5m的小明站在大堤的点A处,测得高压电线杆顶端点D的仰角为30°.已知地面CB宽为30m,求高压电线杆CD的高度.(结果保留1位小数,≈1.732)23.(9分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.24.(10分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若涨价x元,则每天的销量为件(用含x的代数式表示);(2)要使每天获得700元的利润,请你帮忙确定售价.25.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.26.(12分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.(1)求的值;(2)若CD=2,则BP=.2017-2018学年河北省唐山市滦南县九年级(上)期中数学试卷参考答案与试题解析一、选择题(1~10每小题3分,11~16每小题3分,共42分)1.(3分)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选:B.2.(3分)在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.最高分与最低分数的差【解答】解:由于总共有15个人,第8位选手的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:C.3.(3分)在Rt△ABC中,∠C=90°,sinA=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【解答】解:∵sinA==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,4.(3分)如图,直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E和B、D、F,若AC=4,AE=10,BF=,则DF的长为()A.B.10 C.3 D.【解答】解:∵AC=4,AE=10,∴CE=6,∵直线a∥b∥c,∴,即,∴DF=,故选:A.5.(3分)如图,△ABC∽△ACD,相似比为2,则面积之比S△BDC:S△DAC为()A.4:1 B.3:1 C.2:1 D.1:1【解答】解:∵△ABC∽△ACD,相似比为2,∴S△ABC :S△ACD=4,∴S△BDC :S△ACD=3:1.故选:B.6.(3分)若关于x的一元二次方程kx2+2x﹣1=0有实数根,则k的取值范围是A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0【解答】解:∵△=b2﹣4ac=22﹣4×k×(﹣1)≥0,解上式得,k≥﹣1,∵二次项系数k≠0,∴k≥﹣1且k≠0.故选:D.7.(3分)如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.8.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B.C.D.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选:D.9.(3分)如图,在同一平面直角坐标系中,反比例函数y=与一次函数y=kx ﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.【解答】解:当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx﹣1与y轴交于负半轴,∴D选项错误,B选项正确,故选:B.10.(3分)反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在双曲线上,则y1,y2,y3的大小关系为()A.y1<y3<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【解答】解:∵反比例函数y=的图象是双曲线,在每一个象限内,y随x的增大而减小,∴图象在一、三象限,∵﹣3<﹣1,∴0>y1>y2,∵2>0,∴y3>0,∴y2<y1<y3,故选:B.11.(3分)有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45 B.x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∵共比赛了45场,∴x(x﹣1)=45,故选:A.12.(2分)如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【解答】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.13.(2分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米【解答】解:∵BC=6米,迎水坡AB的坡比为1:,∴AC=6(米),∴AB==12(米).故选:A.14.(2分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.15.(2分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣6【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S=S△CAB=3,△OAB=|k|,而S△OAB∴|k|=3,∵k<0,∴k=﹣6.故选:D.16.(2分)已知,如图所示的一张三角形纸片ABC,边AB的长为20cm,AB边上的高为25cm,在三角形纸片ABC中从下往上依次裁剪去宽为4cm的矩形纸条,若剪得的其中一张纸条是正方形,那么这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是4,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则=,解得x=5,所以另一段长为25﹣5=20,因为20÷4=5,所以是第5张.故选:B.二、填空题(17、18每小题3分,19题4分,每空2分,共10分)17.(3分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.18.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是R≥3.6.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.19.(3分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1).△A1B1C1是以B为位似中心的△ABC的位似图形,且△A1B1C1与△ABC位似比为2,则点C1的坐标是(1,0),△A1B1C1的面积是10.【解答】解:如图所示:△A1B1C1即为所求,点C1的坐标是(1,0),△A1B1C1的面积是:4×6﹣×2×6﹣×2×4﹣×2×4=10.故答案为:(1,0),10.三、解答题(共68分)20.(10分)(1)2x2﹣5x+2=0(配方法)(2)2sin60°﹣cos45°﹣3tan30°+tan45°.【解答】解:(1)移项得2x2﹣5x=﹣2方程两边同时除以2得x2﹣x=﹣1,配方得,x2﹣x+(﹣)2=﹣1+(﹣)2,即(x﹣)2=,方程两边直接开方得,x﹣=±,解得x1=2,x2=;(2)2sin60°﹣cos45°﹣3tan30°+tan45°=2×﹣×﹣3×+1=﹣1﹣+1=0.21.(8分)甲、乙两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示.(1)请你根据图中的数据填写表格:(2)从平均数和方差相结合看,分析谁的成绩好些?从发展趋势来看,谁的成绩好些?【解答】解:(1)如图所示:甲的平均数为:(7+8+9+8+8)=8,[(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2]=0.4;由图中数据可得:乙组数据为8,(2)甲、乙两人的平均数相同,甲的方差小于乙的方差,因此甲的成绩比较稳定;从甲、乙两人五次测试成绩的趋势看,乙的成绩呈上升趋势,乙更有潜力.22.(9分)如图,防洪大堤的横断面是梯形,背水坡AB的坡度i=1:,且AB=20m.身高为1.5m的小明站在大堤的点A处,测得高压电线杆顶端点D的仰角为30°.已知地面CB宽为30m,求高压电线杆CD的高度.(结果保留1位小数,≈1.732)【解答】解:延长MA交BC延长线与点H,则MH⊥BC,在Rt△ABH中因为tan∠ABH=i=1:,所以∠ABH=30°,所以AH=AB=×20=10因为tan∠ABH=,所以BH==10,所以CH=CB+BH=30+10,MH=MA+AH=1.5+10=11.5,由题意可知,四边形MHCN是矩形,所以MN=CH=30+10,CN=MH=11.5在Rt△DMN中,因为tan∠DMN=,所以DN=MNtan∠DMN=(30+10)tan30°=(30+10)×=10+10,所以DC=DN+CN=10+10+11.5≈17.32+21.5=38.82≈38.8(m)答:高压电线杆CD的高度约为38.8(m).23.(9分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【解答】解:(1)把A(﹣4,2)代入y=,得m=2×(﹣4)=﹣8,所以反比例函数解析式为y=﹣,把B(n,﹣4)代入y=﹣,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得,解得,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),=S△AOC+S△BOC=×2×2+×2×4=6;∴S△AOB(3)由图可得,不等式kx+b﹣>0的解集为:x<﹣4或0<x<2.24.(10分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少售货量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若涨价x元,则每天的销量为200﹣20x件(用含x的代数式表示);(2)要使每天获得700元的利润,请你帮忙确定售价.【解答】解:(1)∵这种商品每涨价0.5元,其销量减少10件,∴这种商品每涨价1元,其销量减少20件,∴涨价x元,则每天的销量为(200﹣20x )件;故答案为:200﹣20x;(2)设这种商品上涨x元,根据题意得:(10﹣8+x)(200﹣20x)=700,整理得x2﹣8x+15=0,解得x1=5,x2=3,因为要采取提高售价,减少售货量的方法增加利润,所以取x=5.所以售价为10+5=15(元),答:售价为15元.25.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=另解:∵AG⊥BC,AF⊥DE,△ADE∽△ABC,∴==26.(12分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.(1)求的值;(2)若CD=2,则BP=6.【解答】解:的值为.提示:易证△AEF≌△CEB,则有AF=BC.设CD=k,则DB=2k,AF=BC=3k,由AF∥BC可得△APF∽△DPB,即可得到==.故答案为:;解决问题:(1)过点A作AF∥DB,交BE的延长线于点F,如图,设DC=k,由DC:BC=1:2得BC=2k,DB=DC+BC=3k.∵E是AC中点,∴AE=CE.∵AF∥DB,∴∠F=∠1.在△AEF和△CEB中,,∴△AEF≌△CEB,∴EF=BE,AF=BC=2k.∵AF∥DB,∴△AFP∽△DBP,∴====.∴的值为;(2)当CD=2时,BC=4,AC=6,∴EC=AC=3,EB==5,∴EF=BE=5,BF=10.∵=(已证),∴=,∴BP=BF=×10=6.故答案为6.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
河北省唐山市滦南县九年级数学上学期期中试卷含解析

1河北省唐山市滦南县九年级数学上学期期中试卷一、选择题(本大题共16小题,共42.0分)1. 已知(m -2)x n-3nx +2=0是关于x 的一元二次方程,则( )A. ,B. ,C. ,D., 2. 若a :b =3:2,且b 是a 、c 的比例中项,则b :c 等于( )A. 4:3B. 3:4C. 3:2D. 2:3 3. 下面结论中正确的是( )A.B. C.D.4. 某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( ) A. 5,5 B. 5,6 C. 6,6 D. 6,55. 反比例函数y =图象经过A (1,2),B (n ,-2)两点,则n =( ) A. 1 B. 3 C. D.6. 若x =-1是关于x 的一元二次方程ax 2-bx -2018=0的一个解,则1+a +b 的值是( )A. 2016B. 2017C. 2018D. 2019 7. 如图,在Rt △ABC 中,CD ⊥AB 于点D ,表示sin B 错误的是( ) A.B.C.D. 8. 关于x 的一元二次方程kx 2-4x +1=0有实数根,则k 的取值范围是( )A. B. 且 C. D. 且 9. 已知点A (x 1,y 1),(x 2,y 2)是反比例函数y =图象上的点,若x 1>0>x 2,则一定成立的是( ) A. B. C. D.10. 如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.C. D.11.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为()A.B.C.D.12.若一元二次方程x2+bx+5=0配方后为(x-2)2+k=0,则b、k的值分别是()A. 0、5B. 0、1C. 、1D. 、513.若线段AB=cm,C是线段AB的一个黄金分割点,则线段AC的长()A. B.C. 或D. 或14.下列与反比例函数图象有关图形中,阴影部分面积最小的是()A. B.C. D.15.某公司一月份获利400万元,计划第一季度的利润达到1324万元.若该公司每月的增长率相同,则该增长率是()A. B. C. D.16.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是()3A. 5B.C.7或4D. 5或二、填空题(本大题共4小题,共12.0分)17. 小红沿坡比为1: 的斜坡上走了100米,则她实际上升了______米. 18. 如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ;直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知 =,则=______.19. 如图,已知矩形OABC 与矩形ODEF 是位似图形,P 是位似中心,若点B 的坐标为(2,4),点E 的坐标为(-1,2),则点P 的坐标为______.20. 已知x 1、x 2是一元二次方程x 2+x +m =0的两个根,且x 1+x 2=2+x 1x 2,则m =______. 三、计算题(本大题共1小题,共10.0分)21. 已知关于x 的一元二次方程x 2-(n +3)x +3n =0.(1)求证:此方程总有两个实数根;(2)若此方程有两个不相等的整数根,请选择一个合适的n 值,写出这个方程并求出此时方程的根.四、解答题(本大题共5小题,共56.0分)22. 某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表(图1),并计算了甲成绩的平均数和方差(见图2小宇的作业). 甲、乙两人射箭成绩统计表(1)a=______;(2)请完成图中表示乙成绩变化情况的折线.(3)观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.23.如图,BE是△ABC的角平分线,延长BE至D,使得BC=CD.(1)求证:△AEB∽△CED;(2)若AB=2,BC=4,AE=1,求CE长.24.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?25.如图,某渔船向正东方向以12海里时的速度航行,在A处测得岛C在北偏东的 °方向,1小时后渔船航行到B处,测得岛C在北偏东的 °方向,已知该岛周围10海里内有暗礁.(1)B处离岛C有多远?(2)如果渔船继续向东航行,需要多长时间到达距离岛C最近的位置?(3)如果渔船继续向东航行,有无触礁危险?毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克/立方米)与药物点燃后的时间x(分钟)成正比例,药物燃尽后,y与x成反比例(如图所示).已知药物点燃后4分钟燃尽,此时室内每立方米空气中含药量为8毫克.(1)求药物燃烧时,y与x之间函数的表达式;(2)求药物燃尽后,y与x之间函数的表达式(3)研究表明,当空气中每立方米的含药量不低于2毫克,且持续12分钟以上才能有效杀灭空气中的病菌,请计算说明此次消毒能否有效杀灭空气中的病菌?5答案和解析1.【答案】B【解析】解:∵(m-2)x n-3nx+2=0是关于x的一元二次方程,∴m- ≠ ,n=2,解得m≠ ,n=2.故选:B.根据一元二次方程的定义列出关于m,n的方程,求出m,n的值即可.本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.【答案】C【解析】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.【答案】B【解析】解:A、 °=,故A错误;B、 °=,故B正确;C、 °=,故C错误;D、 °=,故D错误;故选:B.根据特殊角三角函数值,可得答案.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.【答案】B【解析】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.根据众数、中位数的定义分别进行解答即可.本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【答案】C【解析】解:∵反比例函数y=图象经过A(1,2),B(n,-2)两点,∴k= × =-2n.解得n=-1.故选:C.根据反比例函数图象上点的坐标特征得到:k= × =-2n.考查了反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6.【答案】D【解析】解:∵x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,∴a+b-2018=0,∴a+b=2018,∴1+a+b=1+2018=2019,故选:D.根据x=-1是关于x的一元二次方程ax2-bx-2018=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.7.【答案】D【解析】解:∵在Rt△ABC中,CD⊥AB于点D,∴sinB=,故选:D.根据三角函数的定义解答即可.此题考查锐角三角函数的定义,关键是根据正弦函数是对边与斜边的比进行解答.8.【答案】D【解析】解:∵关于x的一元二次方程kx2-4x+1=0有实数根,∴k≠ 且△=(-4)2- k≥ ,解得:k≤ 且k≠ .故选:D.根据二次项系数非零结合根的判别式△≥ ,即可得出关于k的一元一次不等式组,解之即可得出结论.7本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥ 时,方程有实数根”是解题的关键.9.【答案】B【解析】【分析】反比例函数y=(k≠ ,k为常数)中,当k>0时,双曲线在第一,三象限,在每个象限内,y随x的增大而减小判定则可.本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,同学们应重点掌握.【解答】解:∵k=2>0,∴函数为减函数,又∵x1>0>x2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.10.【答案】C【解析】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.根据相似三角形的判定定理对各选项进行逐一判定即可.本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.11.【答案】D【解析】解:∵DE把△ABC分成的两部分面积相等,∴S△ADE=S△ABC,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,故选:D.证明△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方计算.本题考查的是相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.12.【答案】C【解析】解:∵(x-2)2=k,∴x2-4x+4-k=0,∵一元二次方程x2+bx+5=0配方后为(x-2)2=k,∴b=-4,4-k=5,∴k=-1,∴b,k的值分别为-4、-1;故选:C.先把(x-2)2=k化成x2-4x+4-k=0,再根据一元二次方程x2+bx+5=0得出b=-4,4-k=5,然后求解即可.此题考查了一元二次方程的解法,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.13.【答案】C【解析】解:由于AC可能是较长的线段,也可能是较短的线段,∴AC=×=cm或AC=-()=()cm.故选:C.把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.考查了黄金分割点的概念,能够根据黄金比计算.这里主要注意AC可能是较长线段,也可能是较短线段.14.【答案】A【解析】解:选项A中阴影部分面积= × -× × -× × -× × =,选项B、C、D中的阴影部分的面积都是2,<2,故选:A.分别求解阴影部分的面积即可判断;本题考查反比例函数系数k的几何意义,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】A【解析】解:设二、三月份平均每月增长的百分率是x,则400+400(1+x)+400(1+x)2=1324,解得:x=0.1或x=-2.1(舍去)故选:A.等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=1324,把相关数值代入计算即可.9此题主要考查了一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a( ±x)2=b.16.【答案】D【解析】解:∵△ABC沿EF折叠B和B′重合,∴BF=B′F,设BF=x,则CF=10-x,∵当△B′FC∽△ABC,∴=,∵AB=8,BC=10,∴=,解得:x=,即:BF=,当△FB′C∽△ABC,=,=,解得:x=5,故BF=5或.故选:D.根据折叠得到BF=B′F,根据相似三角形的性质得到=或=,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.17.【答案】50【解析】解:设铅直距离为x,则水平距离为x,根据题意得:x2+(x)2=1002,解得:x=50(负值舍去),则她实际上升了50米,故答案为:50根据题意设铅直距离为x,则水平距离为x,根据勾股定理求出x的值,即可得到结果.此题考查了解直角三角形的应用-坡度坡角问题,灵活运用勾股定理是解本题的关键.18.【答案】2【解析】解:∵=,∴=2,∵l1∥l2∥l3,∴==2,故答案为:2.根据题意求出,根据平行线分线段成比例定理解答.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.19.【答案】(-2,0)【解析】解:∵四边形OABC是矩形,点B的坐标为(2,4),∴OC=AB=4,OA=2,∴点C的坐标为:(0,4),∵矩形OABC与矩形ODEF是位似图形,P是位似中心,点E的坐标为(-1,2),∴位似比为1:2,∴OP:AP=OD:AB=1:2,设OP=x ,则,解得:x=2,∴OP=2,即点P的坐标为:(-2,0).故答案为:(-2,0).由矩形OABC中,点B的坐标为(2,4),可求得点C的坐标,又由矩形OABC与矩形ODEF是位似图形,P是位似中心,点C的对应点点E的坐标为(-1,2),即可求得其位似比,继而求得答案.此题考查了位似变换的性质.注意求得矩形OABC与矩形ODEF的位似比是解此题的关键.20.【答案】-3【解析】解:∵x1、x2是一元二次方程x2+x+m=0的两个根,∴x1+x2=-1,x1x2=m.∵x1+x2=2+x1x2,即-1=2+m,∴m=-3.故答案为:-3.根据根与系数的关系可得出x1+x2=-1、x1x2=m,结合x1+x2=2+x1x2即可得出关于m的一元一次方程,解之即可得出结论.本题考查了根与系数的关系,利用根与系数的关系结合x1+x2=2+x1x2找出关于m的一元一次方程是解题的关键.21.【答案】(1)证明:∵△=(n+3)2-12m=(n-3)2,∵(n-3)2≥ ,∴方程有两个实数根;(2)解:∵方程有两个不相等的实根11∴n可取0,则方程化为x2-3x=0,因式分解为x(x-3)=0∴x1=0,x2=3.【解析】(1)计算判别式的值得到△=(n-3)2,然后利用非负数的性质得到△≥ ,从而根据判别式的意义可得到结论;(2)n可取0,方程化为x2-3x=0,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程ax2+bx+c=0( ≠ )的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.22.【答案】4 乙【解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,故答案为:4;(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定,∵= ÷ =∴=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于>,所以上述判断正确.故答案为:乙;(1)根据他们的总成绩相同,得出a=30-7-7-5-7=4;(2)根据(1)中所求得出a的值进而得出折线图即可;(3)观察图,即可得出乙的成绩比较稳定.此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a的值进而利用方差的意义比较稳定性即可.23.【答案】(1)证明:∵BE是△ABC的角平分线,∴∠ABE=∠CBE.∴∠CDE=∠CBE=∠ABE.又∵∠AEB=∠CED,∴△AEB∽△CED;(2)解:∵BC=4,∴CD=4.∵△AEB∽△CED,∴=,即=,∴CE=2.【解析】(1)根据角平分线的性质结合等腰三角形的性质可得出∠CDE=∠ABE,结合对顶角相等,即可证出△AEB∽△CED;(2)根据相似三角形的性质,即可得出=,代入数据即可求出CE的长度.本题考查了相似三角形的判定与性质、角平分线的性质以及等腰三角形的性质,解题的关键是:(1)利用角平分线的性质及等腰三角形的性质找出∠CDE=∠ABE;(2)根据相似三角形的性质找出=.24.【答案】解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=-(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40-25-m)(400+5m)=4250,解得:m1=5,m2=-70(不合题意舍去).答:当商品降价5元时,商品获利4250元.【解析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x);三月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400元,由此等量关系列出方程求出x的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.1325.【答案】解:(1)过C作CO⊥AB于O,则CO为渔船向东航行到C道最短距离,∵在A处测得岛C在北偏东的 °,∴∠CAB= °,又∵B处测得岛C在北偏东 °,∴∠CBO= °,∠ABC= °,∴∠ACB=∠CAB= °,∴AB=BC= × = (海里)(等边对等角);(2)∵CO⊥AB,∠CBO= °∴BO=BC× ∠CBO= ×=6(海里),÷ = . (小时),答:如果渔船继续向东航行,需要0.5小时到达距离岛C最近的位置;(3)∵CO⊥AB,∠CBO= °∴CO=BC× ∠CBO= × °= (海里),∵6>10,∴如果渔船继续向东航行,没有触礁危险;【解析】(1)通过证明∠ACB=∠CAB= °,即可求出CB的长;(2)过C作CO⊥AB于O,则CO为渔船向东航行到C道最短距离,求出OB的长,即可求出答案;(3)求出CO的长度,再比较即可.本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.26.【答案】解:(1)设正比例函数解析式:y=kx且过(4,8)∴8=4k∴k=2∴y=2x(2)设反比例函数解析式:y=,且过(4,8)∴8=∴m=32∴y=(3)当y=2时,2=2x,解得:x=1当y=2时,2=,解得:x=16则空气中每立方米的含药量不低于2毫克的持续时间为16-1=15分钟∵15>12∴此次消毒能有效杀灭空气中的病菌.【解析】(1)正比例函数图象过点(4,8),利用待定系数法可求解析式;(2)反比例函数图象过点(4,8),利用待定系数法可求解析式;(3)将y=2分别代入两个解析式,可求x的值,即可判断此次消毒能否有效杀灭空气中的病菌.本题考查了反比例函数的应用,待定系数法求解析式,利用数形结合思想解决问题是本题的关键.15。
河北省唐山市滦南县中考数学一模试卷(含解析)

2017年河北省唐山市滦南县中考数学一模试卷一、选择题(本题共16个小题,共42分)1.﹣的相反数是()A.﹣ B.C.﹣ D.2.下列等式正确的是()A.B.C.D.3.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短4.“十二五”期间,将新建保障性住房约37000000套,用于解决中低收入和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是()A.37×106B.3.7×106C.3.7×107D.0.37×1085.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列语句中,正确的是()①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④7.函数y=的自变量x的取值范围在数轴上表示正确的是()A.B.C.D.8.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.9.化简(1+)÷的结果是()A.x+2 B.x﹣1 C. D.x﹣210.如图,平行四边形ABCD中,E,F分别是边BC,AD上的点,有下列条件:①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF,若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是()A.①②③④ B.①②③C.②③④D.①③④11.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠112.(2分)为纪念中国人民抗战战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6000名学生中,随机抽取了120名学生进行调查,在这次调查中()A.6000名学生是总体B.所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个样本C.120名是样本容量D.所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本13.(2分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m214.(2分)已知:在△ABC中,AB=AC,求作:△ABC的内心O.以下是甲、乙两同学的作法:对于两人的作法,正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对15.(2分)如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3 B.3:4 C.5:3 D.3:516.(2分)如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A.1小时B.小时C.2小时D.小时二、填空题(本大题共3小题,共10分)17.计算:3a﹣(2a﹣1)= .18.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.19.(4分)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案.则第8个图案中有个白色菱形纸片;若第n个图案中有2017个白色纸片,则n的值为.三、解答题(本大题共7小题,共68分)20.(9分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.21.(9分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数3 4 5 6 …n正多边形每个内角的度数…(2)如果只限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?22.(9分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,连接BF.(1)求证:△AEF≌△DEC;(2)若D是BC的中点,则图中FB和AD有怎样的位置关系和数量关系,并请说明理由.23.(9分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).24.(10分)某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求y与x的函数关系式;(2)当x=18时,大棚内的温度是否适宜该品种蔬菜的生长?(2)恒温系统在一天内保持大棚里的适宜生长温度有多少小时?25.(10分)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)在运动过程中,当⊙O与直线MN在正方形MNPQ外部相切时,求t的值.26.(12分)如图1,抛物线L:y=ax2+2(a﹣1)x﹣4(常数a>0)经过点A(﹣2,0)和点B(0,﹣4),与x轴的正半轴交于点E,过点B作BC⊥y轴,交L于点C,以OB,BC为边作矩形OBCD.(1)当x=2时,L取得最低点,求L的解析式.(2)用含a的代数式分别表示点C和点E的坐标;(3)当S矩形OBCD=4时,求a的值.(4)如图2,作射线AB,OC,当AB∥OC时,将矩形OBCD从点O沿射线OC方向平移,平移后对应的矩形记作O′B′C′D′,直接写出点A到直线BD′的最大距离.2017年河北省唐山市滦南县中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,共42分)1.﹣的相反数是()A.﹣ B.C.﹣ D.【考点】14:相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣的相反数是.故选:B.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列等式正确的是()A.B.C.D.【考点】22:算术平方根.【分析】A、根据算术平方根的定义即可判定;B、根据负数没有平方根即可判定;C、根据立方根的定义即可判定;D、根据算术平方根的管道定义算术平方根为非负数,负数没有平方根.【解答】解:A、,故选项A错误;B、由于负数没有平方根,故选项B错误;C、,故选项C错误;D、,故选项正确.故答案选D.【点评】本题所考查的是对算术平方根的正确理解和运用,要求学生对于这些基本知识比较熟练.3.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【考点】IC:线段的性质:两点之间线段最短.【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.【点评】本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.4.“十二五”期间,将新建保障性住房约37000000套,用于解决中低收入和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是()A.37×106B.3.7×106C.3.7×107D.0.37×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:把37000000用科学记数法表示应是3.7×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】D1:点的坐标.【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.6.下列语句中,正确的是()①三个点确定一个圆;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①② B.②③ C.②④ D.④【考点】M5:圆周角定理;L5:平行四边形的性质;LB:矩形的性质;M2:垂径定理.【分析】根据圆的确定对①进行判断;根据圆周角定理对②进行判断;根据垂径定理对③进行判断;根据圆内四边形的性质和矩形的判定方法对④进行判断.【解答】解:①当三点在同一条直线上时,就不能确定一个圆了,故此结论错误;②同弧或等弧所对的圆周角相等,故此结论正确;③当弦为直径时就不一定垂直了,故此结论错误;④根据平行四边形的对角相等和圆内接四边形的对角互补,可得圆的内接四边形的两组对角都是直角,故此结论正确;故选:C.【点评】本题主要考查圆的确定、圆周角定理、垂径定理和圆内接四边形的性质等知识点,理解这些定理和性质是解题的关键.7.函数y=的自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2>0,解得:x>2,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【考点】I6:几何体的展开图.【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.【点评】本题主要考查的是几何体的展开图,明确含有田字形和凹字形的图形不能折成正方体是解题的关键.9.化简(1+)÷的结果是()A.x+2 B.x﹣1 C. D.x﹣2【考点】6C:分式的混合运算.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=x﹣2,故选D【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.10.如图,平行四边形ABCD中,E,F分别是边BC,AD上的点,有下列条件:①AE∥CF;②BE=FD;③∠1=∠2;④AE=CF,若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是()A.①②③④ B.①②③C.②③④D.①③④【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AD∥BC,AD=BC,∠BAD=∠BCD,然后利用平行四边形的判定分别分析求解,即可求得答案;注意利用举反例的方法可排除错误答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠BAD=∠BCD,∴当①AE∥CF时,四边形AECF是平行四边形;故正确;当②BE=FD时,CE=AF,则四边形AECF是平行四边形;故正确;当③∠1=∠2时,∠EAF=∠ECF,∵∠EAF+∠AEC=180°,∠AFC+∠ECF=180°,∴∠AFC=∠AEC,∴四边形AECF是平行四边形;故正确;④若AE=AF,则四边形AECF是平行四边形或等腰梯形.故错误.故选B.【点评】此题考查了平行四边形的性质与判定.注意掌握排除法在选择题中的应用.11.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠1【考点】AA:根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=42﹣4(k﹣1)×1>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k﹣1≠0且△=42﹣4(k﹣1)×1>0,解得:k<5,且k≠1.故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.12.为纪念中国人民抗战战争的胜利,9月3日被确定为抗日战争胜利纪念日,某校为了了解学生对“抗日战争”的知晓情况,从全校6000名学生中,随机抽取了120名学生进行调查,在这次调查中()A.6000名学生是总体B.所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个样本C.120名是样本容量D.所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本【考点】V3:总体、个体、样本、样本容量.【分析】根据总体、个体、样本、样本容量的概念逐一判别即可.【解答】解:A、全校6000名学生对“抗日战争”的知晓情况是总体,此选项错误;B、所抽取的每1名学生对“抗日战争”的知晓情况是总体的一个个体,此选项错误;C、样本容量是120,此选项错误;D、所抽取的120名学生对“抗日战争”的知晓情况是总体的一个样本,此选项正确;故选:D.【点评】本题考查了总体、样本、个体以及样本容量,解题的关键是分清总体、样本、个体的定义.13.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】FH:一次函数的应用.【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.14.已知:在△ABC中,AB=AC,求作:△ABC的内心O.以下是甲、乙两同学的作法:对于两人的作法,正确的是()A.两人都对 B.两人都不对C.甲对,乙不对 D.甲不对,乙对【考点】N3:作图—复杂作图.【分析】根据三角形外心的定义对甲的作法进行判定;根据等腰三角形的性质和三角形内心的定义对乙的作法进行判定.【解答】解:如图1,点O到三角形三个顶点的距离相等,点O为△ABC的外心;如图2,因为AB=AC,所以作BC的垂直平分线平分∠BAC,则点O为三角形的内心.故选D.【点评】本题考查了作与﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC 绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3 B.3:4 C.5:3 D.3:5【考点】R2:旋转的性质;KW:等腰直角三角形.【分析】由旋转可以得出△BEC≌△AFC,∠ECF=90°,就有EC=CF=6,AC=BC=10,∠BEC=∠AFC=90°,由勾股定理就可以求出AF的值,进而得出CE∥AF,就有△CEM∽△AFM,就可以求出CM,DM的值,从而得出结论.【解答】解:∵△BEC绕C点旋转90°使BC与AC重合,得到△ACF,∴△BEC≌△AFC,∠ECF=90°,∴EC=CF=6,AC=BC=10,∠BEC=∠DFC=90°.在Rt△AFC中,由勾股定理,得AF=8.∵∠AFC=90°,∴∠AFC+∠ECF=180°,∴EC∥AF,∴△CEM∽△AFM,∴==,∴AM:MC=4:3,故选A.【点评】本题考查了旋转的性质的运用,全等三角形的性质的运用,相似三角形的判定及性质的运用,勾股定理的运用,平行线的判定及性质的运用,解答时证明三角形相似是关键.16.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?()A.1小时B.小时C.2小时D.小时【考点】TB:解直角三角形的应用﹣方向角问题.【分析】过B作AC的垂线,设垂足为D.由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC.由此可在Rt△CBD中,根据BC(即AC)的长求出CD的长,进而可求出该船需要继续航行的时间.【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°.∴AC=BC,∵轮船以40海里/时的速度在海面上航行,∴AC=BC=2×40=80海里,∴CD=BC=40海里.故该船需要继续航行的时间为40÷40=1小时.故选A.【点评】本题考查了解直角三角形的应用中的方向角问题,注意掌握“化斜为直”是解三角形的常规思路,需作垂线(高),原则上不破坏特殊角(30°、45°60°).二、填空题(本大题共3小题,共10分)17.计算:3a﹣(2a﹣1)= a+1 .【考点】44:整式的加减.【分析】原式去括号合并即可得到结果.【解答】解:原式=3a﹣2a+1=a+1,故答案为:a+1.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【考点】B6:由实际问题抽象出分式方程.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.19.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案.则第8个图案中有25 个白色菱形纸片;若第n个图案中有2017个白色纸片,则n的值为672 .【考点】38:规律型:图形的变化类.【分析】观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n 个图案中有白色纸片,求出n=8、n=2017的值即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第n个图案中有白色纸片3n+1张,当n=8时,3n+1=25当n=8时,3n+1=672,故答案为:25,672.【点评】此题主要考查图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.三、解答题(本大题共7小题,共68分)20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.21.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)请根据下列图形,填写表中空格:正多边形边数3 4 5 6 …n 正多边形每个内角的度数60°90°108°120°…(180﹣)°(2)如果只限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?【考点】L4:平面镶嵌(密铺);38:规律型:图形的变化类.【分析】(1)利用正多边形一个内角=180°﹣求解即可;(2)进行平面镶嵌就是在同一顶点处的几个多边形的内角和应为360°,因此我们只需验证360°是不是上面所给的几个正多边形的一个内角度数的整数倍即可.【解答】解:(1)正三角形每个内角的度数是60°,正四边形每个内角的度数是90°,正五边形每个内角的度数是108°,正六边形每个内角的度数是120°,正n边形每个内角的度数是(180﹣)°.故答案为:60°,90°,108°,120°,(180﹣)°;(2)如限于用一种正多边形镶嵌,则由一顶点的周围角的和等于360°得正三角形、正四边形(或正方形)、正六边形都能镶嵌成一个平面图形.【点评】此题考查了平面镶嵌(密铺),在求正多边形一个内角度数时,可先求出这个外角度数,让180减去即可;一种正多边形的镶嵌应符合一个内角度数能整除360°;两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.22.如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于点F,连接BF.(1)求证:△AEF≌△DEC;(2)若D是BC的中点,则图中FB和AD有怎样的位置关系和数量关系,并请说明理由.【考点】KD:全等三角形的判定与性质.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等;(2)由全等三角形的性质得出FA=DC,证出FA=BD,证明四边形AFBD是平行四边形,即可得出结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS);(2)解:若D是BC的中点,则图中的FB和AD平行且相等.理由如下:由(1)知△AEF≌△DEC,∴FA=DC,∵D是BC的中点,∴BD=DC,∴FA=BD,∵AF∥BC,∴四边形AFBD是平行四边形,∴FB∥AD,且FB=AD.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.23.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可知这次被调查的学生共有20÷=200(人);(2)首先求得C项目对应人数为:200﹣20﹣80﹣40=60(人),继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:这次被调查的学生共有20÷=200(人).故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.。
2017年河北省唐山市滦县中考数学一模试卷_0

2017年河北省唐山市滦县中考数学一模试卷一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算:﹣(﹣1)=()A.±1B.﹣2C.﹣1D.12.(3分)下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2÷a2b=4abC.2ab×3a=6a2b D.(a﹣1)(1﹣a)=a23.(3分)下列各数中,为不等式组解的是()A.﹣1B.0C.2D.44.(3分)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b 相交所成的锐角是()A.20°B.30°C.70°D.80°5.(3分)如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,若△ABC的周长为24,AB=7,则△ADC的周长为()A.10B.17C.20D.21.56.(3分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.﹣=5B.+5=C.﹣=5D.﹣=57.(3分)有五张背面完全相同的卡片,正面分别写有,()0,,,2﹣2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是()A.B.C.D.8.(3分)如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°9.(3分)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.10.(3分)甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A 城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个11.(2分)如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A、B不重合),连结AP、PB,过点O分别作OE⊥AP于点E,OF⊥AP于点E,OF ⊥PB于点F,则EF=()A.4B.5C.5.5D.612.(2分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),其对称轴为直线x=1,下面结论中正确的是()A.abc>0B.2a﹣b=0C.4a+2b+c<0D.9a+3b+c=0 13.(2分)如图,点A、C为反比例函数y=图象上的点,过点A、C分别作AB⊥x轴,CD⊥x轴,垂足分别为B、D,连接OA、AC、OC,线段OC 交AB于点E,点E恰好为OC的中点,当△AEC的面积为时,k的值为()A.4B.6C.﹣4D.﹣614.(2分)如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A.3B.C.3或D.4或15.(2分)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)16.(2分)矩形ABCD中,AD=8cm,AB=6cm.动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动至点D停止.如图可得到矩形CFHE,设运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x 之间的函数关系用图象表示大致是下图中的()A.B.C.D.二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.(3分)关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为.18.(3分)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中的长是cm(计算结果保留π).19.(4分)如图,∠ACD是△ABC的外角,第1次操作:∠ABC的平分线与∠ACD的平分线交于点A1;第2次操作:∠A1BC的平分线与∠A1CD的平分线交于点A 2,…第n 次操作:∠A n ﹣1BC 的平分线与∠A n ﹣1CD 的平分线交于点A n ,则∠A 2与∠A 之间的数量关系是 ;若∠A=64°,∠A n ≤4°,则n 的取值范围是 .三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.(9分)计算:(3.14﹣π)0+﹣2sin45°+()﹣1﹣|1﹣|.21.(9分)某厂生产A ,B 两种产品,其单价随市场变化而做相应调整,营销人员根据前四次单价变化的情况,绘制了如下统计表:A ,B 产品单价变化统计表并求得了A 产品四次单价的平均数和方差:=5.9,s A 2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2+(5.9﹣5.9)2]=(1)B 产品第四次的单价比第二次的单价减少了 %;(2)A 产品四次单价的中位数是 ;B 产品四次单价的众数是 ;(3)求B 产品四次单价的方差,并比较哪种产品的单价波动小.22.(9分)如图,△ABC 中,AB=AC ,∠BAC=40°,将△ABC 绕点A 按逆时针方向旋转100°.得到△ADE .连接BD ,CE 交于点F .(1)求证:△ABD ≌△ACE ;(2)求∠ACE 的度数;(3)求证:四边形ABFE是菱形.23.(9分)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.24.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25.(10分)图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形延BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.(1)当α=15°时,过点A′作A′C∥AB,如图1,判断A′C与半圆O的位置关系,并说明理由.(2)如图2,当α=°时,BA′与半圆O相切.当α=°时,点O′落在上.(3)当线段BO′与半圆O只有一个公共点B时,求α的取值范围.26.(12分)如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=.探究:如图1,AH⊥BC于点H,则AH=,AC=,△ABC的面积S△ABC=.拓展:如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD的垂线,垂足为E、F,设BD=x,AE=m,CF=n,(当点D与A重合时,我们认为S△ABD=0).(1)用含x、m或n的代数式表示S△ABD 及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2017年河北省唐山市滦县中考数学一模试卷参考答案一、选择题:本大题共16小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.D;2.C;3.C;4.B;5.B;6.D;7.A;8.B;9.B;10.D;11.B;12.D;13.C;14.C;15.B;16.A;二、填空题:本大题共3小题,共10分,17-18题各3分,19小题有2个空,每空2分,把答案写在题中横线上.17.1;18.10π;19.∠A2=∠A;n≥4;三、解答题:本大题共7小题,共68分,解答应写出文字说明、证明过程或演算步骤.20.;21.12.5;5.95;3.5;22.;23.;24.;25.45;30;26.12;15;84;。
冀教版九年级数学上册期中试卷及完整答案

冀教版九年级数学上册期中试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC=124°,点E 在AD 的延长线上,则∠CDE 的度数为( )A .56°B .62°C .68°D .78°10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539B .2539+C .18253+D .25318+二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:2ab a -=_______.3.已知二次函数y=x 2﹣4x+k 的图象的顶点在x 轴下方,则实数k 的取值范围是__________.4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为 ,图①中m 的值为 ;(2)求统计的这组销售额数据的平均数、众数和中位数.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、B7、D8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、32、a (b +1)(b ﹣1).3、k <44、805、360°.6、49三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、(1)k ﹥34;(2)k=2.3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 1,2.4、(1)略;(2)略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)120件;(2)150元.。
2017年河北省中考数学试卷(含答案解析)

绝密★启用前河北省2017年初中毕业生升学文化课考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,1~10小题,每小题3分,11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算结果为正数的是( )A .2(3)-B .32-÷C .0( 2 017)⨯-D .23- 2.把0.0813写成10n a ⨯(110a ≤<,n 为整数)的形式,则a 为( )A .1B .2-C .0.813D .8.13 3.用量角器测量MON ∠的度数,下列操作正确的是( )ABCD4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------________________ _____________5.图1和图2中所有的小正方形都全等.将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④ 6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC △的每条边长增加各自的10%得'''A B C △,则'B ∠的度数与其对应角B ∠的度数相比 ( ) A .增加了10%B .减少了10%C .增加了(110)+%D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )ABCD9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥. 以下是排乱的证明过程: ①又BO DO ⊥,②AO BD∴⊥即AC BD ⊥.③四边形ABCD 是菱形, ④=AB AD ∴. 证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域.甲的航向是北偏东35,为避免行进中甲、乙相撞,则乙的航向不能是( )A .北偏东55B .北偏西55C .北偏东35D .北偏西3511.如图是边长为10 cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的是( )ABCD12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-= B .004446++= C .34446++= D .14446-÷+= 13.若321x x -=-( )11x +-,则( )中的数是 ( ) A .1-B .2-C .3-D 任意实数.14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图.用水量(吨) 4 5 6 9 户数4521比较5月份两组家庭用水量的中位数,下列说法正确的是( ) A .甲组比乙组大 B .甲、乙两组相同 C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0)x >的图象是 ( )甲组12户家庭用水量统计表ABC D16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( ) A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共10分.17,18小题,每小题3分;共19小题共4分.请把答案填写在题中的横线上)17.如图,,A B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接,CA CB ,分别延长到点,M N ,使AM AC =,BN BC =,测得200 m MN =,则,A B间的距离为 m .18.如图,依据尺规作图的痕迹,计算=α∠.19.对于实数p ,q ,我们用符号}{min ,p q 表示p ,q 两数中较小的数,如}{min 1 ,21=.因此,}{min 2,3--= ; 若}{22min (1),1x x -=,则x = .三、解答题(本大题共7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------在一条不完整的数轴上从左到右有点,,A B C 其中2AB =,1BC =,如图所示.设点,,A B C 所对应数的和是p .(1)若以B 为原点,写出点,A C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少? (2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .21.(本小题满分9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图; (2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(本小题满分9分)发现 任意五个连续整数的平方和是5的倍数. 验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.如图,16AB =,O 为AB 中点,点C 在线段OB 上(不与点,O B 重合),将OC 绕点O 逆时针旋转270后得到扇形COD ,,AP BQ 分别切优弧CD 于点,P Q ,且点,P Q 在AB 异侧,连接OP . (1)求证:AP BQ =;(2)当BQ =时,求QD 的长(结果保留π);(3)若APO △的外心在扇形COD 的内部,求OC 的取值范围.24.(本小题满分10分)如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点,C E .点,B E 关于x 轴对称,连接AB . (1)求点,C E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+四边形,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE △沿x 轴翻折到CDB △的位置,而CDB △与四边形ABDO 拼接后可看成AOC △,这样求S 便转化为直接求AOC △的面积不更快捷吗?”但大家经反复验算,发现AOC S S ≠△,请通过计算解释他的想法错在哪里.25.(本小题满分11分)平面内,如图,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90得到线段PQ .(1)当10DPQ =∠时,求APB ∠的大小;(2)当tan :tan 3:2ABP A =∠时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).26.(本小题满分12分)某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .河北省2017年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】239=(-);3322-÷=-;020170⨯=(-);231-=-,所以运算结果为正数的是2(3)-,故选A 。
答案

2017年春学期期中学业质量测试九年级数学参考答案及评分标准 2017.4一、选择题 (本大题共10小题,每小题3分,共30分.)1.A 2.C 3.A 4.B 5.C 6.B 7.C 8.C 9.C 10.A二、 填空题 (本大题共8小题,每小题2分,共16分.)11.±2 12.(x +y )(x +y -3) 13.x ≠3 14.2.88³104 15.35 16.11 17.24 18.32+102三、解答题 (本大题共10小题,共84分.)19.解:(1)原式=14+2-1……(3分) (2)原式=4x 2-1―4(x 2+2x +1)…………(2分) =54.………………(4分) =4x 2-1-4x 2-8x -4……………(3分) =-8x -5.………………………(4分)20.解:(1)x (2x -3)=0 …(2分) (2)由①得x >3.…………………(1分)∴x 1=0,x 2=32.……(4分) 由②得x ≤4.…………………(2分) ∴3<x ≤4.……………………(4分)21.证:∵AB =AC ,D 为BC 的中点,∴BD =DC ,∠ADC =90º.…………………………(2分)∵AE ∥BC ,DE ∥AB ,∴四边形ABDE 为平行四边形.…………………………………(3分) ∴AE =BD .……………………………………………………………………………………(4分) 又∵BD =CD ,∴AE =DC .…………………………………………………………………(5分) 又∵AE ∥BC ,∴四边形ADCE 为平行四边形.……………………………………………(6分) 又∵∠ADC =90º,∴□ADCE 为矩形.……………………………………………………(8分)22.解: …………………(4分)共有12种等可能结果,其中小红获胜的有3种,…………………………………………(6分)∴P (小红获胜)=312=14. …………………………………………………………………(8分) 23.解:(1) 132 ,48 …………………………………………………………………………(4分)(2) 2a -2=6 ∴a =4 ……………………………………………………………………(6分)每人每小时组装C 型展品6套. …………………………………………………………(8分)24.解:(1)连结OB ,∵AB 是⊙O 的切线,∴∠ABO =90°.……………………………(1分)在Rt △ABO 中,sin A =OB OA =13,OA =6,∴OB =2.…(3分) ∴AB =OA 2-OB 2=42. ……………………………(4分) (2)过点O 作OD ⊥BC 于点D .同理可得:BD =23,OD =423. ∵OD ⊥BC ,∴BC =2BD =43.……………………………………………………………(6分) ∴四边形AOCB 的面积=12(AO +BC )OD =12(6+43)²423=4429.……………………(8分) A O C B D 小明摸牌 大王 A1 A2 A3小红摸牌 A1 A2 A3 大王 A2 A3 大王 A1 A3大王 A1 A2 结果: 小红胜 小红胜 小红胜 (若用列表法,列表正确得4分)25.解:(1)1000³(1+10%)+100=1200.……………………………………………………(3分)(2) 设第1周所有单车平均使用次数为a .………………………………………………(4分)由题意可得:a ³2.5³(1+m )2³100=a ³(1+m )³1200³14…………………………(7分) 解得 m =0.2.即m 的值为20%.………………………………………………………(8分)26.解:(1)取AC 中点D ,连OD 、BD ,∵Rt △ABC 中,AC =AB =10,∴OD =12AC =5,BD =AB 2+AD 2 =55.……………(2分) ∵OB ≤OD +BD ,∴OB 的最大值为5+55.……………………………………………(3分)(2)作BE ⊥y 轴于E ,∵∠BEA =∠AOC =90°,∠BAC =90°,∴∠EBA =∠OAC ,∵AB =AC ,∴△ABE ≌△CAO ,∴BE =OA ,∴AE =OC .………………………………(5分) ①∵EA <AB <OB ,EA =OC ,∴OC <OB ,即OC ≠OB .………………………………(6分) ②∵OC <AC <BC ,即OC ≠BC .……………………………………………………………(7分) ③当OB =BC 时,作BF ⊥x 轴于F ,则OF =FC =BE .设OA =a ,则BE =a ,OC =2a ,由OA 2+OC 2=AC 2,得a =25,∴A (0,25).……(8分) 综上,当A (0,25)时,△OBC 能否恰好为等腰三角形.27.解:(1)由题意可得,A (2,0),B (6,0).……………………………………………………(2分)∴抛物线函数关系式为y =16(x -2)(x -6)= 16x 2-43x +2,∴C (0,2) .…………………(3分) 抛物线顶点为(4,-23),图像基本要素画正确得1分.……………………………………(4分) (2)由题意可得,PC ―P A ≤CA ,CA =22,∴PC ―P A 的最大值为22.………………(4分)(3)连MC 、ME ,则ME ⊥CE ,………………………………………………………………(6分) ∵∠COD =∠MED =90º,∠CDO =∠MDE ,CO =ME =2,∴△CDO ≌△MDE ,…(7分) ∴DO =DE ,DC =DM ,∴∠MCE =∠CEO ,∴CM ∥OE .……………………………(8分)∵直线CM 的函数关系式为y =-12x +2,∴直线OE 的函数关系式为y =-12x .…(10分) 28.解:(1) C (3,154).…………………………………………………………………………(2分) (2) 设P (8-t ,-34(8-t )+6),Q (8-t ,54(8-t )),∴PQ =10-2t .…………………(4分) 当0<t <103时,S =(10-2t )t =-2t 2+10t ,当t =52时,S 最大值为252.……………(5分) 当103≤t <5时,S =(10-2t )2=4t 2-40t +100,当t =103时,S 最大值为1009.………(6分) ∵252>1009,∴S 最大值为252.…………………………………………………………(7分) (3) 4≤t ≤235或t ≥6.………………………………………………………………………(10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016~2017学年度第一学期期中质量检测九 年 级 数 学 试 卷考生注意:1.本次测试满分120分,考试时间100分钟.2.请用兰、黑塞钢笔或圆珠笔答题,答题前先将测试卷左侧密封线内的姓名、班级等内容填写清楚.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x 2-2x =0的根是( )A .x 1=x 2=0B .x 1=x 2=2C .x 1=0,x 2=2D .x 1=0,x 2=-2 2.某学校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩试试( )A .80分B .82分C .84分D .86分3.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE ∥BC ,EF ∥AB ,若AD =2BD ,则BFCF 的值为( )A .1∶2B .1∶3C .1∶4 D .2∶34.在Rt △ABC 中,∠C =90°,AB =13,BC =12,则下列三角函数表示正确的是( )A .sin A =1312B .cos A =1312C .tan A =125D .tan B =512F 第3题图5.若22)1(-+=a xa y 是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数 6.某人一周内爬楼的层数统计如下表关于这组数据,下列说法错误的是( )A .中位数是22B .平均数是26C .众数是22D .极差是15 7.一元二次方程x 2-3x -2=0的两个根为x 1、x 2,则下列结论正确的是( ) A .x 1=-1,x 2=2 B .x 1=1,x 2=-2 C .x 1+x 2=3 D .x 1x 2=28.如图,以点O 为位似中心,将△ABC 缩小后得到△C B A ''',已知OB =3B O ',则△C B A '''与△ABC 的面积的比为( ) A .1∶3 B .1∶4 C .1∶5 D .1∶99.已知反比例函数y =xk 的图像经过P (-1,2),则这个函数的图像位于( )A .第二,三象限B .第一,三象限C .第三,四象限D .第二,四象限10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升a 米处,在A 处观察B 地的俯角为40°则BC 两地之间的距离为( ) A .a sin40°米 B .a cos40°米 C .a tan40°米 D .︒40tan a 米第10题图40°OABA 'C 'B '第8题图11.如图所示,31==AB AC AE AD,则下列结论不成立的是( ) A .△ABE ∽△ACD B .△BOD ∽△COEC .OC =ODD .CD ∶BE =1∶312.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在反比例函数y =xk (x >0)的图象上,当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为A 、B ;过点Q 分别作x 轴、y 轴的垂线,垂足为C 、D ;QD 与P AACQE 的面积( )A .减小B .增大C .先减小后增大D .先增大后减小二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上) 13.若432c b a==,则cb a 523+=__________. 14.若一元二次方程12--x x =0的两个根分别为1x ,2x ,则x 12+x 22= .15.计算:sin 245°+2cos60°-tan45°+3tan30°= .16.若点P 1(1,-3),P 2(m ,3)在同一反比例函数的图像上,则m 的值为 . 17.如图,在△ABC 中,D 为AB 边上一点,且∠BCD = ∠A ,BC =22,AB =3,则BD = 。
18.某种药品原来售价100元,连续两次降价后售价为81元, 若每次降价的百分率相同,则这个百分率是 。
A BCDO E 第11题图第17题图A BCD19.如图,一山坡的坡度i =1∶3,小辰从山脚A 出发,沿山坡向上走了200m 到达点B ,则小辰上升了 m 。
20.如图,直线l ⊥x 轴于点P ,且与反比例函数xk y 1=(x >0) 及xk y 2=(x >0)的图象分别交于点A 、B ,已知△OAB 的 面积为2,则21k k -=__________.三、解答题(本大题共6个小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21. (本小题满分10分)对于公式2520t t h -=,(1)当h =10时,求t ;(2)若存在实数t 1、t 2(t 1≠t 2),当t = t 1或t 2时,求h 的取值范围。
22.(本小题满分8分)i =1∶3ABC第19题图某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(如图见小宇的作业)甲、乙两人射箭成绩统计表(1)求a 和乙的方差;(2)请你从平均数和方差的角度分析谁将被选中。
23.(本题满分10分)如图是反比例函数xn y 42-=的图象的一个分支,根据图象回答下列问题:(1)图象的另一分支在哪个象限?求常数n 的取值范围? (2)若函数图象经过(3,1),求n 的值.(3)在这个函数图象的某一分支上任取两点A(a1,b1)、B(a2,b2),如果a1<a2,试比较b1、b2的大小.Array如图,Rt△ABC中,∠C=90°,BC=8,tan B=1,点D在BC上,且BD=AD.2求AC的长和cos∠ADC的值.第24题图水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤。
通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售。
(1)当售价降低0.5元时,计算每天的销售量和销售利润。
(2)若将这种水果的售价降低x元,则每天的销售量是斤(用含x的代数式表示)(3)销售这种水果要想每天获得300元的利润,张阿姨将每斤的售价降低多少元?26.(本小题满分12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线。
(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC的完美分割线;(2)如图②,在△ABC 中,AC =2,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长。
九年级数学试题参考答案及评分标准 一、选择题二、填空题13.53 14.3 15.121 16.-1 17.38 18.10% 19.100 20.4三、解答题21.(1)解:当h =10时, 20t -5t 2=10………………………………………1分即 t 2-4t +2= 0因为ac b 42-=16-8=8>0 所以t =284±=2±2……………………………………………3分所以 t 1=2+2,t 2=2-2…………………………………………5分 (2)解:由题意得,t 1、t 2是 方程20t -5t 2=h 的两个不相等的实数根………7分所以=ac b 42-=202-20h >0 … …………………………………8分 所以 h <20 ………………………………………………………9分 所以h 的取值范围是h <20 ………………………………………10分 22.解:(1)因为x 乙=51(7+5+7+a +7)=6, ………………………………1分所以a =4…………………………………………………………………2分B①②第26题图2乙s =51[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6;5分(2)因为两人成绩的平均水平(平均分)相同,根据方差得出乙的成绩比较稳定,所以乙被选中. ………………………………………………8分23.解:(1)图象的另一分支在第三象限 …………………………………………2分因为反比例函数的图象在一三象限,所以2n -4>0…………………3分 解得n >2…………………………………………………………………4分 (2)因为函数图象经过(3,1),所以1342=-n …………………………6分解得n =3.5. …………………………………………………………7分 (3)因为2n -4>0,所以在这个函数图象的每个分支上,y 随x 的增大而减小 …………………………………………………………………………9分 因为a 1<a 2,所以b 1>b 2. ……………………………………………10分24.解:在Rt △ABC 中,∠C =90°,BC =8,tan B =21,因为BCAC =tan B ,……………………………………………………………2分所以8AC =21…………………………………………………………………4分所以AC =4 …………………………………………………………………5分 设BD =AD =x ,则CD =8-x ,在Rt △ACD 中,∠C =90°,根据勾股定理得 x 2-(8-x )2= 42 …………………………………………………………7分 解得x =5,所以AD =5,CD =3………………………………………………8分 所以cos ∠ADC =53 ……………………………………………………10分25.解:(1)每天的销售量为:100+1.07.0×20=240(斤)…………………………1分 每天的销售利润为:(4-2-0.7)×240=312(元)…………………2分 (2)100+200x …………………………………………………………………3分 (3)根据题意,得(4-2-x )( 100+200x ) =300 …………………………5分解得x 1=0.5,x 2=1………………………………………………………8分 当x 1=0.5时,销售量为100+200×0.5=200<260,不合题意,舍去; 当x 2=1时,销售量为100+200×1=300>260,符合题意。