概率论与数理统计重点和必考点
概率论与数理统计知识点与重点考点

§4.1(一)离散型随机变量的数学期望的定义;(二)连续型随机变量的数学期望的定义;
(三)随机变量的函数的数学期望;
(四)数学期望的性质
§4.2 随机变量的(1)方差的定义;(2)标准差;(3)性质。(4)离散型及连续型随机变量的方差;(5)方差的计算 公式;
§4.3(1 泊松分布数学期望与方差、(2)均匀分布数学期望与方差、(3)指数分布的数学期望与方差;(4)二项分布 数学期望与方差、(5)正态分布的数学期望与方差;
§2.4 随机变量的函数的分布 (1)离散型随机变量的函数的分布 (2)连续型随机变量的函数的分布 考点:1、有关分布律、分布函数以及分布密度的基本概念的命题, 2、有关分布律、分布密度以及分布函数之间的关系的命题, 3、已知事件发生的概率,反求事件中的参数,4、利用常见分布求相关事件的概率,
5
5、求随机变量的分布律、分布密度以及分布函数,6、求随机变量函数的分布。 第三章知识点:13 §3.1 多维随机变量及其分布 (一)(1)二维随机变量的定义; (二)(1)二维随机变量的联合分布函数的定义与基本性质;(2)边缘分布函数的定义与基本性质 (三)离散型的二维随机变量:(1)联合分布律,(2)边缘分布律,(3)分布函数; (四)连续型的二维随机变量:(1)联合概率密度,(2)边缘概率密度,(3)有关性质 (五)推广:(1)n 维随机变量及其分布 §3.2 二维随机变量的条件分布 (不讲,不考)
的概率密度
fY (y) 为
1 2
fX
(
y)。 2
2.7 熟练掌握几种重要分布的期望和方差公式(二项分布:p62;泊松分布:p66;指数分布:p69;正态分布: p70) Eg1 设随机变量 X 服从参数为 2 的泊松分布,且 Y =3X -2, 则 E(Y)=4 。
概率论与数理统计考点归纳

概率论与数理统计考点归纳1. 引言概率论与数理统计是数学中的两个重要分支,它们研究随机现象的规律和利用数据推断总体特征。
在实际应用中,概率论与数理统计广泛应用于自然科学、社会科学、工程技术等领域。
本文将从以下几个方面对概率论与数理统计的考点进行归纳和总结。
2. 概率论考点2.1 随机变量与概率分布•随机变量的定义、分类和常见概率分布:离散随机变量、连续随机变量、二项分布、泊松分布、正态分布等。
•期望、方差和协方差的定义和性质,以及它们与随机变量的关系。
•大数定律和中心极限定理的概念和应用。
2.2 一维随机变量的分布特征•分布函数、概率密度函数和概率质量函数的定义和性质。
•分位数和分位点的概念和计算方法。
•随机变量的矩、协方差和相关系数的定义和计算。
•常见分布的特征:均匀分布、指数分布、正态分布等。
2.3 多维随机变量的分布特征•多维随机变量的联合分布、边缘分布和条件分布的定义和性质。
•多维随机变量的矩、协方差矩阵和相关系数矩阵的定义和计算。
•多维正态分布的定义和性质,以及多维正态分布的应用。
2.4 随机变量的函数的分布特征•随机变量函数的分布:线性变换、和、积、商的分布。
•随机变量函数的期望、方差和协方差的计算方法。
3. 数理统计考点3.1 抽样与抽样分布•抽样的概念和方法:随机抽样、简单随机抽样、系统抽样、分层抽样、整群抽样等。
•抽样分布的概念和性质:样本均值的抽样分布、样本比例的抽样分布、样本方差的抽样分布等。
•中心极限定理在抽样分布中的应用。
3.2 参数估计•点估计的概念和方法:矩估计、最大似然估计等。
•点估计的性质:无偏性、有效性、一致性等。
•置信区间的定义和计算方法。
3.3 假设检验•假设检验的基本步骤:建立原假设和备择假设、选择检验统计量、确定显著性水平、计算拒绝域、做出判断。
•假设检验的错误和功效:第一类错误、第二类错误和功效的概念和计算。
•常见假设检验方法:正态总体均值的假设检验、正态总体方差的假设检验、两样本均值的假设检验等。
概率论与数理统计重点和必考点

05 数理统计基本概念与方法
总体与样本概念辨析
总体
研究对象的全体,是一个随机变 量,有确定的分布但未知。
样本
从总体中随机抽取的一部分个体, 用于推断总体的性质。
样本容量
样本中包含的个体数目,用n表示。
统计量与抽样分布
统计量
由样本构造出的一个或多个不含总体分布未知参数的函数。
抽样分布
统计量的分布,描述了样本统计量在不同样本下的可能取值及概 率。
03 多维随机变量及其分布
二维随机变量联合分布
01
联合分布函数
对于二维随机变量$(X,Y)$,其联合分布函数$F(x,y)$描述了随机点
$(X,Y)$落在以$(x,y)$为顶点的左下方区域的概率。
02 03
联合概率密度函数
若二维随机变量$(X,Y)$的分布函数可微,则存在非负函数$f(x,y)$,使 得$F(x,y)$等于$f(x,y)$在对应区域的二重积分,称$f(x,y)$为$(X,Y)$的 联合概率密度函数。
假设检验与方差分析
假设检验是统计推断中的另一种重要 方法,用于判断总体参数是否满足某 个假设。方差分析则是一种特殊的假 设检验方法,用于比较多个总体的均 值是否存在显著差异。
回归分析与相关分析
回归分析和相关分析是统计推断中的 两种常用方法,用于研究变量之间的 关系。回归分析通过建立回归方程来 描述变量之间的依赖关系;而相关分 析则是通过计算相关系数来衡量变量 之间的相关程度。这些方法在社会科 学、生物医学、经济金融等领域有着 广泛的应用。
随机变量的分类
根据随机变量可能取的值的个数分为离散型随机变量和连续型随机变量。
离散型随机变量分布律
分布律的定义
对于一个离散型随机变量X,其所有可能取的值为$x_k$,称$P{X=x_k}=p_k$为随 机变量X的分布律。
概率论与数理统计知识点总结(免费超详细版)80669

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。
下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。
一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。
2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。
3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。
5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。
二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。
2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。
三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。
2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。
3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。
四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。
2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。
3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。
五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。
概率论与数理统计考点

《概率论与数理统计》 第一章 随机事件与概率事件之间的关系: 事件之间的运算: 运算法则:交换律A ∪B=B ∪A A ∩B=B ∩A结合律(A ∪B)∪C=A ∪(B ∪C) (A ∩B)∩C=A ∩(B ∩C) 分配律(A ∪B)∩C=(AC)∪(BC) (A ∩B)∪C=(A ∪C)∩(B ∪C) 对偶律 A ∪B ‾‾ =A ‾∩B ‾ A ∩B ‾‾ =A ‾∪B ‾ 古典概型: 概率公式:求逆公式 P(A ‾)=1- P(A)加法公式 P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) 求差公式:P(A-B)=P(A)-P(AB); 当A ⊃B 时,有P(A-B)=P(A)-P(B)注意: A-B = A B ‾ = A-AB = (A ∪B)-B条件概率公式:P(A|B)=P(AB)P(B); (P(B)>0)P(A|B)表示事件B 发生的条件下,事件A 发生的概率。
乘法公式:P(AB)=P(A)P(B|A)= P(B)P(A|B) (其中P(A)>0, P(B)>0) 一般有P(ABC)=P(A)P(B|A)P(C|AB) (其中P(AB)>0)全概率公式:P(A)= ∑i=1nP(A|B i )P(B i ) 其中B 1,B 2,…,B n 构成Ω的一个分斥。
贝叶斯公式:P(A k |B)= P(B|A k )P(A k )P(B) = P(B|A k )P(A k )∑i=1nP(B|A i )P(A i )(由果溯因)概论的性质:事件的独立性:如果事件A 与事件B 满足P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。
结论:1. 如果P(A)>0,则事件A 与B 独立⇔2. 事件A 与事件B 独立⇔事件A 与事件B ‾独立⇔事件A ‾与事件B 独立⇔事件A ‾与事件B ‾独立贝努里概型:指在相同条件下进行n 次试验;每次试验的结果有且仅有两种A 与A ‾;各次试验是相互独立;每次试验的结果发生的概率相同P(A)=p, P(A‾)=1-p 。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计知识点总结

概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又由性质 3 得
P ( B AB ) P ( B ) P ( AB ),
因此得
P ( A B ) P ( A) P ( B ) P ( AB).
推广 ------ 三个事件和的情况
P ( A1 A2 A3 )
P ( A1 ) P ( A2 ) P ( A3 ) P ( A1 A2 ) P ( A2 A3 ) P ( A1 A3 ) P ( A1 A2 A3 ).
定地点会面. 先到的人等候另一个人, 经过时间 t
( t<T ) 后离去.设每人在0 到T 这段时间内各时刻 到达该地是等可能的 , 且两人到达的时刻互不牵 连.求甲、乙两人能会面的概率. 解 设 x , y 分别为甲,乙两人到达的时
刻, 那末 0 x T , 0 y T .
两人会面的充要条件为 x y t ,
2b . aπ
b a π 2
蒲丰投针试验的应用及意义
2b P ( A) aπ 根据频率的稳定性 ,当投针试验次数 n很大时, m 算出针与平行直线相交 的次数m , 则频率值 即可 n 作为P ( A)的近似值代入上式 , 那么 m 2b 2bn , π . n aπ am
1860
1884 1901 1925
1.0
0.75 0.83 0.541 9
600
1030 3408 2520
382
489 1808 859
3.137
3.1595
3.1415929
3.1795
这说明:只要设计一个随机试验,使某事件的 概率和一未知数有关,当大量实验时,用频率 近似概率,便可求得未知数的近似解。
可列可加性: P Ai P ( Ai ) i 1 i 1
其中 A1 , A2 , 为两两互不相容事件, P(A)称为事件 A 的概率。
注意:
P(A)可以理解为事件A的函数,自变量为事 件A, 其定义域为{A|A ℱ }值域为[0,1]. 而称(, ℱ,P)为概率空间.
n
P ( A1 ) P ( A2 ) P ( An ).
注:一般减法公式 P (B - A) = P(B) - P(AB)。
( 3) 设 A, B 为两个事件, 且 A B, 则 P ( B A) P ( B) P ( A). P ( A) P ( B),
P Ai P Ai i 1 i 1
, An ,
两两互斥,则
二、概率的公理化定义与性质
1933年 , 苏联数学家柯尔莫哥洛夫提出了概
率论的公理化结构 ,给出了概率的严格定义 ,使概 率论有了迅速的发展.
柯尔莫哥洛夫资料
1、事件域
设 是随机试验E的样本空间, ℱ 是的 某些子集组成的集类.若满足: ℱ 若
1.4 几何概型和概率的公理化定义
一、几何概型
二、概率的公理化定义 三、小结
概率的古典定义具有可计算性的优点,但 它也有明显的局限性.要求样本点有限,如果样 本空间中的样本点有无限个, 概率的古典定义 就不适用了. 把有限个样本点推广到无限个样本点 的场合,人们引入了几何概型. 由此形成了 确定概率的另一方法 ——几何方法.
利用上式可计算圆周率π 的近似值.
历史上一些学者的计算结果(直线距离a=1)
试验者 Wolf Smith 时间 1850 1855 针长 0.8 0.6 投掷次数 相交次数 π的近似值 5000 3204 2532 1218 3.1596 3.1554
De Morgan
Fox Lazzerini Reina
n 个事件和的情况
P ( A1 A2 An ) P ( Ai )
i 1
n
P ( Ai Aj ) 1 i j n
P ( Ai Aj Ak ) ( 1) 1 i j k n
n1
P ( A1 A2 An ).
由性质(2)可知,由可列可加性可推出 有限可加性,但由有限可加性不能推出 可列可加性。 若 An F且An An1 ,则称 An 是F 中的一个单 调不减的集合序列。
证明 因为 A B,
所以 B A ( B A).
又 ( B A) A ,
A
B
得 P ( B ) P ( A) P ( B A) 于是 P ( B A) P ( B ) P ( A).
又因 P ( B A) 0,
故 P ( A) P ( B ).
(4) 设 A 是 A 的对立事件, 则 P( A) 1 P( A).
证明 因为 A A , A A , P( ) 1,
所以 1 P( ) P( A A)
P ( A) P ( A) P ( A) 1 P ( A).
例:投掷两颗骰子,试计算两颗骰子的点数之
P ( B A) P ( B ) P ( A) 1 1 1 . 2 3 6
B
A
(3) 由图示得 A B A AB, 且 A B A ,
又 P ( A B ) P ( A) P ( B ) P ( AB ),
P ( A AB) P ( A) P ( B A),
(5) (加法公式 )对于任意两事件 A, B 有 P ( A B) P ( A) P ( B) P ( AB).
证明 由图可得
A B A ( B AB),
A AB
B
且 A ( B AB) ,
故 P ( A B ) P ( A) P ( B AB).
定义
:对于F上的集合函数P,若对于F中的任 一单调不减集合序列{An},有 lim P ( An ) P (lim An )
n n
则称集合函数P在F上是下连续的,其中
lim An U An
n n 1
定理: 若P是F上的非负规范的集函数,则P具 有可列可加性的充要条件是(1)P是有限可加 的;(2)P是F上是下连续的。
一、几何概率
定义 若对于一随机试验, 每个样本点出现是等可能的,
样本空间所含的样本点个数为无穷多个, 且具有非 零的, 有限的几何度量, 即0 m() , 则称这一随机 试验是一几何概型的.
定义1.5 当随机试验的样本空间是某个区域,并 且任意一点落在度量 (长度, 面积, 体积) 相同的子 区域是等可能的,则事件 A 的概率可定义为
解:设A,B,C分别表示选到的人订了甲,乙,丙报
P ( A B C ) P ( A) P ( B ) P (C ) P ( AB ) P ( AC ) P ( BC ) P ( ABC ) 30% 3 10% 0 0 0 80%
m( A) P ( A) m( )
(其中m( ) 是样本空间的度量, m( A) 是构成事件 A 的子区域的度量) 这样借助于几何上的度 量来合理 规定的概率称为几何概率. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概率.
会面问题
例1 甲、乙两人相约在 0 到 T 这段时间内, 在预
随着电子计算机的出现,人们便利用电子计算机 来模拟设计的随机试验,称这种计算方法为随机 模拟法,也称蒙特卡罗方法。
几 何 概 型
A 的几何度量 L( A) P( A) S的几何度量 L( S )
几何概率的性质:
非负性: 0 P( A) 1 ( 1)
(2) 正规性:P() 1 (3)有限可加性 (4) 可列可加性: 若A1 , A 2 ,
概率的有限可加性
证明 令 An1 An 2 ,
Ai Aj , i j , i , j 1,2,.
由概率的可列可加性得
k 1
P ( A1 A2 An ) P ( Ak ) P ( Ak ) P ( Ak ) 0
k 1 k 1
a
针的中点M到最近的一条平行 直线的距离, 表示针与该平行直线的 夹角.
M x
那么针落在平面上的位 置可由( x , )完全确定.
投 针 试 验 的 所 有 可 能果 结 与矩形区域 a {( x , ) | 0 x ,0 } 2 中的所有点一一对应 .
a
M x
由投掷的任意性可知, 这是一个几何概型问题. 所关心的事件 A {针与任一平行直线相交 } 发生的充分必要条件为 中的点满足 b 0 x sin ,0 π 2
m(G ) G的面积 P ( A) m( ) 的面积
0
π
b sind 2 a π 2
1 1 例 设事件 A, B 的概率分别为 和 , 求在下列 3 2 三种情况下 P ( B A) 的值. 1 (1) A与B互斥; ( 2) A B; ( 3) P ( AB ) . 8 解 (1) 由图示得 P ( B A) P ( B), 1 故 P ( B A) P ( B ) . 2 A B ( 2) 由图示得
若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为
T
o
y
y xt
x yt
阴影部分面积 p 正方形面积
t
T
x
T 2 (T t )2 T2 t 2 1 (1 ) . T
蒲丰投针试验
蒲丰资料
例2 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(>0)的一些平行直 线,现向此平面任意投掷一根长为b( <a )的针,试求 针与任一平行直线相交的概率. 解 以 x表示针投到平面上时 ,