数学模型第十章插值和拟合方法建模--102数据拟合方法及应用
数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
数学模型第十章插值与拟合方法建模--102数据拟合方法及应用

最小二乘法就是求 c 使得残差平方和
达到最小。
n
Q(c) ( yi f (c, xi )) 2 i 1
2019/9/13
课件
2
1、线性函数
若离散样点 (x1, y1), (x2 , y2 ),,(xn , yn ) 集中在一条直线 的附近,这时可用 y a bx这样的线性函数来拟合。
§2 数据拟合方法及应用
在生产实践和科学研究中,常常有这样的问题:
由实验或测量得到变量间的一批离散样点,要求由
此建立变量之间的函数关系或得到样点之外的数
据。与此有关的另一类问题是数据拟合问题。当原
始数据 (x0 , y0 ), (x1, y1),, (xn , yn ) 有误差时,我们确定的
初等函数 y P(x) 并不要求经过数据点,而是要求在
2019/9/13
课件
13
例 3、某种产品在生产过程中的废品率 y 与它所含
的某种物质量 x 有关,现将试验所得 16 组数据记录
列于下表。
x
34 36 37 38 39 39 39 40
y
1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50
x
40 41 42 43 43 45 47 48
a
b x
(4) y aebx
2019/9/13
(2)y axb
b
(5) y ae x
课件
(3)y a bln x
(6)
y
a
1 bex
8
b
以
y
ae
x
为例,我们只要作变换
X
插值与拟合问题

插值与拟合问题插值与拟合是数学和计算机科学领域中常见的问题,涉及到通过已知数据点来估计未知点的值或者通过一组数据点来逼近一个函数的过程。
在现实生活中,这两个问题经常用于数据分析、图像处理、物理模拟等领域。
本文将介绍插值与拟合的基本概念、方法和应用。
一、插值问题插值是通过已知的数据点来推断出未知点的值。
在插值问题中,我们假设已知数据点是来自于一个未知函数的取值,在这个函数的定义域内,我们需要找到一个函数或者曲线,使得它经过已知的数据点,并且可以通过这个函数或者曲线来估计未知点的值。
常见的插值方法包括线性插值、拉格朗日插值和牛顿插值。
线性插值是通过已知的两个数据点之间的直线来估计未知点的值,它简单而直观。
拉格朗日插值则通过构造一个关于已知数据点的多项式来估计未知点的值,这个多项式经过每一个已知数据点。
牛顿插值和拉格朗日插值类似,也是通过构造一个多项式来估计未知点的值,但是它使用了差商的概念,能够更高效地处理数据点的添加和删除。
不仅仅局限于一维数据点的插值问题,对于二维或者更高维的数据点,我们也可以使用类似的插值方法。
例如,对于二维数据点,我们可以使用双线性插值来估计未知点的值,它利用了四个已知数据点之间的线性关系。
插值问题在实际应用中非常常见。
一个例子是天气预报中的气温插值问题,根据已知的气温观测站的数据点,我们可以估计出其他地点的气温。
另一个例子是图像处理中的像素插值问题,当我们对图像进行放大或者缩小操作时,需要通过已知像素点来估计未知像素点的值。
二、拟合问题拟合是通过一组数据点来逼近一个函数的过程。
在拟合问题中,我们假设已知的数据点是来自于一个未知函数的取值,我们需要找到一个函数或者曲线,使得它能够与已知的数据点尽可能地接近。
常见的拟合方法包括多项式拟合、最小二乘拟合和样条拟合。
多项式拟合是通过一个多项式函数来逼近已知的数据点,它的优点是简单易用,但是对于复杂的函数形态拟合效果可能不好。
最小二乘拟合则是寻找一个函数,使得它与已知数据点之间的误差最小,这个方法在实际应用中非常广泛。
数学建模插值与拟合课件

设函数 y f (x) 在 n 1个相异点 x0 , x1, x2 , , xn 上的值为 y 0 , y1, y2 , , yn ,要求一个次数≤n 的代数多
项式
Pn (x) a0 a1x a2 x 2 an x n
使在节点 xi 上成立 Pn (xi ) yi (i 0,1,2, , n) ,称此为 n 次代数插值问题,Pn (x) 称为插值多项式。可以证明 n
如果不要求近似函数通过所有数据点, 而是要求它能较好地反映数据变化规律的近 似函数的方法称为数据拟合。(必须有函数 表达式)
近似函数不一定(曲线或曲面)通过所 有的数据点。
三、插值与拟合的区别和联系
1、联系 都是根据实际中一组已知数据来构造一个能够 反映数据变化规律的近似函数的方法。 2、区别 插值问题不一定得到近似函数的表达形式,仅 通过插值方法找到未知点对应的值。数据拟合 要求得到一个具体的近似函数的表达式。
图所示,当n 增大时,pn x在两端会发出激烈
的振荡,这就是所谓龙格现象。
龙格现象
2
y=1/(1+x2) y=p4(x) y=p10(x) 1.5
1
0.5
0
-0.5
-5 -4 -3 -2 -1
0
1
2
3
4
5
x
To MATLAB lch(larg1)
分段插值的概念
所谓分段插值,就是将被插值函数逐段 多项式化。一般来说,分段插值方法的处理 过程分两步,先将所考察的区间作一分划
y1
lj(x)
当n =2 时,有三点二次(抛物线)插值多项式:
P2
(x)
(x (x0
x1)(x x2 ) x1)(x0 x2 )
插值与拟合算法分析

插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
数学建模精选经典课件之插值与拟合

可以看出这些点大致分 布在一条直线附近。
我们不妨用插值法,和拟合法两种方法对比 的看看他们的图像,找出他们的差别。
对这样的数据采用上一节介绍的插值方法近 似求描述物理规律的解析函数,必然存在下 列缺点:
在一个包含有很多数据点的区间内构 造插值函数,必然使用高次多项式。而 高次插值多项式是不稳定的。
700 850 950 1010 1070 1550 980
通过此例对最近邻点插值、双线性插值方法和双三次插值 方法的插值效果进行比较。
散乱节点定义
已知n个节点
其中
互不相同,
构造一个二元函数
通过全部已知节点,即
再用
计算插值,即
Matlab中网格节点插值的函数
cz=griddata(x0,y0,z0,cx,cy,’method’)
插值&拟合
一.插值法(内插,外插)
内插:是数学领域数值分析中的通过已知的离散数据 求未知数据的过程或方法。
在这里我们所讲的插值法指的就是内插法!
二.拟合法
科学和工程问题可以通过诸如采样、实验等方法获 得若干离散的数据,根据这些数据,我们往往希望得到 一个连续的函数(也就是曲线)或者更加密集的离散方 程与已知数据相吻合,这过程就叫做拟合 (fitting)。
数据的插值与拟合问题在很多赛题中都有应用。
与图形有关的问题很多和插值与拟合有关系,例如98 年美国赛的A题,生物组织切片的三位插值处理,94 年的A题逢山开路,山体海拔高度的插值计算。2001 年的公交调度拟合问题,2003年的饮酒驾车拟合问题, 2005年的雨量预报的评价的插值计算。甚至是上次的 东北三省赛的A题人口预测问题也涉及到了拟合计算。
互不相xj
xn
数学建模讲座 插值和拟合

Method的4种情况:
‘nearest’ 最临近点插值
‘linear’ 线性插值(默认)
‘spline’ 三次样条插值
‘cubic’ 三次插值
说明:这里x和y是两个独立的向量,它们必须是单调的。 z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是 z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的 第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如 果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z 的行数和列数。
n=9; x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); subplot(2,2,4), plot(x,z,'r-',x,y,'m-'),hold on, %原曲线 plot(x,y1,'b'),gtext('L16(x)','FontSize',12) %Lagrange曲线
加工时需要x每改变0.05时的y值
模型 将图1逆时针方向转90度, 轮廓线上下对称,只需对上半部 计算一个函数在插值点的值。
v
5
4.5
4
3.5
数学建模——拟合与插值

即要求 出二次多项式: f(x)a1x2a2xa3
11
中 的 A(a1,a2,a3) 使得:
[f (xi)yi]2 最小
i1
fun是一个事先建立的 定义函数F(x,xdata) 的 M-文件, 自变量为x和 xdata
选项见无 迭代初值 已知数据点 约束优化
18
25.03.2020
2. lsqnonlin
已知数据点: xdata=(xdata1,xdata2,…,xdatan) ydata=(ydata1,ydata2,…,ydatan)
+
+
y=f(x) +
x i 为点(xi,yi) 与曲线 y=f(x) 的距离
6
25.03.2020
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x), …rm(x)}的选取 1. 通过机理分析建立数学模型来确定 f(x);
2. 将数据 (xi,yi) i=1, …n 作图,通过直观判断确定 f(x):
2)计算结果:A = [-9.8108, 20.1293, -0.0317]
f(x) 9.81x0 2 8 2.1 02x9 0 3 .0317
16
25.03.2020
用MATLAB作非线性最小二乘拟合
两个求非线性最小二乘拟合的函数:
lsqcurvefit、lsqnonlin。
相同点和不同点:两个命令都要先建立M-文件fun.m,定义函 数f(x),但定义f(x)的方式不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T=t; U=log(u);
p=polyfit(T, U,1)
b=p(1)
a=exp(p(2))
求出 b 0.3126 , a 100.078,这样所拟合的函数
u 100.78e0.3126t
2020/3/3
课件
12
3、多项式函数 若离散样点的形状表明既不能用线性函数来拟
合,又不能用可以线性化的函数来拟合的话,从理 论上讲,用一个多项式函数来拟合总是可行的。在 实际应用中,最常用的是二次和三次多项式函数。 下面通过一个例子来说明。
b x
(4) y aebx
2020/3/3
(2)y axb
b
(5) y ae x
课件
(3)y a bln x
(6)
y
a
1 bex
8
b
以
y
ae
x
为例,我们只要作变换
X
1 x
,
Y
ln
y
,就可
化为线性函数Y ln a bX 。
例 2、电容器充电后,电压达到 100 伏,然后开始放 电,测得时刻 ti (秒)时电压 ui (伏)如下表。
x 100 110 120 130 140 150 160 ( ℃) 170 180 190
y 45 51 54 61 66 70 74 ( % ) 78 85 89
要求拟合出它们的函数关系。
2020/3/3
课件
4
x=[100 110 120 130 140 150 160 170 180 190]; y=[45 51 54 61 66 70 74 78 85 89]; close; plot(x,y,’o’);
t 0 1 2 3 4 5 6 7 8 9 10 u 100 75 55 40 30 20 15 10 10 5 5 要求拟合电压 u 与放电时间 t 的函数关系。
2020/3/3
课件
9
t=[0 1 2 3 4 5 6 7 8 9 10]; u=[100 75 55 40 30 20 15 10 10 5 5]; close; plot(t,u,’o’)
某种距离意义下的误差达到最小(通常考虑使各数
据点2020/误3/3 差平方和最小)。课件
1
假设已知函数 y f (c, x) (这里 c 可以是多个未
知参数)的一批有误差的数据
(x1, y1 ), (x2 , y2 ), , (xn , yn )
要求据此确定参数 c ,这样的问题称为数据拟合。 最小二乘法就是求 c 使得残差平方和
§2 数据拟合方法及应用
在生产实践和科学研究中,常常有这样的问题:
由实验或测量得到变量间的一批离散样点,要求由
此建立变量之间的函数关系或得到样点之外的数
据。与此有关的另一类问题是数据拟合问题。当原
始数据 (x0 , y0 ), (x1, y1), , (xn , yn ) 有误差时,我们确定的
初等函数 y P(x) 并不要求经过数据点,而是要求在
2020/3/3
课件
5
90 85 80 75 70 65 60 55 50 45 20210/030/3 110 120 130 140课件 150 160 170 180 1960
由于这些点落在一条直线附近,可以用线性函 数 y a bx来拟合,按上面算法通过命令 p=polyfit(x,y,1) 求出
n
n
(xi x)( yi y)
xi yi nx y
b i1 n (xi x)2
i1
n
xi 2
2
nx
i 1
i 1
a y bx
这里2020/3/3
x
1 n
n i 1
xi
y
1 n
n
yi
i课1 件
3
例 1、为研究某一化学反应过程中温度 x 对产品得率 y 的影响,测得数据如下。
2020/3/3
课件
13
例 3、某种产品在生产过程中的废品率 y 与它所含
的某种物质量 x 有关,现将试验所得 16 组数据记录
列于下表。
x
34 36 37 38 39 39 39 40
y
1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50
x
40 41 42 43 43 45 47 48
达到最小。
n
Q(c) ( yi f (c, xi )) 2 i 1
2020/3/3
课件
2
1、线性函数
若离散样点 (x1, y1), (x2 , y2 ), ,(xn , yn ) 集中在一条直线 的附近,这时可用 y a bx这样的线性函数来拟合。
按最小二乘法得到具体算法是
2020/3/3
课件
1
50
40
30
20
10
0
2020/03/3
1
2
3
4 课件5
6
7
8
9
1110
由于这些点落在曲线 u aebt , (b 0) 附近,可通过
变量转换T t , U ln u ,化成线性函数U ln a bT 。按
上面算法通过如下命令来实现:
y
0.44 0.56 0.30 0.42 0.35 0.40 0.41 0.60
要求拟合 y 与 x 的函数关系。
2020/3/3
课件
14
x=[34 36 37 38 39 39 39 40 40 41 42 43 43 45 47 48]; y=[1.30 1.00 0.73 0.90 0.81 0.70 0.60 0.50 0.44 0.56
y 2.735 0.483x
2020/3/3
课件
7
2、可线性化的函数
根据专业知识或离散样点的形状,有时可选择
适当的非线性函数来拟合。为确定其中的未知参数,
可通过变量转换,把非线性函数转换成线性函数,
然后借助线性函数的方法来实现数据拟合。诸如下
面所列的曲线函数都能做到线性化:
1
(1)y
a
46
4168
按最小二乘法,使残差平方和
n
S (a bxi cxi 2 yi )2 i 1
达到最小。分别对 S 求关于 a,b,c 的偏导数,并令其 为 0,得到如下方程组
0.30 0.42 0.35 0.40 0.41 0.60]; close; plot(x,y,’o’);
这些离散样点落在开口向上的二次抛物线
y a bx cx2 附近。
2020/3/3
课件
15
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
20203/34/3
36
38
40 课件 42
44