数学建模之数据拟合
全国职业院校信息化教学大赛获奖作品展示 《数据拟合》数学建模案例

京师微课JINGSHIWEIKE
(上接第17页)
立安排自己的学习时间,才能彻底激发学生的学习热情,使其主动地进行学习。
还要培养学生独立走上讲台的能力,给学生更广阔的舞台,促进学生的交流沟通,有助于培养学生良好的分析能力和表达能力,为学生的全面发展奠定基础。
(三)加快体育教学的内容改革
我国的高校体育教学仍然停留在传统的教学阶段,改革力度较低,不能挖掘潜在的教学能力。
在这次教学变革中应该积极推进体育线上教学的改革,向深层次和多元化角度进行全面发展,利用互联网技术的优势,培养更多的全面体育人才。
体育线上教学的目标就是培养更多符合社会发展的人才,实现体育的宗旨。
开展体育教学的过程中必须融入更多线上教育技术,才能取得体育的丰硕成果,培养更多的体育合格人才。
三、结语
高校线上教学模式的发展为培养体育人才提供支撑,引领高校教学发展的新模式,特别是使用网络教学授课,改变了传统高校体育教学的不足,打破了教学形式的限制,为高校改革提供了更多的支持。
教育工作者应该运用更多的教学模式,为培养更多的合格体育人才做出贡献。
参考文献
[1]任鹏.关于“互联网+”背景下高校体育信息化教学改革的研究[J].当代体育科技,2020(30).
[2]丁铮锴,许水生.体育教学模式、组织形式和教学方法创新[J].中外企业家,2020(17).
·
3
5
·。
数学建模-数据拟合

数据拟合作业小组成员:谭洪莲 2007211736 李志雄 2007211822 李小宁 2007211722 题目一:直接拟合。
法一:将身长和胸围相加,再与重量直接拟合,选择拟合效果最好的:第一步:在Matlab命令窗口输入cftool 执行得到拟合工具箱第二步:创建一个名为opt_us_fish的M文件执行后拟合,选择最佳的,得到结果如下:Warnings during fitting:Equation is badly conditioned. Remove repeated data pointsor try centering and scaling.Linear model Poly4:f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5Coefficients (with 95% confidence bounds):p1 = 6.9e-011 (-2.238e-010, 3.618e-010) p2 = -2.549e-007 (-1.344e-006, 8.346e-007) p3 = 0.0003309 (-0.001117, 0.001778) p4 = -0.151 (-0.9579, 0.6559)p5 = 74.47 (-84.11, 233.1)Goodness of fit:SSE: 1.161R-square: 0.9979Adjusted R-square: 0.995RMSE: 0.6221拟合结果:法二:将身长与胸围相乘,再与重量直接拟合,选择拟合效果最好的,结果如下:(步骤同上)Warnings during fitting:Equation is badly conditioned. Remove repeated data pointsor try centering and scaling.Linear model Poly4:f(x) = p1*x^4 + p2*x^3 + p3*x^2 + p4*x + p5Coefficients (with 95% confidence bounds):p1 = 3.195e-009 (-4.077e-009, 1.047e-008)p2 = -1.164e-005 (-3.87e-005, 1.542e-005) p3 = 0.01518 (-0.02077, 0.05113)p4 = -7.549 (-27.59, 12.49)p5 = 1935 (-2004, 5874)Goodness of fit:SSE: 716.1R-square: 0.9986Adjusted R-square: 0.9968RMSE: 15.45拟合效果:题目二:首先利用机理分析建立模型。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模Matlab数据拟合详解

第十八页,共43页。
插值问题
已知 n+1个节点 (xj,yj)(j0,1, n,其中 x j
数学建模方法 拟合

f T ( x) f ( x) f1 ( x) 2 f 2 ( x) 2 f n ( x) 2
最小。 其中 fi(x)= f(x, xdatai, ydatai) = F(x, xdatai)- ydatai 注意其中f(x)的定义!
24
调用格式为:
x=lsqnonlin(‘fun’,x0); 说明:x= lsqnonlin (‘fun’,x0); 待求的非 线性参数 fun是一个事 先建立的定 义函数 f(x)的 M-文件,自 变量为x
220 200 180 160 140 120 100 80 60 40 0 0.2 0.4 0.6 0.8 1 1.2 1.4
散 点 图
26
解:输入
xdata=[0.02,0.02,0.06,0.06,0.11,0.11,0.22,0.22,0.56,0.56,1.1,1.1]; ydata=[76,47,97,107,123,139,159,152,191,201,207,200];
电阻R() 765 826 873 942 1032
求600C时的电阻R。
1100 1000 900 800 700 20
因此可以设 R=at+b
a,b为待定系数
40
60
80
100
4
拟 合 问 题 引 例 2
已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8 c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01 求血药浓度随时间的变化规律c(t).
f=a1+a2/x + + +
数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合

目录
1 数据拟合问题简介 2 人口增长问题的数据拟合方法
一、数据拟合问题简介
数据拟合:从一大堆看上去杂乱无章的数 据中找出规律性来,即设法构造一条曲线 (拟合曲线)反映所给数据点总的趋势, 以消除其局部波动。
常用拟合方法:多项式拟合
存在问题:并不是所有问题都可以用多项 式作拟合,比如人口增长问题。
程序运行结果:
p= 0.0074 -12.3390
Z= 2.6864
即 a 12.3390,
b 0.0074
代入拟合函数
当t=2020时,N=14.6787
即到2020年时,全国总人口数将达到14.6787亿。
这一数据虽然不十分准确,但是基本反 映了人口变化趋势。
分析:据人口增长的统计资料和人口理论数 学模型知,当人口总数N不是很大时,在不 太长的时期内,人口增长接近于指数增长。
故采用指数函数对数据进行拟合
N eabt
为了计算方便,将上式两边同时取对数,得
ln N a bt
令 y ln N
变换后的拟合函数为
y(t ) a bt
由人口数据表对人口取对数,计算得
二、人口增长问题的数据拟合方法
问题:已知1996-2004年全国人口总数如 下表,试根据表中数据预测2020年全国人 口总数。(单位:亿)
年 1996 1997
1998
1999
2000
人口 12.2389 12.3626 12.4761 12.5876 12.6743
2001 2002 2003 2004 12.7627 12.8453 12.9227 13.0000
t 1996 1997 1998 1999 y 2.5046 2.5147 2.5238 2.5327 2000 2001 2002 2003 2004 2.5396 2.5465 2.5530 2.5590 2.5649
§4.常见的数学建模方法(1)---数据拟合(曲线拟合)法

实例. 找出基于下列数据的美国马萨诸塞州生产量、劳动力和投资之间变化的经
济增长模型(道格拉斯 Douglas 生产函数模型 )
实例 3. 某研究所为了研究三种肥料氮, 磷, 钾对于土豆和生菜的作
用, 分别对每种作物进行了三组试验. 实验数据如下列表格所示, 其 中 ha 表示公顷 , t 表示吨 , kg 表示千克. 试建立反映施肥量与产量 关系的数学模型. 氮施肥量(公斤/公顷)与土豆产量(吨/公顷)关系的实验数据
4
组数据应服 从的数学模型,如记 l - 1000 = l’ , l0 – 1000 = b, al0 = k , 则有 l’ = b + kt . 可以算得:
t 42.5,
2 ' t 8100 , l i i 1
4
(l 1000)
i 1
4
0.705,
' t l i i 34.6 i 1
§4. 常见的数学建模方法(1) --- 数据拟合(曲线拟合)法
在建立数学模型时,实际问题有时仅给出一组数据. 处理这类问题的 较简单易行的方法是通过数据拟合法求得 “最佳” 的近似函数式 --经验公式. 从几何上看就是找一条 “最佳” 的曲线, 使之和给定的 数 ( 1)决定经验公式的形式 . 根据所描绘的系统固有的特点 ,参照 据点靠得最近 , 即进行曲线拟合 . 根据一组数据来确定其经验公式 , 已知数据的图形和特点或者它应服从的规律来决定经验公式的形式 . 一般可 分为三步进行: 这一步是关键的一步. (2)决定经验公式中的待定参数 . 一般可用线性情况下的最小二 乘法 .它误差较小,适用于测定数据比较精确的情况.在使用最小二 乘法 时,如遇到数学模型是非线性经验公式时其中参数的待定,通
数学建模中的参数拟合方法

数学建模中的参数拟合方法数学建模是研究实际问题时运用数学方法建立模型,分析和预测问题的一种方法。
在建立模型的过程中,参数拟合是非常重要的一环。
所谓参数拟合,就是通过已知数据来推算模型中的未知参数,使模型更加精准地描述现实情况。
本文将介绍数学建模中常用的参数拟合方法。
一、最小二乘法最小二乘法是一种常用的线性和非线性回归方法。
该方法通过最小化误差的平方和来估计模型参数。
同时该方法的优点在于可以使用简单的数学公式解决问题。
最小二乘法的基本思想可以简单地表示如下:对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
通常拟合曲线可以用如下所示的线性方程表示:$$f(x)=a_0+a_1x+a_2x^2+...+a_kx^k$$其中,k为拟合曲线的阶数,$a_i$表示第i个系数。
最小二乘法的目标即为找到一组系数${a_0,a_1,...,a_k}$,使得曲线拟合残差平方和最小:$$S=\sum_{i=1}^{n}(y_i-f(x_i))^2$$则称此时求得的拟合数学模型为最小二乘拟合模型。
最小二乘法在实际问题中应用广泛,如线性回归分析、非线性回归分析、多项式拟合、模拟建模等领域。
对于非线性模型,最小二乘法的数学公式比较复杂,需要使用计算机编程实现。
二、梯度下降法梯度下降法是一种优化算法,通过求解函数的导数,从而找到函数的最小值点。
在数学建模中,梯度下降法可以用于非线性回归分析,最小化误差函数。
梯度下降法的基本思想为:在小区间范围内,将函数$f(x)$视为线性的,取其一阶泰勒展开式,在此基础上进行优化。
由于$f(x)$的导数表示$f(x)$函数值增大最快的方向,因此梯度下降法可以通过调整参数的值,逐渐朝向函数的最小值点移动。
具体地,对于给定的数据集合,设其对应的观测值集合为y,$y_1,y_2,...,y_n$,对应的自变量集合为x,$x_1,x_2,...,x_n$,则目标是找到一组系数使得拟合曲线最接近实际数据点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+ a3>0
+ +
+
f=a1+a2x+a3x2
+
+ +
a3<0
+
+
f=a1+a2/x +
+++ +
+ f=ae-bx + a,b>0 + ++
f=aebx +
++ +
+ a,b>0
14
非线性最小二乘拟合的线性化
如下非线性拟合函数可以线性化:
(1)双曲线 1 a b
y
x
(2)幂函数曲线 y=a x b , 其中 x>0,a>0
数学建模
拟合篇
1
目的
1、了解数据拟合的基本内容; 2、学习用Matlab软件求解拟合问题;
内容
1、拟合问题引例及基本理论;
2、用数学软件求解拟合问题; 3、应用实例; 4、实验作业;
2
拟合
1. 拟合问题引例 2.拟合的基本原理
3
拟合问题引例1
已知热敏电阻数据:温度t(0C) 20.5 32.7 51.0 73.0 95.7 电阻R() 765 826 873 942 1032
(2)
i1 k 1
问题归结为:求 a1,a2, …,am 使 J(a1,a2, …,am) 最小。
11
最小二乘法的求解:预备知识
超定方程组:方程个数大于未知量个数的方程组
r11a1
r12a2
r1m am
y1
(n m)
rn1a1 rn2a2 rnmam yn
即 Ra=y
r11 r12 其中 R
rn1 rn2
r1m , rnm
a1
a
,
am
y1
y
yn
注:超定方程一般是不存在解的矛盾方程组。
n
如果有向量 a 使得 (ri1a1 ri2a2 rimam yi )2 达到最小, i 1
则称 a 为上述超定方程的最小二乘解。
12
最小二乘法的求解:预备知识
所以,根据多元函数取得极值的必要条件,曲线拟合的最
(1)
其中 a1,a2, …,am 为待定系数。
第二步:以最小二乘准则确定a1,a2, …,am ,即使n个点(xi , yi)
处yi与f(xi) 的差i 的平方和最小 。
n
n
记 J (a1, a2,L , am )
2 i
[ f (xi ) yi ]2
i 1
i 1
nm
[ ak rk (xi ) yi ]2
总之, 函数插值与曲线拟合都是要根据一组数据构造一个函 数作为近似,由于近似的要求不同,二者的数学方法上是完全 不同的。
实例:下面数据是某次实验所得,希望得到x和 f之间的关系。
x 1 2 4 7 9 12 13 15 17 f 1.5 3.9 6.6 11.7 15.6 18.8 19.6 20.6 21.1
求血药浓度随时间的变化规律c(t).
2
1020
半 直对 角数坐坐标标系系下下的的散散点点图图
18
16
14
12
1
10 10
8
6
4
100
2 0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
MATLAB(aa1)
c(t) c0ekt c, k为待定系数
5
8 8
曲线拟合问题的提法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…,n, 寻 求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有数 据点最为接近,即曲线拟合得最好。
下面我们看一下插值和拟合的异同: MATLAB(cn) 7
25
20
curve fit
15
nearest
10
5
0 0 2 4 6 8 10 12 14 16 18
曲线拟合与最临近插值进行比较
8
25
20 curve fit
15 linear
10
5
0 0 2 4 6 8 10 12 14 16 18
曲线拟合与线性插值进行比较
13
线性最小二乘拟合 f(x)=a1r1(x)+ …+amrm(x)中 函数{r1(x),…,rm(x)}的选取 1. 通过机理分析建立数学模型来确定 f(x);
2. 将数据 (xi , yi) i=1, …,n 作图,通过直观判断确定 f(x):
f=a1+a2x +
++
++
f=a1+a2x+a3x2 +
(3)指数曲线 y=a ebx 其中参数 a>0.
(4)倒指数曲线 y=aeb / x 其中 a>0,
(5)对数曲线 y=a+blnx,x>0
(6)S
型曲线
y
a
1 bex
15
用MATLAB解拟合问题
1、线性最小二乘拟合 2、非线性最小二乘拟合
16
用MATLAB作线性最小二乘拟合
1. 作多项式f(x)=a1xm+ …+amx+am+1拟合,可利用已有程
求600C时的电阻R。
1100
因此可以设
1000
R=at+b
900
a,b为待定系数
800
700
20
40
60
80
100
4
拟合问题引例2
已知一室模型快速静脉注射下的血药浓度数据(t=0注射300mg) t (h) 0.25 0.5 1 1.5 2 3 4 6 8
c (g/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01yBiblioteka ++
+
+
+
(xi +i,yi)
+
+
n
误差平方和: i 2 i 1 尽可能小!
y=f(x) +
其中 i =yi -f(xi )
x
6
拟合与插值的关系
问题:给定一批数据点,需确定满足特定要求的曲线或曲面 解决方案: •若要求所求曲线(面)通过所给所有数据点,就是插值问题; •若不要求曲线(面)通过所有数据点,而是要求它反映对象整 体的变化趋势,这就是数据拟合,又称曲线拟合或曲面拟合。
序:
a=polyfit(x,y,m)
输出拟合多项式系数 a=[a1,…,am,am+1] (数组)
输入同长度 的数组x, y
拟合多项式次数,特 别m=n-1时,所得多 项式为插值多项式!
9
25
20
curve fit
15
spline
10
5
0 0 2 4 6 8 10 12 14 16 18
曲线拟合与样条插值进行比较
10
线性拟合问题的解法—最小二乘法的基本思路,
第一步:先选定一组函数 r1(x), r2(x), …,rm(x), m<n, 令
f(x)=a1r1(x)+a2r2(x)+ …+am rm(x)
小二乘法要解决的问题,就转化为求以下超定方程组最小二乘
解的问题。
Ra=y
(3)
其中
r1 ( x1 ) rm ( x1 )
R
,
r1 ( xn ) rm ( xn )
a1
a
,
am
y1
y
yn
定理:当RTR可逆时,超定方程组(3)存在最小二乘解,
且就是方程组
RTRa=RTy 的解:a=(RTR)-1RTy