3.3.3简单的线性规划问题教案2 高中数学 必修五 苏教版(word版)

合集下载

《3.3.2简单的线性规划问题》教案

《3.3.2简单的线性规划问题》教案

简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。

教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。

教学过程设计。

2015江苏省常州市西夏墅中学高中数学3.3.3《简单的线性规划问题》教案2苏教版必修5

2015江苏省常州市西夏墅中学高中数学3.3.3《简单的线性规划问题》教案2苏教版必修5

3.3.3 简单的线性规划问题(2)教学目标:一、知识与技能1.能将实际问题转化为数学问题,从实际情景中抽象解决一些简单的线性规划应用问题的基本思路和主要方法;2. 在应用中培养分析能力、判断能力、作图能力、计算能力;3.通过对线性规划方法的实际应用,进一步加深对线性规划有关知识的理解;4.正确进行多种数学语言的转译,增强学生应用数学的意识.二、过程与方法经历从实际情境中抽象出不等式模型的过程,培养学生数学建模的能力以及数学应用意识.三、情感、态度与价值观1. 通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,体会不等式对于刻画不等关系的意义和价值;2.体会线性规划的基本思想,借助几何直观解决一些简单的线性规划问题;3.通过实例,体验数学与日常生活的联系,感受数学的实用价值,增强应用意识,提高实践能力,培养学生理论联系实际的观点.教学重点:线性规划问题的图解法,即根据实际问题中的已知条件,找出约束条件和目标函数,并利用图解法求得最优解的主要步骤和基本思路;教学难点:把实际问题转化为数学问题,即如何根据实际问题的条件,转化为线性约束条件;如何把实际问题中要的结果转化为线性目标函数;如何根据实际问题的要求确定最优解.教学方法:应用多媒体辅助教学,增强动感和直观性,增大教学容量,提高教学效果和教学质量.采取先师生共同分析、探究解决一两个范例,给学生提供良好有效的解决问题的思路方法以及完整规范的解题格式和程序,再让学生进行模仿练习,在模仿中加深对求解线性规划应用题的思路方法的理解和掌握,逐步提高分析问题、解决问题的能力.教学过程:一、 问题情景1. 提高企业的经济效益是现代化管理的根本任务,各个领域中的大量问题都可以归结为线性规划问题,根据美国《财富》杂志对全美前500家大公司的调查表明,有0085的公司频繁地使用线性规划,并取得了提高经济效益的显著效果.在实际生活中,我们也经常遇到需要合理安排资源,以得到最大效益的问题,如:(多媒体显示).某校办工厂有方木料390m ,五合板6002m ,正准备为外校新生加工新桌椅和书橱出售.已知生产每张书桌需要方木料301m ⋅,五合板22m ,生产每个书橱需要方木料302m ⋅,五合板12m ,出售一张书桌可获利润80元,出售一张书橱可获利润120元.(1)假设你是工厂的生产科长,请你按要求设计出工厂的生产方案.(2)设生产书桌x 张,书橱y 张,利润z 元,写出x ,y 应满足的条件以及z 与x ,y 之间的函数关系式.(3)如果你是厂长,为使工厂原料充分利用,问怎么安排能够使资源最大限度的利用,且可获得最大利润?二、学生活动1. 让学生思考上面的问题,探究解决这一问题的方案.生甲:若只生产书桌,用完五合板,可生产书桌300张,可获得利润80×300=24000元,但方木料没有用完.生乙:若只生产书橱,用完方木料,可生产450张书橱,可获得利润120×450=54000元,但五合板没有用完.师:在上面两种情况下,原料都没有充分利用,造成了资源浪费,那么该怎么安排能够使资源最大限度的利用,且可获得最大利润?生丙:设生产书桌x 张,书橱y 张,利润z 元,利用线性规划. 师:x y 应满足什么约束条件呢?目标函数是什么?生丙:约束条件为0.10.2902600x y x y x y +≤⎧⎪+≤⎪⎨∈⎪⎪∈⎩,,N,N.目标函数为y x z 12080+=,这个问题转化为求目标函数的最大值问题.师:能用前面学过的知识解决这一问题吗? 生丁:作出可行域,作出一组平行直线t y x =+32, 当直线经过点()400,100A 时,直线的纵截距最大, 即合理安排生产,生产书桌100张,书橱400张, 有最大利润为5600012040010080max =⨯+⨯=z 元.师:解决本题的关键在哪儿?生:根据题意,找出线性约束条件和线性目标函数,利用线性规划图解法求解. 师:哪些应用题可以用线性规划来处理?生:(讨论,再次观察例题,总结,教师补充)一是人力、物力、财力等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.(即“少投入,多产出”)三、建构数学1. 线性规划问题的求解步骤:(1)审:审题(将题目中数据列表),将实际问题转化为数学问题; (2)设:设出变量,确定约束条件,建立目标函数;(3)画:画出线性约束条件所表示的可行域,作出目标函数线;(4)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(5)求:通过解方程组求出最优解; (6)答:回答实际问题.2. 对于有实际背景的线性规划问题,可行域通常是一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点,因此,确定其最优解,往往只需考虑在各个顶点的情形,通过比较,即可得最优解.四、数学运用1. 例题.例1 某工厂用A ,B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是什么?若生产一件甲产品可获利润2万元,生产一件乙产品可获利润3万元,则如何安排日生产,可使工厂所获利润最大?解 设甲、乙两种产品的产量分别为x , y 件,工厂所获利润z 万元,约束条件为284164120,0x y x y x y +≤⎧⎪≤⎪⎨≤⎪⎪≥≥⎩,,,.,目标函数是y x z 32+=.作出可行域(如图所示),能的日生产安排.将目标函数变形为332z x y +-=,这是斜率为32-,在y 轴上的截距为3z ,随着3z 变化的直线族.当3z最大时,z 最大,但直线要与可行域相交.当直线经过两条直线0824=-+=y x x 与的交点()2,4M 时,直线在y 轴上的截距最大,最大值为314,因此,每天生产甲产品4件、乙产品2件时,工厂可得最大利润14万元. 例2 投资生产A 产品时,每生产一百吨需要资金200万元,需场地200 m 2,可获利润300万元;投资生产B 产品时,每生产一百米需要资金300万元,需场地100m 2,可获利润200万元.现某单位可使用资金1400万元,场地900 m 2,问 应作怎样的组合投资,可获利最大? 分析:解 设生产A 产品x 百吨,生产B 产品y 百米,利润为S 百万元,则约束条件为:23142900x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,,,.目标函数为y x S 23+=,作出可行域(如图所示),将目标函数变形为223S x y +-=,这是斜率为23-,在y 轴上的截距为2S ,随着2S 变化的直线族.当2S最大时,S 最大,但直线要与可行域相交.当直线经过两条直线143292=+=+y x y x 与的交点⎪⎭⎫⎝⎛25413,A 时,直线在y 轴上的截距最大,此时75.145.2225.33=⨯+⨯=S ,因此,生产A 产品325t ,生产B 产品250m 时,获利最大,且最大利润为1475万元.例3 营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg 食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少千克? 分析 解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z 元,则线性约束条件为:0.1050.1050.0750.070.140.060.140.070.0600x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩,,,,.①,28x +21目标函数为:y x z 2128+=不等式①等价于7757146147600x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩,,,,. ②,作出可行域如图:考虑y x z 2128+=可变形为2834z x y +-=,这是斜率为34-、随z 变化的一组平行直线,28z 是直线在y 轴上的截距,当28z取最小值时,z 的值最小,且直线要与可行域相交,由上图可见,当直线y x z 2128+=经过可行域上的点M 时,截距28z最小,即z 最小.解方程组⎩⎨⎧=+=+6714577y x y x ,得M 的坐标为⎪⎭⎫⎝⎛7471,,所以162128min =+=y x z .由此可知,每天食用A 食物143g ,食物B 约571g ,能够满足日常饮食要求,又使花费最低,最低成本为16元.2.练习.(1)某工厂拟生产甲、乙两种适销产品,每件销售收入分别为3千元、2千元.甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 上加工一件甲所需工时分别为1小时、2小时,加工一件乙所需工时分别为2小时、1小时,A ,B 两种设备每月有效使用台数分别为400小时/台和500小时/台.如何安排生产可使收入最大? 解 设甲、乙两种产品的产量分别为x ,y 件,约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00500424002y x y x y x ,目标函数是y x z 23+=. 作出可行域(如图所示) 将目标函数变形为223zx y +-=,这是斜率为23-,在y 轴上的截距为2z ,随着2z 变化的直线族.当2z最大时,z 最大,但直线要与7.2x +可行域相交.当直线经过两条直线40025002=+=+y x y x 与的交点()100,200A 时,直线在y 轴上的截距最大,最大值为800千元,因此,甲、乙两种产品的每月产量分别为200,100件时,工厂可得最大收入800千元.(2)某人准备投资1200万元兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):若根据有关部门的规定,初中每人每年可收取学费1600元,高中每人每年可收取学费2700元.因生源和环境等条件限制,办学规模以20至30个班为宜(含20个与30个),那么开设初中班和高中班各多少个,每年收取的学费总额最多?解 设开设初中班x 个,高中班y 个,收取学费的总额为z 万元.满足的约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≥+0,04023020y x y x y x y x ,目标函数为y x z 4027.04516.0⨯+⨯=,可行域如图,把z x y y x z 545328.102.7+-=+=变形为,得到斜率为32-,在y 轴上的截距为54z ,随着54z变化的直线族.当54z 最大时,z 最大,但直线要与可行域相交.当直线经过可行域上的点M 时,直线在y 轴上的截距最大,z 最大.解方程组30,240x y x y +=⎧⎨+=⎩()20,10,M 得的坐标为所以252108.10202.7max =⨯+⨯=z .由此可知,开设20个初中班和10个高中班,收取的学费最多,为252万元.五、要点归纳与方法小结:本节课学习了以下内容:1. 线性规划问题的求解步骤:(1)审:审题(将题目中数据列表),将实际问题转化为数学问题;(2)设:设出变量,确定约束条件,建立目标函数;(3)画:画出线性约束条件所表示的可行域,作出目标函数线;(4)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;(5)求:通过解方程组求出最优解;(6)答:回答实际问题.2. 对于有实际背景的线性规划问题,可行域通常是一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点,因此,确定其最优解,往往只需考虑在各个顶点的情形,通过比较,即可得最优解.3. 本节课学习的数学思想:化归思想、数形结合思想.。

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

3.3.3简单的线性规划问题(1)

3.3.3简单的线性规划问题(1)

我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。

教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。

2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。

(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。

我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。

例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。

若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。

简单的线性规划教学设计

简单的线性规划教学设计

简单的线性规划问题教学设计探究问题(二)如图,图中的阴影部分的整点(坐标为整数的点)就代表所有可能的日生产安排现实际的生产安排与数学问题之间的联系,画出相应的图形数学建模思想及作图能力,并能够找到与实际应用问题相关的可行区域探究问题(三)提出新问题:进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得的利润为z,则z=2x+3y.这样,上述问题就转化为:当x,y满足不等式(1)并且为非负整数时,z的最大值是多少?把z=2x+3y变形为233zy x=-+,这是斜率为23-,在y轴上的截距为3z的直线.当z变化时,可以得到一组互相平行的直线,如图:由于这些直线的斜率是确定的,因此只要给定一个点,(例如(1,2)),就能确定一条直线(2833y x=-+),这说明,截距3z可以由平面内的一个点的坐标唯一确定。

可以看到,直线233zy x=-+与不等式组表示的平面区域的交点满足不等式组,而且当截距3z最大时,z取得最大值.因此,问题可以转化为当直线233zy x=-+与不等式组确定的平面区域有公共点时,在区域内找一个点P,使直线经过点P时以老师讲授为主,学生配合讨论,归纳总结出求解目标函数最优解的方法通过本环节培养学生探索、发现、解决问题的能力,渗透实际应用问题转化为数学问题的数学建模思想,在实际解决问题的过程中培养学生的观察能力,提高数形结合解题的意识,让学生体会到数学无处不在,体会数学之美。

高中数学_简单的线性规划问题教学设计学情分析教材分析课后反思

高中数学_简单的线性规划问题教学设计学情分析教材分析课后反思

3.3.2简单的线性规划问题(第一课时)教学设计一.教学目标(1)知识与技能:使学生了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

二.教学重点线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.三.教学难点用图解法求最优解的探索过程;数形结合思想的理解.四.教学过程设计PPT 展示:“线性规划之父”数学家乔治·伯纳德·丹齐格课首语:同学们!上节课我们学习了二元一次不等式(组)与平面区域,本节课我们来学习——简单的线性规划问题,首先,看引例并完成第一问。

(一)引入引例:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h.该产每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,尝试解决以下问题:(1)列出满足日生产条件的数学关系式师生活动:教师:请同学们认真审题,根据上节课学习的内容,先根据问题的需要选取起关键作用的、关联较多的两个量,并用字母表示,然后将问题中有关的限制条件,用不等式表示,得到满足题意的一个二元一次不等式组。

学生口答:设甲、乙分别生产x 、y 件,由已知条件可得:28,416,412,(1)0,0.x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩(2)在平面直角坐标系中画出上式所表示的平面区域师生活动:请同学们画出上述二元一次不等式组对应的平面区域,请一名同学到黑板上画出,其余同学在下面画(教师巡视)。

苏教版数学必修五:3.3.3简单的线性规划问题-作业纸

苏教版数学必修五:3.3.3简单的线性规划问题-作业纸

§3.3.3 简单的线性规划问题 第 课时班级___________姓名______________1.若1223x y ≤≤⎧⎨≤≤⎩,则能使x +y 取得最大值的整点是____________.2.两直线2x -3y+1=0,3x -2y -1=0的交点坐标是 ______________.3.设P(x ,y)满足x ,y ∈N ,且x + y ≤4,x -y 的最小值为___________.4. 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,且能使z=2x +y 的最大值点(x ,y )是______________.5.非负实数x 、y 满足y x y x y x 3,03042+⎩⎨⎧≤-+≤-+则的最大值为 .6.若x ,y 满足条件32x y y x +≤⎧⎨≤⎩,则z = 3x + 4y 的最大值是 .7.已知⎪⎩⎪⎨⎧≥-≤-≤+13492x y x y x , 则z = 3x + y 最大值为______________.8.x ,y 满足不等式组 2438x y x y ≤≤⎧⎪≥⎨⎪+≤⎩,则目标函数y x k 23-=的最大值为_____________.9.已知x ,y 满足约束条件 则的最小值为_____________. 10.已知x 、y 满足不等式,则z =3x+y 的最小值为_____________.50,0,3.x y x y x -+≥⎧⎪+≥⎨⎪≤⎩y x z -=4⎪⎩⎪⎨⎧≥≥≥+≥+0y ,0x 1y x 22y 2x11.已知x 、y 满足不等式组,试求z =300x+900y 取最大值时的整点的坐标,及相应的z 的最大值.12.要将甲、乙两种长短不同的钢管截成A 、B 、C 三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示:今需A 、B 、C 三种规格的钢管各13、16、18根,问各截这两种钢管多少根可得所需三种规格钢管,且使所用钢管根数最少。

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

高中数学五第三章3.3.2 简单的线性规划问题(第2课时)【教案】

3。

3。

2简单线性规划问题(第2课时)一、教学目标1.知识目标:1、在应用图解法解题的过程中培养学生的观察能力、理解能力;2、在变式训练的过程中,培养学生的分析能力、探索能力;3、会用线性规划的理论和方法解决一些较简单的实际问题。

2.能力目标: 1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和最优解等概念;2、理解线性规划问题的图解法;3、会利用图解法求线性目标函数的最优解;4、让学生体验数学来源于生活,服务于生活,体验应用数学的快乐。

3.情感目标: 1、培养学生学习数学的兴趣和“用数学"的意识,激励学生创新,鼓励学生讨论,学会沟通,培养团结协作精神;2、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

二、教学重点与难点:重点:1、画可行域;在可行域内,用图解法准确求得线性规划问题的最优;2、解经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力和意识。

难点:1、建立数学模型.把实际问题转化为线性规划问题;2、在可行域内,用图解法准确求得线性规划问题的最优解.三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。

使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线。

“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知.来源:学四、教学过程:数学教学是数学活动的教学。

因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,解决问题,3、复习概念,回顾方法;4、实际应用,强化思想;5、自主思考,归纳总结;6、布置作业,巩固提高._五、教学过程设计①画出了可行域后用闪动的方式加以强调;②拖动直线l 平移,平移过程中可以显示z 值的大小变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8课时简单的线性规划问题
【学习导航】
知识网络
学习要求
1.了解线性规划相关概念,掌握简单线
性规划求解方法.
2.培养学生的数学应用意识和数形结合
的能力.
【课堂互动】
自学评价
1.线性条件与线性约束条件见书
2.目标函数与线性目标函数:
见书
3.可行域:
见书
4.线性规划:
见书
【精典范例】
例1.在约束条件
410 4320
x y
x y
x
y
ì+?
ïï
ïï
+?
ï
íï
³
ïï
ï³
ïî
下,
求P=2x+y的最大值与最小值. 【解】
见书.
变式1.在例1条件下,求P=2x+y+20
的最大值与最小值
变式2.在例1条件下,求P=2x-y的最
变式3.在例1条件下,求P=4x+3y的最
解:变式1:设
l:0
2=
+y
x,平移
l
27.5, P最小值为2
变式2:设
l:0
2=
-y
x,平移
l类
得P最大值为5, P最小值为
3
40
-.
变式3:设
l:0
3
4=
+y
x,平移
l类
同例1,得P最大值为20,P最小值为0.
思维点拔:
1.在线性约束条件下求目标函数
z=ax+by+c的最大值或最小值的求解步
骤:
(1)作出可行域;(2)作出直线l0:ax+by=0;
(3) 平移l0使其过最优解对应点;(4)解相
关方程组,求出最优解从而求出目标函数
最值.
2.线性规划问题主要借助于图形求解,故
听课随笔
作图要尽可能地准确,尤其对于l 0的斜率与平面区域边界线的斜率大小关系要搞清.从而准确地确定最优解对应点的位置. 3. 最优解有时会有无数个.
追踪训练一
1. 已知2
22
x y x y ì£ïïï£íïï+?ïïî , 则目标函数
Z=x+2y 的最大值是_____6______ .
2.已知12
24a b a b ì-??ïïíï??ïî, 则4a -2b
取值范围是_[-1,10]
3.给出平面区域如图所示, 若使目标函数Z=ax+y (a>0), 取得最大值的最优解有无数个, 则a 值为 ( B )
A.41
B. 53
C. 4
D. 35
例 2.设变量x , y 满足条件⎪⎪⎩⎪⎪⎨⎧>>∈≤+≤+0
,0,11
410
23y x Z y x
y x y x , 求S=5x+4y 的最大值.
略解:因可行域内只有3个整点(1,1), (2,1), (1,2),显然当x=2,y=1时,S的最大值为14.
思维点拔: 求整点最优解的方法: (1)作网格线法(特殊点可验证处理)求出的整数点逐一代入目标函数,求出目标函数的最值. (2)作网格线,确定整点,然后设作l 0让其平移确定最优整点解,再求最值. 追踪训练二 设变量x , y 满足条件23827,x y x y x y N ì+?ïïï+?íïïÎïïî , 求S=3x+2y 的最值. 略解:作平面区域后,再作网格线,定出整点,然后设作l 0:3x+2y=0,平移l 0使其过点(1,2)时,S的最大值为14. 平移l 0使其过点(0,0)时,S的最小值为0.
听课随笔 【师生互动】。

相关文档
最新文档