自蔓延高温合成MnS粉末

合集下载

自蔓延高温合成技术的发展与应用

自蔓延高温合成技术的发展与应用

收稿日期:2005-04-20 作者简介:谭小桩(1970-),男,1989年毕业于北京科技大学金属材料与热处理专业,工程师. 文章编号:1009-9700(2005)05-0005-05自蔓延高温合成技术的发展与应用谭小桩1,贾光耀2(11广东省钢铁研究所,广东广州510640;21北京科技大学材料学院,北京100083)摘 要:自蔓延高温合成技术是20世纪后期诞生的一门新兴的前沿科学,在粉体合成及陶瓷涂层内衬的制备等方面充分显示其优越性.文章对自蔓延高温合成技术的概念、国内外基本情况进行了阐述,同时简要介绍了自蔓延高温合成的燃烧理论,对利用自蔓延合成技术进行粉体合成及陶瓷内衬钢管的应用研究等作了较为详尽的说明.关键词:自蔓延;氮化铝;陶瓷粉末中图分类号:T B 39 文献标识码:ADevelopment and application of self 2propagating high temperature synthesisT AN X iao 2zhuang 1,J I A G uang 2yao 21G uangdong Research Institute of Iron and S teel ,G uangzhou 510640;2Beijing University of Science and T echnology ,Beijing10083Abstract :Born in late 20th century as a frontier field of science ,self 2propagating high tem perature synthesis (SHS )has shown its merits in powder synthesis and manu facture of inner ceramic lining.This paper is concerned with the definition ,current status both at home and abroad ,and relevant combustion theories ,all inv olved in the SHS.The applications of the SHS technique in syn 2thetizing powders and manu facturing ceramic inner lining in steel pipes are reviewed in detail.K ey w ords :self 2propagating ;aluminum nitride ;ceramic powder1 引言 自蔓延高温合成(Self -Propagating High T em per 2ature Synthesis ,SHS ),也称燃烧合成(C ombustion Syn 2thesis ,CS ),它是一种利用化学反应自身放热使反应持续进行,最终合成所需材料或制品的新技术.任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS 过程.在SHS 过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态.燃烧合成的基本要素.(1)利用化学反应自身放热,完全或部分不需外部热源;(2)通过快速自动波燃烧的自维持反应得到所需成分和结构的产物;(3)通过改变热的释放和传输速度来控制过程的速度、温度、转化率和产物的成分及结构.SHS 技术制备的产品纯度高、能耗低、工艺简单,用SHS 技术可以制备非平衡态、非化学计量比和功能梯度材料.其特点为:①是一种快速的合成过程;②具有节能效果;③可提高合成材料的纯度;④产物易形成多孔组织;⑤燃烧产物的组织具较大的离散性.因此,探索各种SHS 体系的燃烧合成规律,获得均匀组织也是保障SHS 产业化的关键.2 国内外研究现状1967年,苏联科学院化学物理研究所宏观动力学研究室的Borovinskaya ,Skior 和Merhanov 等人[1]在研究钛和硼的混合粉坯块的燃烧时,发现“固体火焰”,后又发现许多金属和非金属反应形成难熔化合物时都有强烈的放热反应;1972年,该所建立了年产10~12t 难熔化合物粉末(碳化钛、二硼化钛、氮化硼、硅化钼等)的SHS 中试装置;1973年,苏联开始将SHS 产物投入实际应用,并召开了全苏SHS 会总第146期2005年10月 南 方 金 属S OUTHERN MET A LS Sum.146October 2005议;1975年,苏联开始研究SHS 致密化技术,将SHS 和传统冶金及材料加工技术结合,在燃烧合成的同时进行热固结或加工成型,一步合成所需要的形状或尺寸的产品或涂层,并于1979年开始工业化生产M oSi 2粉末和加热元件;1984年,Merhanov 等提出结构宏观动力学的概念,研究燃烧合成过程中的化学转变、热交换、物质交换和结构转变及它们的关系;1987年,苏联成立成立SHS 研究中心,此前苏联几十个城市都有SHS 研究机构.据1991年的统计,前苏联有150多个单位,800多人发表了SHS 方面的论文.工业生产的SHS 产品有T iC 磨料、M oSi 2加热元件、耐火材料、形状记忆合金、硬质合金等,1996年开始规模生产铁氧体.以Merzhanov 院士为代表的俄罗斯学者为SHS 学科的建立和实际应用做出了杰出贡献.80年代初,苏联的SHS 成就引起外界的注意.Crider ,Franhouser 等人对苏联SHS 的介绍促进了外界对SHS 的了解.美国Mccauley ,H olt 等人的SHS 研究也得到了美国政府DARPA 计划的支持.Munir 和H olt [2~3]分别也对SHS 和反应烧结作了许多的研究工作.1988年在美国召开了“高温材料的燃烧合成和等离子合成”国际会议,Merhanov 应邀作了关于SHS 的长篇报告,促进了SHS 的国际交流.80年代初,日本的小田原修,小泉光惠和宫本钦生等开始SHS 研究.1987年日本成立燃烧合成研究协会.1990年,在日本召开了第一次日美燃烧合成讨论会,Merhanov 应邀作了报告.目前,日本研究的陶瓷内衬钢管和T iNi 形状记忆合金已投入实际应用.我国在70年代初期利用M o 2Si 的放热反应制备了M oSi 2粉末[4].1983年,利用超高反应烧结制备C BN 硬质合金复合片.80年代中后期,西北有色金属研究院、北京科技大学、南京电光源研究所、武汉工业大学、北京钢铁研究总院等单位相继展开了SHS 研究[5~9].Munir 教授和Borovinskaya 教授曾分别应邀在北京科技大学和北京有色研究总院介绍了SHS.“八五”期间,国家863计划新材料领域设立SHS 技术项目,支持SHS 研究开发.1994年,在武汉召开了第一届全国燃烧合成学术会议.我国的SHS 产业化成果也得到了国外同行的高度评价.我国研制的陶瓷复合钢管年产近万吨.近年,我国在SHS 领域加强了与国外的合作与交流,发表的SHS 方面的文章数目仅次于俄、美,与日本相近.我国台湾学者在SHS 粉末和不规则燃烧方面也取得了引人注目的科研成果.目前,从事SHS 研究和开发的国家已达30多个.3 自蔓延高温合成技术理论随着对自蔓延高温合成技术实验研究的不断深入和推广应用,其理论日臻完善,目前对自蔓延高温合成技术理论的研究主要体现在以下几方面:SHS 过程热力学、绝热燃烧温度、平衡成份的确定、点火理论及动力学等[10].311 SHS 过程热力学燃烧体系进行热力学分析是SHS 研究过程的基础.绝热燃烧温度是描述SHS 反应特征的最重要的热力学参量.它不仅可以作为判断反应能否自我维持的定性判据,并且还可以对燃烧反应产物的状态进行预测并且可为反应体系的成分设计提供依据.Merzhanov 等人提出以下经验判据.当T ad ≥1800K 时,SHS 反应才能自我持续完成.f (T ad )=2RT ad E T adT ab -T o+1式中:T ad 代表反应绝热温度;T 0代表初始温度;E 代表反应激活能.312 绝热燃烧温度绝热燃烧温度是指绝热条件下燃烧所能达到的最高温度,此时反应放出的热量全部用来加热生成产物.根据其与生成物的熔点之间的关系,对反应Σm i R i =Σn j P j ,其焓变可以表示为:H oT +H o298+∫T tr298C pdT +△Htr+∫T mI ′urC ′p dT +△H m+∫T BT mC ″pdT +△H B+∫T adT BCpdT式中C p C ′p C ″p Cp 分别为反应物的低温固态、高温固态、液态和气态的摩尔热容.(T tr :相变温度;△H tr :相变热;T m :熔点;△H m :熔化热;T B :沸点;△H B :汽化热)313 SHS 产物平衡成份的确定目前有两种计算SHS 产物平衡成份的算法,一种是简化算法,另一种是精确算法,在此基础上可以通过简化推出其它算法.首先设定SHS 产物的化学成份,其设定方法一般只考虑所关心的生成物,绝热燃烧温度也是以上述假定下的化学反应所放出的热量为基础进行的.这种算法对生成物较简单的SHS 体系,特别是生成6 南 方 金 属S OUTHERN MET A LS2005年第5期 物较单一的体系是比较有效的,但对于具有多元的SHS体系,因其产物也较复杂,仅假定所关心的产物相是不够的.要实现对燃烧产物组织结构的严格控制,就必须对整个燃烧合成体系进行详尽的热力学分析,从热力学平衡的角度出发确定产物相,这就需要精确算法.314 热点火理论自蔓延高温合成的燃烧过程是强烈的自维持放热反应的过程.从无机化学反应向稳定的自维持强烈放热反应状态的过渡过程为着火过程,相反,从强烈的放热反应向无反应状况的过渡称做熄火着火的方式很多,一般可分为下列三类着火方式:化学自燃.这类着火通常不需外界给以加热,而是在常温下依靠自身的化学反应发生的.热自燃.如果将燃烧和氧化剂混合物均匀地加热,当混合物加热到某一温度时的便着火,这时是在混合物的整个容积中着火,称为热自燃.点燃.用火花、电弧、热平板、钨丝等高温热源使混合物局部受到强烈的加热而先着火燃烧,随后,这部分已燃的火焰传播到整个反应的空间,这种着火方式称为点火.自蔓延高温合成过程的着火方式绝大多数情况下均为点火方式.该理论以SHS体系的热稳定性或热失稳为研究对象,研究化学反应的动力学过程,热传递过程,着火点火之间的联系.315 燃烧波蔓延作为一类特殊的化学反应,SHS反应区前沿,即燃烧波会随着反应的进行而不断推移.因此需要建立能反映这一特征的动力学参数.燃烧波速率则是这一动力学参数,它描述了燃烧波前的移动速率.在一定的假设条件下,如忽视对流、辐射散热等,以及对燃烧波结构作一定的约束之后,可以求出燃烧波速率υ的解析式.不同的约束条件会得到略有差别的解.大多数的SHS过程,燃烧前沿都存在一个光滑的表面(平面或很小的曲面),这一表面以恒定的速率一层一层传播,称之为稳态燃烧.有时在SHS过程中,燃烧波前沿的传播在时间和空间上都是不稳定的,称之为非稳态燃烧.非稳态燃烧分为振动式和螺旋式两种模式.影响燃烧波速率的因素很多,有化学成分、稀释剂含量、压坯相对密度、反应物尺寸、预热温度等.316 SHS的动力学燃烧合成动力学,主要研究燃烧波附近高温化学转变的速率等规律,燃烧波速率是目前人们普遍采用的一个SHS动力学参量,它直接反映了燃烧前沿的移动速度;另外有关的概念还有质量燃烧速率和能量释放率等.燃烧机制是指物质燃烧过程中所发生的化学反应,物理化学变化和物质传输过程规律以及这些变化之间的关系.燃烧机制可以归纳为以下4种类型:(1)固相扩散机制;(2)气体传输机制;(3)溶解析出机制;(4)气体渗透机制.目前所采用的研究方法包括:SHS过程的快淬保持及随后对试样的逐层分析;燃烧波前沿内物质相组成变化的动力学研究.研究的主要手段有:x射线分析,包括同步辐射,动态x射线衍射分析.其平衡态SHS模型见图1.图1 SHS的平衡态模型 图中a ko反应物浓度,a pb为生成物浓度,T o为反应物初始温度,T b为生成物温度,υ为燃烧波传播速度m/s,η为热释放率.以此模型为基础形成了燃烧合成的热力学、动力学以及燃烧合成的理论包括燃烧理论、燃烧化学及结构宏观动力学等.4 SHS技术的应用燃烧合成自问世以来,已开发出6大类相关技术和工艺[11,12],即燃烧合成制备粉体,燃烧合成烧结技术,燃烧合成致密化技术,燃烧合成熔铸技术,燃烧合成焊接技术及燃烧合成涂层技术.采用燃烧合成技术可以制备常规方法难以得到的结构陶瓷、梯度材料、超硬磨料、电子材料、涂层材料金属间化合物及复合材料等.目前,SHS粉末技术已成功地应用于商业生产,SHS-离心法制备钢管涂层也已成为一种逐渐成熟的工业技术在日本,中国等地得到推广应用.由SHS一步合成致密材料的研究也在7 总第146期谭小桩等:自蔓延高温合成技术的发展与应用进行中,致密化时的加压可在燃烧波蔓延时或蔓延后产物仍处于高温时进行.加压方式可以采用单向加压,等静压,准等静压及动态加载法.SHS粉末合成技术包含的工序类似于粉末冶金制粉.但两者又有区别,其区别主要在合成工序. SHS粉末合成技术的工艺流程如图2所示.图2 SHS粉末合成技术的工艺流程411 利用SHS工艺制备难熔化合物低成本与高性能是许多先进材料研究与应用领域普遍存在的问题[13],利用化学反应释放的高热量低温制备高熔点先进材料的燃烧合成熔化技术可合成许多难熔化合物粉体或复合材料.难熔化合物指碳化物、氮化物、硅化物和硼化物,既包括金属也包括非金属的碳、氮、硅、硼化合物.表1是利用SHS工艺所制备的部分难熔化合物材料.表1 SHS技术合成的部分材料碳化物氮化物硅化物硼化物T iCZ rC CrB2H fC T iN M oS i2H fB2NdC Z rC T aS i2NdB2S iC BN T i5S i3T aB2Cr3C2AiN Z rS i2T iB2B4C S i3N4LaB2WC T aN M oB2412 SHS制备陶瓷内衬钢管41211 基本原理很多高放热SHS体系的燃烧温度超过燃烧产物的熔点,燃烧后的产物是熔体.这种SHS体系与常规的冶金方法相结合,产生了SHS技术,利用SHS法得到熔体,用常规冶金法处理熔体[14,15].SHS冶金包括SHS铸造和SHS-离心技术.铝热反应由于其高放热而被广泛用于SHS冶金.其化学反应式为:(1) Fe2O3+Al→Fe+Al2O3+O(2) 2M oO3+4Al+C→2Al2O3+M o2C+Q41212 SHS-离心法在石油化工、电力及冶金行业,钢管的使用寿命成为人们最关心的问题,然而由于钢管的内径小、长度大,用其它的防腐处理方法很难实现,而用次工艺便可很容易的解决.它是利用铝、镁、硅、锆等粉末与金属氧化物的高放热化学反应,依靠化学反应潜热加热反应物—陶瓷与金属或陶瓷与陶瓷.由于反应温度超过了陶瓷及金属的熔点,整个体系处于熔融状态.在离心力的作用下,熔体按密度大小分层,大密度的组分与钢管基体结合,小密度的陶瓷组分涂覆在钢管的内壁,形成陶瓷涂层,见图3.目前,涂层内衬钢管的生产技术已相当成熟.图3 SHS-离心法原理41213 SHS-重力法比较直的钢管采用离心法是可以的,如果是弯管或其它不规则形状的钢管仍采用离心法显然是不可行的.经过工程技术研究人员的努力,利用重力原理使得在SHS过程中熔体涂覆到钢管的内壁.因铝热反应产生的高温使反应物处于熔融状态,钢管中在反应物料上形成了由金属Fe及陶瓷两相熔体组成的熔池,由于Fe的密度大于涂层相的密度,在重力作用下,两熔体分离,Fe沉积于熔池的底部,熔融的涂层相浮于熔池的上部.随着自蔓延反应的进行,液面逐渐下降,导致Fe的液相和陶瓷液相依次附与钢管内壁并结晶凝固,从而在钢管内壁形成连续均匀的涂层[9].其原理如图4所示.8南 方 金 属S OUTHERN MET A LS2005年第5期 图4 SHS-重力法原理5 结束语 经过材料科学工作者几十年的努力,自蔓延高温合成技术已成功应用于难熔化合物的制备,包括粉体的制备及复合材料的制备等,而采用SHS法制备的陶瓷内衬钢管以其良好的耐磨、耐蚀、耐高温性能和优异的抗机械冲击、抗热冲击性能,产品重量轻、不怕磕碰、价格低等优点在许多工程中也得到了广泛应用,使用寿命是现行管材的几倍几十倍.尽管自蔓延高温合成技术在材料的改性方面已得到了广泛的应用,在性能价格比方面有优越性,但是科学工作者不满于现状仍在继续完善SHS工艺,比如将SHS工艺与加压相结合,可获得更致密与基体结合更牢固的陶瓷涂层材料,以满足于防腐、耐磨、隔热等不同使用环境的要求[4,10,11,15].参考文献[1] Merzhanov A G.C ombustion and Plasma Synthesis of High- T em perature Materials[M].New Y ork:C VH Publ inc, 1990.[2] Munir Z A.Synthesis of High-T em perature Materials by Self-Propagating C ombustion Methods[J].Ceramic Bulletin, 1998,667(2):342~349.[3] H olt J B.The Fabrication of S iC,S i3N4and AlN by C om2bustion Synthesis[J].Ceramic C om ponents for engines, 1983,3(2):721~728.[4] 殷 声.燃烧合成[M].北京:冶金工业出版社,1999.[5] 唐华生.精密陶瓷自燃烧结法的研究与应用[J].兵器材料科学与工程,1990,8(2):8~13.[6] 许伯潘.静态自蔓延合成陶瓷涂层实验研究[J].武汉冶金工业大学学报,1998,21(2):166~169.[7] 傅正义.自蔓延高温合成(SHS)过程的点火模型与分析[J].硅酸盐学报,1994,22(5):447~452.[8] 张树格.材料合成与粉末冶金[J].粉末冶金技术,1992,10(4):301.[9] 赵忠民.重力分离SHS法制备陶瓷涂层内衬复合钢管的组织与性能[J].机械工程材料,1998,22(2):34~37.[10]许兴利,韩杰才,杜善义.自蔓延合成理论研究与进展(一)[J].功能材料,1996,27(6):223~227.[11]李文戈,周和平.燃烧合成陶瓷涂层技术的应用形状及发展前景[J].材料保护,2001,34(1):35~37. [12]殷 声.燃烧合成的发展状况.粉末冶金技术[J].2001,19(2):93~97.[13]薛群基,喇培清.低温制备高熔点先进材料的燃烧合成熔化技术[J].甘肃科技纵横,2002,12(3):28~31. [14]雷林海.材料合成新工艺———自蔓延高温合成[J].石油化工腐蚀与防护,1997,14(3):12~16.[15]殷 声.自蔓延高温合成法(SHS)的发展[J].粉末冶金技术,1992,10(3):223~227.标题新闻 广东省省委副书记、省长黄华华8月15日寄语韶钢,努力把韶钢建成资产或销售收入超千亿元的“航空母舰”,成为我省产业发展的排头兵.9 总第146期谭小桩等:自蔓延高温合成技术的发展与应用。

自蔓延高温合成技术的发展与应用

自蔓延高温合成技术的发展与应用

3 自蔓延高温合成技术理论
(1)SHS过程热力学 燃烧体系进行热力学分析是 SHS研究过程 的基础。绝热燃烧温度是描述SHS反应特征的 最重要的热力学参量。它不仅可以作为判断反 应能否自我维持的定性判据,并且还可以对燃 烧反应产物的状态进行预测并且可为反应体系 的成分设计提供依据。 Merzhanov 等人提出 以下经验判据。
1 概述
自 蔓 延 高 温 合 成 (Self-Propagating High Temper-ature Synthesis,SHS), 也 称 燃 烧 合 成 (Combustion Syn-thesis,CS), 它 是一种利用化学反应自身放热使反应持续进 行,最终合成所需材料或制品的新技术。任何 化学物质的燃烧只要其结果是形成了有实际 用途的凝聚态的产品或材料,都可被称为SHS 过程 . 在 SHS 过程中 , 参与反应的物质可处于 固态、液态或气态,但最终产物一般是固态。
2 国内外研究现状
目,支持SHS研究开发。1994年,在武汉召 开了第一届全国燃烧合成学术会议。我国的 SHS产业化成果也得到了国外同行的高度评 价。我国研制的陶瓷复合钢管年产近万吨。 近年,我国在SHS领域加强了与国外的合作 与交流,发表的SHS方面的文章数目仅次于 俄、美,与日本相近,我国台湾学者在SHS粉 末和不规则燃烧方面也取得了引人注目的科 研成果。
2 国内外研究现状
国外研究情况 1967年,苏联科学院化学物理研究所宏观动 力 学 研 究 室 的 Borovinskaya, Skior 和 Merhanov 等人在研究钛和硼的混合粉坯块的 燃烧时,发现“固体火焰”,后又发现许多金 属和非金属反应形成难熔化合物时都有强烈的 放热反应;1972年,该所建立了年产10~12 t难 熔化合物粉末的 SHS中试装置; 1973 年,苏联 开始将SHS产物投入实际应用,并召开了全苏

自蔓延高温合成技术(燃烧合成)

自蔓延高温合成技术(燃烧合成)

自蔓延结构的控制方法
控制方法 SHS促进方法 通过化学或物理方式进行 促进方法:通过化学或物理方式进行 促进方法 机械控制手段:主要用来控制合成材料的致密度或孔隙率 机械控制手段 主要用来控制合成材料的致密度或孔隙率 电磁场对SHS材料的结构影响 电磁场对 材料的结构影响 电场可使固熔体均化,供应一部分热能 促进燃烧,增加 供应一部分热能,促进燃烧 电场可使固熔体均化 供应一部分热能 促进燃烧 增加 燃烧波的速度 SrCO3-Fe-Fe2O3-O2体系中 磁场使铁颗粒团聚并排列 体系中,磁场使铁颗粒团聚并排列 成链状,提高导热性 提高导热性,从而提高燃烧速度 成链状 提高导热性 从而提高燃烧速度 SHS抑制方法 通过添加剂稀释进行 抑制方法:通过添加剂稀释进行 抑制方法 稀释剂不参与SHS过程 可以是反应合成的最终产物 也可 过程,可以是反应合成的最终产物 稀释剂不参与 过程 可以是反应合成的最终产物,也可 以是惰性添加相或者过量的反应物,对过程起缓和作用 以是惰性添加相或者过量的反应物 对过程起缓和作用 金属/陶瓷复合材料的自蔓延高温合成中 陶瓷复合材料的自蔓延高温合成中,稀释剂可降 金属 陶瓷复合材料的自蔓延高温合成中 稀释剂可降 低合成过程温度,抵制陶瓷晶坯聚集长大 低合成过程温度 抵制陶瓷晶坯聚集长大 气反应体系中稀释剂可提高转化率,金属 固-气反应体系中稀释剂可提高转化率 金属 氮气体系 气反应体系中稀释剂可提高转化率 金属/氮气体系 中,过量氮气为稀释剂 过量氮气为稀释剂
自蔓延高温合成技术(燃烧合成) 自蔓延高温合成技术(燃烧合成)
自蔓延高温合成技术
自蔓延高温合成技术( 自蔓延高温合成技术(self–propagation high–temperature synthesis,简称 自蔓延高温合成是指利用外部提供必 ,简称SHS ):自蔓延高温合成是指利用外部提供必 自蔓延高温合成是指 要的能量诱发高放热化学反应体系局部发生化学反应(点燃), 要的能量诱发高放热化学反应体系局部发生化学反应(点燃), 形成化学反应燃烧波, 形成化学反应燃烧波,此后化学反应在自身放出热量的支持下继 续进行, 续进行,直至反应结束

自蔓延高温合成技术资料

自蔓延高温合成技术资料

自蔓延高温合成技术10粉(1)张凯 1003011020 摘要:自蔓延高温合成技术是20 世纪后期诞生的一门新兴的前沿科学,在粉体合成及陶瓷的制备等方面充分显示其优越性. 文章对自蔓延高温合成技术的概念、自蔓延高温合成的燃烧理论作了简要介绍,并整理总结自蔓延高温合成(SHS) 技术的发展和国内外研究概况,包括制备工艺、应用领域等,同时分析了自蔓延高温合成技术的最新研究动向。

关键词:自蔓延高温合成;燃烧合成;SHS技术;SHS理论;应用1 引言自蔓延高温合成(Self - Propagating High Temperature Synthesis,简称SHS),也称燃烧合成(Combustion Synthesis ,CS) 是利用反应之间的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向未反应区传播,直至反应完全。

任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS 过程. 在SHS 过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态.SHS 技术制备的产品纯度高、能耗低、工艺简单,用SHS 技术可以制备非平衡态、非化学计量比和功能梯度材料. 其特点为: ①是一种速的合成过程; ②具有节能效果; ③可提高材料的纯度;④产物易形成多孔组织; ⑤燃烧产物的组织具较大的离散性. 因此,探索各种SHS 体系的燃烧合成规律, 获得均匀组织也是保障SHS 产业化的关键.2国内外研究概况人们很早就发现了化学反应中的放热现象, 在上个世纪就已发了气-相和固-相的燃烧合成现象。

1892 年,Mo issen 叙述了氧化物和氮化物的燃烧合成。

1895 年, Go ldchm idt 用铝粉还原碱金属和碱土金属氧化物, 发现固2固相燃烧反应, 并描述了放热反应从试料一端迅速蔓延到另一端的自蔓延现象。

本世纪铝热反应已经得到工业应用。

但是, 将燃烧合成和冶金、机械等技术结合起来, 发展成为具有普遍意义的制备材料新技术并用于工业生产, 还应归功于原苏联科学家的努力。

自蔓延高温合成技术(课程讲义)

自蔓延高温合成技术(课程讲义)

典型的例子是铝热反应,如:
3Cr2O3 + 6Al + 4C = 2Cr3C2 + 3Al2O3 T= 6500K
MoO3 + 2Al + B = MoB + Al2O3
T= 4000K
Fe2O3 + 2Al = Al2O3 + 2Fe
T>3000K
以液相密实化技术为基础发展了离心复合管制备技术
3-2.加压密实化技术
非稳态燃烧 有关的理论研究:
振荡燃烧 螺旋燃烧 混沌燃烧
低放热体系、 气--固反应体系、 复杂反应体系 合成条件变化造成的非稳态燃烧
平衡态理论: 热平衡理论 渗透燃烧理论
非平衡理论: 通过非平衡热力学理论研究和模拟 燃烧波结构的变化规律
燃烧模式的研究 方法: 燃烧合成过程的数学
模拟和实验验证
燃烧合成 →远离平衡的不可逆过程

温度采集: 多通道热电偶、红外温度计

图像采集: 高速摄影机和计算机处理
燃烧合成基础研究装置图
•全可控的自动点火功能 •过程温度、图像监测 •多点温度同步监测 •合成气氛和压力调节
1-1.无气点火过程研究
基本假设: 点火截面温度分布均匀 截面上材料物性参数不随温度变化 热损失忽略不计
对于x处的反应层,根据Fourier基本热方程,在一维方向上有:
SHS合成
燃烧产 品加工
气氛、压力 离心、点火
研磨、抛光 切割等
硼化物、氮化物等无机材料、 多相多组分材料及制品
最有效的控制手段:
1、 外加热 辅助燃烧合成 获得熔融的合成产品,强化低放热反应的合成 TiNi、NiAl、Ni3Al等
2、 掺加稀释剂 提高合成转化率,控制材料结构,改善材料可加工性 AlN、Si3N4.TiN等

自蔓延高温合成法

自蔓延高温合成法

自蔓延高温合成法概述自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种以高温反应为基础的合成方法,具有快速、低能耗和高效的特点。

它在材料科学和化学领域有着广泛的应用,可以用于合成金属陶瓷材料、复合材料和无机化学品等。

原理SHS基于自蔓延原理,即通过局部点燃反应混合物中的可燃物质,使整个反应物质迅速发生反应并扩散,形成产物。

该反应过程通常在高温下进行,使用以金属和非金属化合物为主的反应物,产物常为金属、陶瓷和复合材料。

反应机制SHS反应通常由两个步骤组成:点燃阶段和自蔓延扩散阶段。

在点燃阶段,反应体系中局部加热可燃物质,使其自发点燃。

燃烧反应产生的高温和自由基会引发整个反应物质的快速反应。

在自蔓延扩散阶段,反应前驱体与产物之间的扩散作用会加速反应的进行,并不断释放出热量,维持反应的高温。

应用领域1. 金属陶瓷材料SHS在金属陶瓷领域有广泛的应用。

例如,利用SHS可以制备高硬度、耐磨损的刀具材料。

通过选择不同的金属和陶瓷反应物,可以调控材料的硬度、导热性和耐腐蚀性。

2. 复合材料SHS还可用于制备复合材料,在提供机械强度的同时具有轻质和高温性能。

通过选择不同的反应物,可以调控材料的化学成分和微结构,使其具有特定的性能和应用领域。

3. 无机化学品SHS在无机化学品合成中也有重要的应用。

例如,在高温下可以通过SHS方法合成多晶硅粉末,用于制备太阳能电池。

此外,SHS还可用于制备氧化物陶瓷材料、金属硬质合金和火焰喷涂材料等。

实验操作SHS方法的实验操作相对简单,但仍需注意安全事项。

以下是一般的实验操作步骤:1.准备反应物:按照所需的配比准备反应物。

2.混合反应物:将反应物充分混合均匀,以确保反应的全面性。

3.预热反应器:将反应器预热至适当的温度,以提供起始点燃的热源。

4.加入混合物:将混合物加入预热的反应器中,快速封闭反应器。

5.点燃反应物:利用点燃源引发混合物中可燃物质的燃烧。

自蔓延高温合成技术

自蔓延高温合成技术

自蔓延高温合成(self–propagation high–temperature synthesis,简称SHS),又称为燃烧合成(combustion synthesis)技术,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。

基本信息•中文名称:自蔓延高温合成•外文名称:self–propagation high–temperature synthesis•特点:反应温度通常都在2100~3500K•简史:黑色炸药是最早应用特点燃烧引发的反应或燃烧波的蔓延相当快,一般为0.1~20.0cm/s,最高可达25.0cm/s,燃烧波的温度或反应温度通常都在2100~3500K以上,最高可达5000K。

SHS以自蔓延方式实现粉末间的反应,与制备材料的传统工艺比较,工序减少,流程缩短,工艺简单,一经引燃启动过程后就不需要对其进一步提供任何能量。

由于燃烧波通过试样时产生的高温,可将易挥发杂质排除,使产品纯度高。

同时燃烧过程中有较大的热梯度和较快的冷凝速度,有可能形成复杂相,易于从一些原料直接转变为另一种产品。

并且可能实现过程的机械化和自动化。

另外还可能用一种较便宜的原料生产另一种高附加值的产品,成本低,经济效益好。

自蔓延高温合成法发展简史早在2000多年前,中国人就发明了黑色炸药(KNO3+S+C),这是自蔓延高温合成(SHS)方法的最早应用,但不是材料制备。

所谓自蔓延高温合成材料制备是指利用原料本身的热能来制备材料。

1900年法国化学家Fonzes–Diacon发现金属与硫、磷等元素之间的自蔓延反应,从而制备了磷化物等各种化合物。

在1908年Goldschmidt首次提出"铝热法"来描述金属氧化物与铝反应生产氧化铝和金属或合金的放热反应。

1953年,一个英国人写了一篇论文《强放热化学反应自蔓延的过程》,首次提出了自蔓延的概念。

《纳米粉体制备与表征》第5章 固相法制备纳米粉体

《纳米粉体制备与表征》第5章 固相法制备纳米粉体

2015/10/22
高能球磨法
有的材料粉体经过高能球磨后可直接获得纳米
粉体,如Bi4Ti3O12、Fe2O3、BaTiO3、SiC等。 Xue等采用BaO和TiO2为原料,在氮气气氛下进 行进行高能球磨15h,可在常温下获得粒径仅为 20-30nm的BaTiO3粉体。 不少纳米粉体制备是利用高能球磨对反应物前 驱体进行预处理,然后再经热处理后获得最终 的粉体。 前驱体在经高能球磨处理后,由于颗粒很细, 表面能很高,因此热处理温度一般比普通球磨 低很多,最终的粉体还能保持在纳米尺度上。
(3) 依据 SHS 过程的特点, IS(s-s) 体系又可分为无气燃烧 的IS体系(凝聚体系)和伴随易挥发物质渗出的无气燃烧 IS体系,以及气体漫渗燃烧的HS体系。
2015/10/22
图5.4
2015/10/22
IS体系和HS体系示意图
燃烧反应机制
燃烧反应机制包括:研究原始混合物状态、 反应组分配比、初始温度、气体压力 等因素对主要过程参数v(燃烧波速)、 Tc(燃烧温度)和η(转化率)的影响,得 出反应物间相互作用的模型。
2015/10/22
表5.1 一些常见体系的SHS绝热温度
体系 Tad/K 体系 Tad/K 体系 Tad/K
TiB2
3190
TiC
3200
Si3N4
4300
ZrB2
3310
HfC
3900
BN
3700
NbB2
2400
SiC
1800
Ti5Si3
2500
TaB2
3370
TiN
4900
MoSi2
1910
预测SHS过程能否持续的一个重要的参数 是燃烧的绝热温度Tad。绝热温度定义为:在 绝热条件下,反应物完全转化时,反应释放化 学热使产物加热而达到的温度。计算绝热温度 可以大致了解反应体系SHS过程的可能性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

St d n S l - pr pa a i i h Te p r t r u y o ef o g tng H g m e a u e
S nt s s o n y he i fM S
LIChe g we ,KAN G u m e ,LI Huiyu n- i Sh — i — ,SUN a —on ,W AN G iy , Yu n l g Gu — u
ZHAO n —o g Ro g r n 。XUE J a - i。 u n qn
( . S ho lo ae il in ea dEn ie rn 1 c o fM trasS e c n gn e ig,Unv r iyofS in ea d Te h lgyLio lg,An h n 1 4 4 ,Ch n c ie st e c n c noo a nn c sa 1 0 4 ia
摘 要 : 过 热力 学 计 算 证 明 了 自蔓 延 合 成 硫 化 锰 反 应 的 可 行 性 。根 据 自蔓 延 反 应 所 提 出 的 环 境 要 求 , 通 自 行 设 计 了 自蔓延 高 温 反 应 釜 。应 用 所 设 计 的 自蔓 延 高 温 反 应 釜 进 行 了 合 成 硫 化 锰 实 验 , 到 的 硫 化 锰 得
Ab t a t I s f a i l O p o u e m a g n s u fd b e f p o a a i g h g e p r t r y t e i sr c : t i e sb e t r d c n a e e s li e y s l — r p g t i h t m e a u e s n h s s n t r u h t e mo y a c o u a i n Ac o d n O t e e v r n n a e a d f s 1- r p g t g h g h o g h r d n mis c mp t to . c r i g t h n io me t ld m n s o e fp o a a i i h n
粉 末 通 过 X 衍射 分析 、 度 分 析 及 显 微 镜 观 察 , 明 产 品 纯 度 及 粒 度 均 可 达 到 粉 末 冶 金 使 用 要 求 。 粒 证
关键词 : 自蔓 延பைடு நூலகம்; 反应 釜 ; 化 锰 硫
中 图 分 类 号 : F 2 . T 132 文 献标 识码 : A 文 章 编 号 : 0 7 5 5 2 0 ) 5 0 3 0 1 0 —7 4 ( 0 7 0 —0 4 — 3
2 S h o fM e al r ia gn eig,Xin Unv riyofArh tcu e & Te h oo y,Xin 71 0 5,Chn ) . c o lo tlu gc lEn ie rn ' ie st c ie t r a c n lg ' 05 a ia
o n i d f e fp o a a i g h g e e a u er a t n ,t u e e id t e d f in y o h n s d n ma y k n so 1- r p g tn i h t mp r t r e c i s h sr m d e h e i e c f eo e u e s o c t s n l e p n e Th a g n s u f e p wd r p o u e y i d p n e ty d sg e e c o s a a y e ig er s o s. em n a e e s l d o e r d c d b e e d n l e i n d r a t r wa n l z d i n b d fr c i n,p r i l i e a a y e n h l c r n m ir s o e Th e u t h w h t t e p rt a e y X i a t f o a t e sz n l z r a d t e e e t o c o c p . c e r s ls s o t a h u iy r t
t mpe a ur e c i n ,we ha e d sgn d s 1- r pa a i g hi e e r t e r a to v e i e e fp o g tn gh t mpe a ur e c o r t e r a t r,whih c n b a re c a e c rid
维普资讯
有 色金 属 ( 炼部 分) 2 0 冶 0 7年 5 期
・4 3・
自蔓 延 高温 合 成 Mn S粉末
, , , , 蓉 , 李 成威 亢淑 梅 李 慧 玉 孙 源龙 王 贵 玉 赵 蓉 薛娟 琴

( .辽 宁科技 大学 材料科 学 与工 程学 院 , 山 14 4 ;.西安建 筑科 技 大学 冶金工 程 学院 , 1 鞍 104 2 西安 7 0 5 ) 1 0 5
a ri l i e me t p w d rm e a l g pe ii a i n. nd pa tce sz e o e t lur y s cfc to Ke wo d y r s:Se fp op g tn g e l— r a a i g hi h t mpe a ur y he i r t e s nt ss;Re c o a t r;M a ga e es fde n n s uli
相关文档
最新文档